The effect of n- 3 polyunsaturated fatty acid supplementation on immune and reproductive parameters in dairy cows:

a review

Authors

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2021.175224

Keywords:

Bovine, Immune response, Linolenic acid, Reproductive efficiency

Abstract

In dairy cattle, supplementation with polyunsaturated fatty acids (PUFAs) is considered to be an important tool to decrease the negative energy balance of periparturient dairy cows and improve the reproductive and immune systems. The most common PUFAs added to ruminant diets are omega 3 (n-3 PUFA) as linolenic acid and omega 6 (n-6 PUFA) as linoleic acid. This paper aims to review the potential effects of n-3 PUFA. We consider the effects of n-3 PUFA on the bovine immune system, especially on immune cells, and on in vivo and in vitro reproductive parameters, emphasizing how n-3 PUFAs act as modulators through one or more molecular mechanisms. The incorporation of n-3 PUFA in the dairy cow diet has positive effects on animal fertility and immunity. Future research on n-3 PUFA should be more explored concerning reproduction and immune function, starting from the investigation of basic biology to their potential for application in the clinical and preventive medicine fields.

Downloads

Download data is not yet available.

References

Adamiak SJ, Powell K, Rooke JA, Webb R, Sinclair KD. Body composition, dietary carbohydrates and fatty acids determine post-fertilisation development of bovine oocytes in vitro. Reprod. 2005;131(2):247-58. https://doi.org/10.1530/rep.1.00871.

Albiger B, Dahlberg S, Normark S. Role of the innate immune system in host defence against bacterial infections : focus on the Toll-like receptors. J Intern Med. 2007;261(6):511- 28. http://dx.doi.org/10.1111/j.1365-2796.2007.01821.x. PMid:17547708.

Ambrose DJ, Kastelic JP, Corbett R, Pitney PA, Petit HV, Small JA, Zalkovic P. Lower Pregnancy Losses in Lactating Dairy Cows Fed a Diet Enriched in α -Linolenic Acid. J Dairy Sci. 2006;89(8):3066-74. http://dx.doi.org/10.3168/jds.S0022-0302(06)72581-4. PMid:16840624.

Ashes JR, Siebert BD, Gulati SK, Cuthbertson AZ, Scott TW. Incorporation of n-3 fatty acids of fish oil into tissue and serum lipids of ruminants. Lipids. 1992;27(8):629-31. http://dx.doi.org/10.1007/BF02536122. PMid:1406074.

Beam TM, Jenkins TC, Moate PJ, Kohn RA, Palmquist DL. Effects of amount and source of fat on the rates of lipolysis and biohydrogenation of fatty acids in ruminal contents. J Dairy Sci. 2000;83(11):2564-73. http://dx.doi.org/10.3168/jds.S0022-0302(00)75149-6. PMID: 11104276.

Blok WL, Katan MB, Vandermeer JW. Modulation of inflammation and cytokine production by dietary (n-3) fatty acids. J Nutr. 1996;126(6):1515-33. http://dx.doi.org/10.1093/jn/126.6.1515. PMid:8648424.

Calder PC. Dietary fatty acids and lymphocyte functions. Proc Nutr Soc. 1998;57(4):487-502. http://dx.doi.org/10.1079/PNS19980073. PMid:10096108.

Calder PC. Immunomodulatory and anti-inflammatory effects of 12-3 polyunsaturated fatty acids. Proc Nutr Soc. 1996;1996(2):737-74. http://dx.doi.org/10.1079/PNS19960069.

Calder PC. Long-chain fatty acids and inflammation. Proc Nutr Soc. 2012;71(2):284-9. http://dx.doi.org/10.1017/S0029665112000067.

Calder PC. Long-chain fatty acids and inflammation. In: Proceedings of the 5th International Immunonutrition Workshop. Cambridge: Cambridge University Press; 2020.

