Antimicrobial susceptibility profile of Streptococcus agalactiae strains isolated from bovine mastitis




Resistance, Intramammary infection, Multidrug resistance, Bovine diseases


Bovine mastitis is the most important disease of dairy herds worldwide. Its main etiologic agents are bacteria, including Streptococcus agalactiae. The importance of this agent in bovine mastitis is because it is highly contagious and has a high impact on the occurrence of clinical mastitis cases and in the increase of the bulk milk somatic cell counts. The dry cow therapy and the treatment of the clinical mastitis cases stand out among the measures to control intramammary infections in cows. However, these strategies require knowledge about the antimicrobial susceptibility of the causal microorganisms. Thus, this study aimed to evaluate the antimicrobial susceptibility of 89 S. agalactiae strains isolated from bovine mastitis between the years 2004 and 2008 in dairy herds from Campo das Vertentes region, Minas Gerais State, Brazil. The disc diffusion technique was used and the antimicrobials currently used in mastitis therapy were tested. The isolates tested showed 100% susceptibility to chloramphenicol, ceftiofur, cefotaxime, enrofloxacin, and cefquinome. High frequencies of susceptibility (>95%) were also observed for the beta-lactams (penicillin G, ampicillin, and oxacillin), cephalosporins (cephalotin, ceftiofur, cefotaxime, cefoperazone, and cefquinome), florfenicol, gentamicin, lincomycin, nitrofurantoin, and sulfamethoprim. The strains showed high frequencies of resistance to neomycin (15.74%), and tetracycline (21.35%). Multidrug resistance was detected in 2.25% of the tested isolates. The results pointed to variations in the antimicrobial susceptibility profiles of the studied strains and the importance of the use of the susceptibility tests to determine the correct antimicrobial to be applied in the treatment of bovine mastitis caused by S. agalactiae. The high frequencies of resistance observed to some antimicrobials, such as neomycin and tetracycline, commonly used in the treatment of mastitis and other pathologies, highlighted the need for more judicious use of antimicrobials on dairy farms.


Download data is not yet available.


Alekish MO, Al-Qudah KM, Al-Saleh A. Prevalence of antimicrobial resistance among bacterial pathogens isolated from bovine mastitis in northern Jordan. Rev Med Vet (Toulouse). 2013;164(6):319-26.

Botelho ACN, Ferreira AFM, Fracalanzza SEL, Teixeira LM, Pinto TCA. A perspective on the potential zoonotic role of Streptococcus agalactiae: searching for a missing link in alternative transmission routes. Front Microbiol. 2018;9(MAR):1-5. PMid:29643850.

Clinical and Laboratory Standards Institute. VET08 Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 5th ed. Wayne: CLSI; 2018. 156 p.

Costa GM. Mastite Bovina. In: Silva JCPM, Oliveira AS, Veloso CM. Manejo e administração em bovinocultura leiteira. 2nd ed. Viçosa: Produção Independente; 2014. 596 p.

Cunha AF, Bragança LJ, Quintão LC, Coelho KS, De Souza FN, Pinho Cerqueira MMO. Prevalence, etiology and risk factors of clinical mastitis in dairy cattle of Viçosa-MG. Acta Vet Bras. 2016;10(1):48-54.

Dogan B, Schukken YH, Santisteban C, Boor KJ. Distribution of serotypes and antimicrobial resistance genes among Streptococcus agalactiae isolates from bovine and human hosts. J Clin Microbiol. 2005;43(12):5899-906. PMid:16333073.

Duarte RS, Miranda OP, Bellei BC, Brito MAVP, Teixeira LM. Phenotypic and molecular characteristics of Streptococcus agalactiae isolates recovered from milk of dairy cows in Brazil. J Clin Microbiol. 2004;42(9):4214-22. PMid:15365014.

Elias AO, Cortez A, Brandão PE, da Silva RC, Langoni H. Molecular detection of Streptococcus agalactiae in bovine raw milk samples obtained directly from bulk tanks. Res Vet Sci. 2012;93(1):34-8. PMid:21862092.

Erskine RJ, Wagner S, DeGraves FJ. Mastitis therapy and pharmacology. Vet Clin North Am Food Anim Pract. 2003;19(1):109-38, vi. PMid:12682938.