Calder PC. N-3 polyunsaturated fatty acids, inflammation and immunity : pouring oil on troubled waters or another fishy tale? Nutr Res. 2001;21(1-2):309-41. http://dx.doi.org/10.1016/S0271-5317(00)00287-6.

Carriquiry M, Dahlen CR, Weber WJ, Lamb GC, Crooker BA. Postpartum ovarian activity in multiparous Holstein cows treated with bovine somatotropin and fed n-3 fatty acids in early lactation. J Dairy Sci. 2009;92(10):4876-88. http://dx.doi.org/10.3168/jds.2008-1675. PMid:19762803.

Chapwanya A, Meade KG, Doherty ML, Callanan JJ, Mee JF, O’Farrelly C. Histopathological and molecular evaluation of Holstein-Friesian cows postpartum : toward an improved understanding of uterine innate immunity. Theriogenology. 2009;71(9):1396-407. http://dx.doi.org/10.1016/j.theriogenology.2009.01.006. PMid:19233457.

Childs S, Hennessy AA, Sreenan JM, Wathes DC, Cheng Z, Stanton C, Diskin MG, Kenny DA. Effect of level of dietary n-3 polyunsaturated fatty acid supplementation on systemic and tissue fatty acid concentrations and on selected reproductive variables in cattle. Theriogenology. 2008;70(4):595-611. http://dx.doi.org/10.1016/j.theriogenology.2008.04.002. PMid:18514298.

Chilliard Y, Glasser F, Ferlay A, Bernard L, Rouel J, Doreau M. Diet, rumen biohydrogenation and nutritional quality of cow and goat milk fat. Eur J Lipid Sci Technol. 2007;109(08):828- 55. http://dx.doi.org/10.1002/ejlt.200700080.

Cholewski M, Tomczykowa MA, Tomczyk M. Comprehensive review of chemistry, sources and bioavailability of omega-3 fatty acids. Nutrients. 2018;10(11):1662. http://dx.doi.org/10.3390/nu10111662. PMid:30400360.

Church D. The ruminant animal digestive physiology and nutrition. Englewood Cliffs, NJ: Prentice-Hall; 1988. 654 p.

Colazo MG, Kastelic JP, Martınez MF, Whittaker P, Wilde R, Ambrose JD, Corbett R, Mapletoft R. Fertility following fixed-time AI in CIDR-treated beef heifers given GnRH or estradiol cypionate and fed diets supplemented with flax seed or sunflower seed. Theriogenology. 2004;61(6):1115- 24. http://dx.doi.org/10.1016/j.theriogenology.2003.06.005. PMid:15036999.

Costa RLD, Fontes RS. Ácidos graxos na nutrição e reprodução de ruminantes. Pubvet. [Internet]. 2010 [cited 2020 Sept 29];4:1-39. Available from: https://www.pubvet.com.br/artigo/2350/aacutecidos-graxos-na-nutriccedilatildeoereproduccedilatildeo-de-ruminantes.

Coyne GS, Kenny DA, Childs S, Sreenan JM, Waters SM. Dietary n -3 polyunsaturated fatty acids alter the expression of genes involved in prostaglandin biosynthesis in the bovine uterus. Theriogenology. 2008;70(5):772-82. http://dx.doi.org/10.1016/j.theriogenology.2008.05.048. PMid:18582926.

Dewhurst RJ, Moloney AP. Modification of animal diets for the enrichment of dairy and meat products with omega-3 fatty acids. In: Jacobsen C, Nielsen NK, Horn AF, Sørensen AM. Food enrichment with omega-3 fatty acids. Sawston: Woodhead Publishing Limited; 2013. p. 257-87. https://doi.org/10.1533/9780857098863.3.257.

Dirandeh E, Ghaffari J. Effects of feeding a source of omega-3 fatty acid during the early postpartum period on the endocannabinoid system in the bovine endometrium. Theriogenology. 2018;121:141-6. http://dx.doi.org/10.1016/j.theriogenology.2018.07.043. PMid:30145543.

Fritsche KL. Too much linoleic acid promotes inflammation doesn’t it? Prostaglandins Leukot Essent Fatty Acids. 2008;79(3- 5):173-5. http://dx.doi.org/10.1016/j.plefa.2008.09.019. PMid:18990555.

Gandra JR, Barletta RV, Mingoti RD, Verdurico LC, Freitas JE Jr, Oliveira LJ, Takiya CS, Kfoury JR Jr, Wiltbank MC, Renno FP. Effects of whole flaxseed, raw soybeans, and calcium salts of fatty acids on measures of cellular immune function of transition dairy cows. J Dairy Sci. 2016;99(6):4590-606. http://dx.doi.org/10.3168/jds.2015-9974. PMid:27060809.

Ginhoux F, Jung S. Monocytes and macrophages : developmental pathways and tissue homeostasis. Nat Rev Immunol. 2014;14(6):392-404. http://dx.doi.org/10.1038/nri3671. PMid:24854589.

Gorjão R, Azevedo-Martins AK, Rodrigues HG, Abdulkader F, Arcisio-Miranda M, Procopio J, Curi R. Comparative effects of DHA and EPA on cell function. Pharmacol Ther. 2009;122(1):56-64. http://dx.doi.org/10.1016/j.pharmthera.2009.01.004. PMid:19318040.

Greco LF, Neves Neto JT, Pedrico A, Ferrazza RA, Lima FS, Bisinotto RS, Martinez N, Garcia M, Ribeiro ES, Gomes GC, Shin JH, Ballou MA, Thatcher WW, Staples CR, Santos JE. Effects of altering the ratio of dietary n-6 to n-3 fatty acids on performance and inflammatory responses to a lipopolysaccharide challenge in lactating Holstein cows. J Dairy Sci. 2015;98(1):602-17. http://dx.doi.org/10.3168/jds.2014-8805. PMid:25465551.

Grummer RR, Mashek DG, Hayirli A. Dry matter intake and energy balance in the transition period. Vet Clin North Am Food Anim Pract. 2004;20(3):447-70. http://dx.doi.org/10.1016/j.cvfa.2004.06.013. PMid:15471620.

Gulliver CE, Friend MA, King BJ, Clayton EH. The role of omega-3 polyunsaturated fatty acids in reproduction of sheep and cattle. Anim Reprod Sci. 2012;131(1-2):9- 22. http://dx.doi.org/10.1016/j.anireprosci.2012.02.002. PMid:22386690.

Gurzell EA, Teague H, Harris M, Clinthorne J, Shaikh SR, Fenton JI. DHA-enriched fish oil targets B cell lipid microdomains and enhances ex vivo and in vivo B cell function. J Leukoc Biol. 2013;93(4):463-70. http://dx.doi.org/10.1189/jlb.0812394.

Gutiérrez S, Svahn SL, Johansson ME. Effects of Omega-3 Fatty Acids on Immune Cells. Int J Mol Sci. 2019;20(20):5028. http://dx.doi.org/10.3390/ijms20205028. PMid:31614433.

Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003;48(3):195-203. http://dx.doi.org/10.1177/070674370304800308. PMid:12728744.

Hammon DS, Evjen IM, Dhiman TR, Goff JP, Walters JL. Neutrophil function and energy status in Holstein cows with uterine health disorders. Vet Immunol Immunopathol. 2006;113(1-2):21-9. http://dx.doi.org/10.1016/j.vetimm.2006.03.022. PMid:16740320.

Han L, Lei H, Tian Z, Wang X, Cheng D, Wang C. The immunomodulatory activity and mechanism of docosahexenoic acid (DHA) on immunosuppressive mice models. Food Func. 2018;9:3254-63. https://doi.org/10.1039/C8FO00269J.