Evans JJ, Bohnsack JF, Klesius PH, Whiting AA, Garcia JC, Shoemaker CA, Takahashi S. Phylogenetic relationships among Streptococcus agalactiae isolated from piscine, dolphin, bovine and human sources: A dolphin and piscine lineage associated with a fish epidemic in Kuwait is also associated with human neonatal infections in Japan. J Med Microbiol. 2008;57(11):1369-76. PMid:18927414.

Gao J, Yu FQ, Luo LP, He JZ, Hou RG, Zhang HQ, Li SM, Su JL, Han B. Antibiotic resistance of Streptococcus agalactiae from cows with mastitis. Vet J. 2012;194(3):423-4. PMid:22627045.

Gianneechini R, Concha C, Rivero R, Delucci I, Moreno López J. Occurrence of clinical and sub-clinical mastitis in dairy herds in the west littoral region in Uruguay. Acta Vet Scand. 2002;43(4):221-30. PMid:12831175.

Gruet P, Maincent P, Berthelot X, Kaltsatos V. Bovine mastitis and intramammary drug delivery: review and perspectives. Adv Drug Deliv Rev. 2001;50(3):245-59. PMid:11500230.

Guérin-Faublée V, Tardy F, Bouveron C, Carret G. Antimicrobial susceptibility of Streptococcus species isolated from clinical mastitis in dairy cows. Int J Antimicrob Agents. 2002;19(3):219-26. PMid:11932145.

Haenni M, Lupo A, Madec J-Y. Antimicrobial Resistance in Streptococcus spp. In: Stefan Schwarz, Lina Maria Cavaco, Jianzhong Shen. Antimicrobial Resistance in Bacteria from Livestock and Companion Animals. Wiley; 2018. p. 159-84.

Halasa T, Huijps K, Østerås O, Hogeveen H. Economic effects of bovine mastitis and mastitis management: A review. Vet Q. 2007;29(1):18-31. PMid:17471788.

Idriss SE, Foltys V, Tancin V, Kirchnerova K, Tancinova D, Zaujec K. Mastitis pathogens and their resistance against antimicrobial agents in dairy cows in Nitra, Slovakia. Slovak J Anim Sci. 2014;47(1):33-8.

Jaramillo-Jaramillo AS, Cobo-Ángel CG, Moreno-Tolosa Y, Ceballos-Márquez A. Antimicrobial resistance of Streptococcus agalactiae of human and bovine origin. Med. Vet. y Zootec. 2018;13(1):62-79.

Johri AK, Paoletti LC, Glaser P, Dua M, Sharma PK, Grandi G, Rappuoli R, Group B. Streptococcus: global incidence and vaccine development. Nat Rev Microbiol. 2006;4(12):932-42. PMid:17088932.

Kaczorek E, Małaczewska J, Wójcik R, Rękawek W, Siwicki AK. Phenotypic and genotypic antimicrobial susceptibility pattern of Streptococcus spp. isolated from cases of clinical mastitis in dairy cattle in Poland. J Dairy Sci. 2017;100(8):6442-53. PMid:28601447.

Kalimuddin S, Chen SL, Lim CTK, Koh TH, Tan TY, Kam M, Wong CW, Mehershahi KS, Chau ML, Ng LC, Tang WY, Badaruddin H, Teo J, Apisarnthanarak A, Suwantarat N, Ip M, Holden MTG, Hsu LY, Barkham T. Epidemic of Severe Streptococcus agalactiae Sequence Type 283 Infections in Singapore associated with the consumption of raw freshwater fish: a detailed analysis of clinical, epidemiological, and bacterial sequencing data. Clin Infect Dis. 2017;64(Suppl. 2):S145-52. PMid:28475781.

Keefe G. Update on control of staphylococcus aureus and Streptococcus agalactiae for management of mastitis. Vet Clin North Am Food Anim Pract. 2012;28(2):203-16. PMid:22664203.

Keefe GP, Chaffer M, Ceballos-Marquez A, Londoño M, Jaramillo M, Toro M. Effects of Streptococcus agalactiae on the Colombian dairy industry. Albuquerque, New Mexico: American Association of Bovine Practitioners; 2011.

Machado TRO, Correa MG, Marin JM. Antimicrobial susceptibility of coagulase-negative Staphylococci isolated from mastitic cattle in Brazil. Arq Bras Med Vet Zootec. 2008;60(1):278-82.

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2011;18(3):268-81. PMid:21793988.

McKeller QA. Intramammary treatment of mastitis in cows. In Pract. 1991;13(6):244-50.