Harbige LS, Fernandes G, Good R. Dietary n-6 and n-3 fatty acids in immunity and autoimmune disease. Proc Nutr Soc. 1998;57(4):555-62. http://dx.doi.org/10.1079/PNS19980081. PMid:10096116.

Harbige LS. Fatty acids, the immune response, and autoimmunity: a question of n-6 essentiality and the balance between n-6 and n-3. Lipids. 2003;38(4):323-41. http://dx.doi.org/10.1007/s11745-003-1067-z. PMid:12848277.

Hughes J, Kwong WY, Li D, Salter AM, Lea RG, Sinclair KD. Effects of omega-3 and -6 polyunsaturated fatty acids on ovine follicular cell steroidogenesis, embryo development and molecular markers of fatty acid metabolism. Reproduction. 2011;141(1):105-18. http://dx.doi.org/10.1530/REP-10-0337. PMid:21045166.

Jenkins TC, Wallace RJ, Moate PJ, Mosley EE. Board invited review: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem. J Anim Sci. 2008;86(2):397-412. http://dx.doi.org/10.2527/jas.2007-0588.

Karcher EL, Hill TM, Bateman HG 2nd, Schlotterbeck RL, Vito N, Sordillo LM, Vandehaar MJ. Comparison of supplementation of n-3 fatty acids from fish and flax oil on cytokine gene expression and growth of milk-fed Holstein calves. J Dairy Sci. 2014;97(4):2329-37. http://dx.doi.org/10.3168/jds.2013-7160. PMid:24485693.

Kim JY, Kinoshita M, Ohnishi M, Fukui Y. Lipid and fatty acid analysis of fresh and frozen-thawed immature and in vitro matured bovine oocytes. Reproduction. 2001;122(1):131-8. http://dx.doi.org/10.1530/rep.0.1220131. PMid:11425337.

Kimura K, Goff JP, Kehrli ME Jr, Reinhardt TA. Decreased neutrophil function as a cause of retained placenta in dairy cattle. J Dairy Sci. 2002;85(3):544-50. http://dx.doi.org/10.3168/jds.S0022-0302(02)74107-6. PMid:11949858.

Koh A, da Silva AP, Bansal AK, Bansal M, Sun C, Lee H, Glogauer M, Sodek J, Zohar R. Role of osteopontin in neutrophil function. Immunology. 2007;122(4):466- 75. http://dx.doi.org/10.1111/j.1365-2567.2007.02682.x. PMid:17680800.

Kumar H, Kawai T, Akira S. Toll-like receptors and innate immunity. Biochem Biophys Res Commun. 2009;388(4):621-5. http://dx.doi.org/10.1016/j.bbrc.2009.08.062. PMid:19686699.

Lee JY, Ye J, Gao Z, Youn HS, Lee WH, Zhao L, Sizemore N, Hwang DH. Reciprocal modulation of Toll-like receptor-4 signaling pathways involving MyD88 and phosphatidylinositol 3-kinase/AKT by saturated and polyunsaturated fatty acids. J Biol Chem. 2003;278(39):37041-51. http://dx.doi.org/10.1074/jbc.M305213200. PMid:12865424.

Lee JY, Zhao L, Hwang DH. Modulation of pattern recognition receptor-mediated inflammation and risk of chronic diseases by dietary fatty acids. Nutr Rev. 2010;68(1):38- 61. http://dx.doi.org/10.1111/j.1753-4887.2009.00259.x. PMid:20041999.

Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R, Feng L, Lee WH, Fitzgerald KA, Hwang DH. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem. 2004;279(17):16971-9. http://dx.doi.org/10.1074/jbc.M312990200. PMid:14966134.

MacLaren LA, Guzeloglu A, Michel F, Thatcher WW. Peroxisome proliferator-activated receptor (PPAR) expression in cultured bovine endometrial cells and response to omega-3 fatty acid, growth hormone and agonist stimulation in relation to series 2 prostaglandin production. Domest Anim Endocrinol. 2006;30(3):155-69. http://dx.doi.org/10.1016/j.domaniend.2005.07.003. PMid:16154718.

Mallard BA, Dekkers JC, Ireland MJ, Leslie KE, Sharif S, Lacey Vankampen C, Wagter L, Wilkie BN. Alteration in immune responsiveness during the peripartum period and its ramification on dairy cow and calf health. J Dairy Sci. 1998;81(2):585-95. http://dx.doi.org/10.3168/jds.S0022-0302(98)75612-7. PMid:9532513.

Mallard BA, Wagter LC, Ireland MJ, Dekkers JC. Effects of growth hormone, insulin-like growth factor-I, and cortisol on periparturient antibody response profiles of dairy cattle. Vet Immunol Immunopathol. 1997;60(1-2):61-76. http://dx.doi.org/10.1016/S0165-2427(97)00118-9. PMid:9533267.

Marei WF, Wathes DC, Fouladi-Nashta AA. Impact of linoleic acid on bovine oocyte maturation and embryo development. Reproduction. 2010;139(6):979-88. http://dx.doi.org/10.1530/REP-09-0503. PMid:20215338.

Marei WF, Wathes DC, Fouladi-Nashta AA. The effect of linolenic acid on bovine oocyte maturation and development. Biol Reprod. 2009;81(6):1064-72. http://dx.doi.org/10.1095/biolreprod.109.076851. PMid:19587335.

Mattos R, Guzeloglu A, Badinga L, Staples CR, Thatcher WW. Polyunsaturated fatty acids and bovine interferon-tau modify phorbol ester-induced secretion of prostaglandin F2 alpha and expression of prostaglandin endoperoxide synthase-2 and phospholipase-A2 in bovine endometrial cells. Biol Reprod. 2003;69(3):780-7. http://dx.doi.org/10.1095/biolreprod.102.015057. PMid:12724278.

Mattos R, Staples CR, Williams J, Amorocho A, McGuire MA, Thatcher WW. Uterine, ovarian, and production responses of lactating dairy cows to increasing dietary concentrations of menhaden fish meal. J Dairy Sci. 2002;85(4):755-64. http://dx.doi.org/10.3168/jds.S0022-0302(02)74133-7. PMid:12018420.

McEvoy TG, Coull GD, Broadbent PJ, Hutchinson JS, Speake BK. Fatty acid composition of lipids in immature cattle, pig and sheep oocytes with intact zona pellucida. J Reprod Fertil. 2000;118(1):163-70. http://dx.doi.org/10.1530/jrf.0.1180163. PMid:10793638.

Michalik L, Desvergne B, Dreyer C, Gavillet M, Laurini RN, Wahli W. PPAR expression and function during vertebrate development. Int J Dev Biol. 2002;46(1):105-14. PMid:11902671.

Ntambi JM, Bené H. Polyunsaturated fatty acid regulation of gene expression. J Mol Neurosci. 2001;16(2-3):273-8, 279-84. http://dx.doi.org/10.1385/JMN:16:2-3:273.

Otto JR, Freeman MJ, Malau-Aduli BS, Nichols PD, Lane PA, Malau-Aduli AEO. Reproduction and fertility parameters of dairy cows supplemented with omega-3 fatty acid-rich canola oil. Annu Res Rev Biol. 2014;4(10):1611-36. https://doi.org/10.9734/ARRB/2014/7689.

Paschoal VA, Vinolo MA, Crisma AR, Magdalon J, Curi R. Eicosapentaenoic (EPA) and docosahexaenoic (DHA) acid differentially modulate rat neutrophil function in vitro. Lipids. 2013;48(2):93-103. http://dx.doi.org/10.1007/s11745-012-3726-6. PMid:23086551.