Merl K, Abdulmawjood A, Lämmler C, Zschöck M. Determination of epidemiological relationships of Streptococcus agalactiae isolated from bovine mastitis. FEMS Microbiol Lett. 2003;226(1):87-92. PMid:13129612.

Mesquita AA, Rocha CMBM, Bruhn FRP, Custódio DAC, Braz MS, Pinto SM, Silva DB, Costa GM. Staphylococcus aureus and Streptococcus agalactiae: Prevalence, resistance to antimicrobials, and their relationship with the milk quality of dairy cattle herds in minas gerais state, Brazil. Pesq Vet Bras. 2019;39(5):308-16.

Mian GF, Godoy DT, Leal CAG, Yuhara TY, Costa GM, Figueiredo HCP. Aspects of the natural history and virulence of Streptococcus agalactiae infection in Nile tilapia. Vet Microbiol. 2009;136(1–2):180-3. PMid:19042097.

Minst K, Märtlbauer E, Miller T, Meyer C. Short communication: Streptococcus species isolated from mastitis milk samples in Germany and their resistance to antimicrobial agents. J Dairy Sci. 2012;95(12):6957-62. PMid:22999286.

Mota RA, da Silva KPC, de Freitas MFL, Porto WJN, da Silva LBG. Utilização indiscriminada de antimicrobianos e sua contribuição a multirresitência bacteriana. Braz J Vet Res Anim Sci. 2005;42(6):465.

Myllys V, Honkanenbuzalski T, Huovinen P, Sandholm M, Nurmi E. Association of changes in the bacterial ecology of bovine mastitis with changes in the use of milking machines and antibacterial drugs. Acta Vet Scand. 1994;35(4):363-9. PMid:7676918.

National Mastitis Council. Microbiological procedures for diagnosis of bovine udder infection and determination of milk quality. 4th ed. Madison: NMC; 2004. 47 p.

Oliveira CMC, Sousa MGS, Silva NS, Mendonça CL, Silveira JAS, Oaigen RP, Andrade SJT, Barbosa JD. Prevalência e etiologia da mastite bovina na bacia leiteira de Rondon do Pará, estado do Pará. Pesq Vet Bras. 2011;31(2):104-10.

Oliveira EF, Brito MAV, Lange CC, Mendonca LC, Meurer I. Prevalencia de patogenos contagiosos em rebanhos da associacao dos criadores de gado holandes do estado de Minas Gerais. Vet Zootec. 2013;20(1):265-8.

Pinto TCA, Costa NS, Corrêa ABA, de Oliveira ICM, de Mattos MC, Rosado AS, Benchetrit LC. Conjugative transfer of resistance determinants among human and bovine Streptococcus agalactiae. Braz J Microbiol. 2014;45(3):785-9. PMid:25477908.

Radtke A, Bruheim T, Afset JE, Bergh K. Multiple-locus variant-repeat assay (MLVA) is a useful tool for molecular epidemiologic analysis of Streptococcus agalactiae strains causing bovine mastitis. Vet Microbiol. 2012;157(3–4):398-404. PMid:22266162.

Rato MG, Bexiga R, Florindo C, Cavaco LM, Vilela CL, Santos-Sanches I. Antimicrobial resistance and molecular epidemiology of streptococci from bovine mastitis. Vet Microbiol. 2013;161(3–4):286-94. PMid:22964008.

Santos MV, Laranja LF. Controle da mastite e qualidade do leite - Desafios e Soluções. Pirassununga, SP: Edição dos autores; 2019. 301 p.

Silva JR, Castro GDADC, Gonçalves MS, Custódio DADC, Mian GF, Costa GM. In vitro antimicrobial susceptibility and genetic resistance determinants of Streptococcus agalactiae isolated from mastitic cows in Brazilian dairy herds. Semin Agrar. 2017;38(4):2581-94.

White DG, McDermott PF. Emergence and transfer of antibacterial resistance. J Dairy Sci. 2001;84:E151-5.

World Organization for Animal Health [Internet]. Antimicrobial resistance. Paris, France: OIE; 2021 [cited 2021 Feb 28]. Available from:




How to Cite

Costa, G. M. da, Ribeiro, N. A., Gonçalves, M. S., Silva, J. R. da, Custódio, D. A. da C., & Mian, G. F. (2021). Antimicrobial susceptibility profile of Streptococcus agalactiae strains isolated from bovine mastitis. Brazilian Journal of Veterinary Research and Animal Science, 58, e178109.




Most read articles by the same author(s)