Pereira RM, Carvalhais I, Pimenta J, Baptista MC, Vasques MI, Horta AE, Santos IC, Marques MR, Reis A, Pereira MS, Marques CC. Biopsied and vitrified bovine embryos viability is improved by trans10, cis12 conjugated linoleic acid supplementation during in vitro embryo culture. Anim Reprod Sci. 2008;106(3-4):322-32. http://dx.doi.org/10.1016/j.anireprosci.2007.05.008. PMid:17580103.

Petit HV, Dewhurst RJ, Proulx JG, Khalid M, Haresign W, Twagiramungu H. Milk production, milk composition and reproductive function of dairy cows fed different fats. Can J Anim Sci. 2001;81(2):263-71. http://dx.doi.org/10.4141/A00-096.

Petit HV, Twagiramungu H. Conception rate and reproductive function of dairy cows fed different fat sources. Theriogenology. 2006;66(5):1316-24. http://dx.doi.org/10.1016/j.theriogenology.2006.04.029. PMid:16735061.

Prickett JD, Robinson DR, Bloch KJ. Enhanced production of IgE and IgG antibodies associated with a diet enriched in eicosapentaenoic acid. Immunology. 1982;46(4):819-26. PMid:6286470.

Ramírez-Corría VDA. Deficiencia de ácidos grasos esenciales en el feto y en el recién nacido pretérmino. Rev Cubana Pediatr. 2001;73(1):43-50.

Rosero DS, Boyd RD, McCulley M, Odle J, van Heugten E. Essential fatty acid supplementation during lactation is required to maximize the subsequent reproductive performance of the modern sow. Anim Reprod Sci. 2016;168:151-63. http://dx.doi.org/10.1016/j.anireprosci.2016.03.010. PMid:27037065.

Roszkos R, Tóth T, Mézes M. Review: practical use of n-3 fatty acids to improve reproduction parameters in the context of modern sow nutrition. Animals (Basel). 2020;10(7):1141. http://dx.doi.org/10.3390/ani10071141. PMid:32640618.

Santos JE, Bilby TR, Thatcher WW, Staples CR, Silvestre FT. Long chain fatty acids of diet as factors influencing reproduction in cattle. Reprod Domest Anim. 2008;43(Suppl 2):23-30. http://dx.doi.org/10.1111/j.1439-0531.2008.01139.x. PMid:18638102.

Seidel GE Jr. Modifying oocytes and embryos to improve their cryopreservation. Theriogenology. 2006;65(1):228-35. http://dx.doi.org/10.2527/10.1016/j.theriogenology.2005.09.025.

Sinclair L. Nutritional manipulation of the fatty acid composition of sheep meat: A review. J Agric Sci. 2007;145(5):419-34. http://dx.doi.org/10.1017/S0021859607007186.

Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol. 2011;11(11):762-74. http://dx.doi.org/10.1038/nri3070. PMid:21984070.

Silvestre FT, Carvalho TS, Francisco N, Santos JE, Staples CR, Jenkins TC, Thatcher WW. Effects of differential supplementation of fatty acids during the peripartum and breeding periods of Holstein cows: I. Uterine and metabolic responses, reproduction, and lactation. J Dairy Sci. 2011;94(1):189-204. http://dx.doi.org/10.3168/jds.2010-3370. PMid:21183030.

Soydan E, Şen U, Şirin E. Food Science and Technology Relationship Between Dietary Fatty Acids and Reproductive Functions in Dairy Cattle. Turk J Agric. 2017;5(12):1575-9.

Sturmey RG, Reis A, Leese HJ, McEvoy TG. Role of fatty acids in energy provision during oocyte maturation and early embryo development. Reprod Domest Anim. 2009;44(Suppl 3):50-8. http://dx.doi.org/10.1111/j.1439-0531.2009.01402.x. PMid:19660080.

Su YQ, Denegre JM, Wigglesworth K, Pendola FL, O’Brien MJ, Eppig JJ. Oocyte-dependent activation of mitogen activated protein kinase (ERK1/2) in cumulus cells is required for the maturation of the mouse oocyte-cumulus cell complex. Dev Biol. 2003;263(1):126-38. http://dx.doi.org/10.1016/S0012-1606(03)00437-8. PMid:14568551.

Tamura H, Nakamura Y, Korkmaz A, Manchester LC, Tan DX, Sugino N, Reiter RJ. Melatonin and the ovary: physiological and pathophysiological implications. Fertil Steril. 2009;92(1):328-43. http://dx.doi.org/10.1016/j.fertnstert.2008.05.016. PMid:18804205.

Teague H, Fhaner CJ, Harris M, Duriancik DM, Reid GE, Shaikh SR. n-3 PUFAs enhance the frequency of murine B-cell subsets and restore the impairment of antibody production to a T-independent antigen in obesity. J Lipid Res. 2013;54(11):3130-8. http://dx.doi.org/10.1194/jlr.M042457. PMid:23986558.

Thatcher WW, Staples CR, Danet-Desnoyers G, Oldick B, Schmitt EP. Embryo health and mortality in sheep and cattle. J Anim Sci. 1994;72(3, Suppl 3):16-30. http://dx.doi.org/10.2527/1994.72suppl_316x.

Titos E, Rius B, González-Périz A, López-Vicario C, Morán-Salvador E, Martínez-Clemente M, Arroyo V, Clària J. Resolvin D1 and its precursor docosahexaenoic acid promote resolution of adipose tissue inflammation by eliciting macrophage polarization toward an M2-like phenotype. J Immunol. 2011;187(10):5408-18. http://dx.doi.org/10.4049/jimmunol.1100225. PMid:22013115.

Tomasdottir V, Thorleifsdottir S, Vikingsson A, Hardardottir I, Freysdottir J. Dietary omega-3 fatty acids enhance the B1 but not the B2 cell immune response in mice with antigen induced peritonitis. J Nutr Biochem. 2014;25(2):111-7. http://dx.doi.org/10.1016/j.jnutbio.2013.09.010. PMid:24332949.

Turvey SE, Broide DH. Innate immunity. J Allergy Clin Immunol. 2010;125(2, Suppl 2):S24-32. http://dx.doi.org/10.1016/j.jaci.2009.07.016. PMid:19932920.

Weber PSD, Madsen SA, Smith GW, Ireland JJ, Burton JL. Pre-translational regulation of neutrophil L -selectin in glucocorticoid-challenged cattle. Vet Immunol Immunopathol. 2001;83(3-4):213-40. http://dx.doi.org/10.1016/S0165-2427(01)00381-6. PMid:11730931.

Wong SW, Kwon MJ, Choi AM, Kim HP, Nakahira K, Hwang DH. Fatty acids modulate Toll-like receptor 4 activation through regulation of receptor dimerization and recruitment into lipid rafts in a reactive oxygen species-dependent manner. J Biol Chem. 2009;284(40):27384-92. http://dx.doi.org/10.1074/jbc.M109.044065. PMid:19648648.

Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, Guarda G, Tian Z, Tschopp J, Zhou R. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38(6):1154-63. http://dx.doi.org/10.1016/j.immuni.2013.05.015. PMid:23809162.

Yaqoob P, Newsholme EA, Calder PC. The effect of dietary lipid manipulation on rat lymphocyte subsets and proliferation. Immunology. 1994;82(4):603-10. PMid:7835924.

Downloads

Published

2021-07-13

How to Cite

Carneiro, L. C., Williams, E. J., Saut, J. P. E., Santos, R. M. dos, & Celeghini, E. C. C. . (2021). The effect of n- 3 polyunsaturated fatty acid supplementation on immune and reproductive parameters in dairy cows:: a review. Brazilian Journal of Veterinary Research and Animal Science, 58, e175224. https://doi.org/10.11606/issn.1678-4456.bjvras.2021.175224

Issue

Section

REVIEW ARTICLE

Funding data

Most read articles by the same author(s)