Predictive risk model of livestock rabies occurrence in Peru


  • Ricardo Augusto Dias Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal
  • Francisco Miroslav Ulloa-Stanojlovic Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal



Desmodus rotundus, Peru, Predictive model, Rabies, Vampire bat


Livestock rabies is endemic in Peru. Hence, its persistence and annual dissemination represent an important economic impact, especially for impoverished farming communities. The disease is mostly transmitted by the hematophagous bat Desmodus rotundus. The present study aimed to adapt an existing predictive model of the occurrence of livestock rabies to Peru, in which the risk of rabies transmission from bats to livestock was estimated using decision-tree models of receptivity and vulnerability. Official rabies surveillance data between 2010 and 2015 were used along with possible risk factors, such as livestock biomass, environmental changes, and geomorphological characteristics. Several scenarios were established to evaluate the prediction of the occurrence of livestock rabies cases by determining more than one cut-off point of the receptivity variables. During the study period, the precision of the model was estimated through the sensitivity (39.46%) and specificity (98.64%) by using confusion matrices. Targeting control efforts, especially in districts with a high estimated risk, could represent the prevention of a significant proportion of livestock rabies cases, which would optimize the human and economic resources of the Peruvian surveillance service. However, the quality of data produced by the surveillance should be improved not only to obtain higher model precision but also to allow the adequate planning of control actions.


Download data is not yet available.


Becker DJ, Czirják GA, Volokhov DV, Bentz AB, Carrera JE, Camus MS, Navara KJ, Chizhikov VE, Brock Fenton M, Simmons NB, Recuenco SE, Gilbert AT, Altizer S, Streicker DG. Livestock abundance predicts vampire bat demography, immune profiles and bacterial infection risk. Philos Trans R Soc Lond B Biol Sci. 2018;373(1745):20170089. PMID: 29531144.

Belotto A, Leanes LF, Schneider MC, Tamayo H, Correa E. Overview of rabies in the Americas. Virus Res. 2005;111(1):5- 12. PMid:15896398.

Benavides JA, Rojas Paniagua E, Hampson K, Valderrama W, Streicker DG. Quantifying the burden of vampire bat rabies in Peruvian livestock. PLoS Negl Trop Dis. 2017;11(12):e0006105. PMid:29267276.

Bobrowiec PED, Lemes MR, Gribel R. Prey preference of the common vampire bat (Desmodus rotundus, Chiroptera) using molecular analysis. J Mammal. 2015;96(1):54-63. Bourhy H, Dautry-Varsat A, Hotez PJ, Salomon J. Rabies, still neglected after 125 years of vaccination. PLoS Negl Trop Dis. 2010;4(11):e839. PMid:21152052.

Braga GB, Grisi-Filho JH, Leite BM, de Sena EF, Dias RA. Predictive qualitative risk model of bovine rabies occurrence in Brazil. Prev Vet Med. 2014;113(4):536-46. PMid:24433635.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento. Secretaria de Defesa Agropecuária. Controle da raiva dos herbívoros: manual técnico [Internet]. Brasília: MAPA; 2009 [cited 2020 Aug 26]. 124 p. Available from:

Bredt A, Araújo FAA, Caetano J Jr, Rodrigues MGR, Yoshizawa M, Sodré Silva MM, Harmani NMS, Massunaga PNT, Bürer SP, Porto VAR, Uieda W. Morcegos em áreas urbanas e rurais: manual de manejo e controle. 2a. ed. Brasília: Fundação Nacional de Saúde, Ministério da Saúde; 1998 [cited 2020 Aug 27]. 117 p. Available from:

Condori-Condori RE, Streicker DG, Cabezas-Sanchez C, Velasco-Villa A. Enzootic and epizootic rabies associated with vampire bats, Peru. Emerg Infect Dis. 2013;19(9):1463-9. PMid:23969087.

Davis BM, Rall GF, Schnell MJ. Everything you always wanted to know about rabies virus (but were afraid to ask). Annu Rev Virol. 2015;2(1):451-71. PMid:26958924.

Dias RA, Nogueira VS Fo, Goulart CS, Telles IC, Marques GH, Ferreira F, Amaku M, Ferreira JS No. Modelo de risco para circulação do vírus da raiva em herbívoros no estado de São Paulo, Brasil. Rev Panam Salud Publica. 2011;30(4):370-6. PMid:22124696.

Erkert HG. Ecological aspects of bat activity rhythms. In: Kunz TH, editor. Ecology of bats. Boston: Springer; 1982. p. 201-42. Estrada A, Coates-Estrada R. Bats in continuous forest, forest fragments and in an agricultural mosaic habitat-island at Los Tuxtlas, Mexico. Biol Conserv. 2002;103(2):237-45.

Estrada A, Jiménez C, Rivera A, Fuentes E. General bat activity measured with an ultrasound detector in a fragmented tropical landscape in Los Tuxtlas, Mexico. Anim Biodiv Conserv [Internet]. 2004 [cited 2020 Aug 27];27(2):5-13. Available from:

Gilbert AT, Petersen BW, Recuenco S, Niezgoda M, Gómez J, Laguna-Torres VA, Rupprecht C. Evidence of rabies virus exposure among humans in the Peruvian Amazon. Am J Trop Med Hyg. 2012;87(2):206-15. PMid:22855749.

Gomes MN, Uieda W. Abrigos diurnos, composição de colônias, dimorfismo sexual e reprodução do morcego hematófago Desmodus rotundus (E. Geoffroy) (Chiroptera, Phyllostomidae) no Estado de São Paulo, Brasil. Rev Bras Zool. 2004;21(3):629-38.

Goodwin GG, Greenhall AM. A review of the bats of Trinidad and Tobago: description, rabies infection, and ecology. B Am Mus Nat Hist [Internet]. 1961 [cited 2020 Aug 26];122(3):187-302. Available from:

Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG. High-resolution global maps of 21st-century forest cover change. Science. 2013;342(6160):850-3. PMid:24233722.

Instituto Nacional de Estadística e Informática – INEI. IV Censo Nacional Agropecuario (CENAGRO): sistema de consulta de resultados censales: cuadros estadísticos [Internet]. Lima, Peru: INEI; 2012 [cited 2020 Aug 26]. Available from:

Johnson N, Aréchiga-Ceballos N, Aguilar-Setien A. Vampire bat rabies: ecology, epidemiology and control. Viruses. 2014;6(5):1911-28. PMid:24784570.

Kingston T. Response of bat diversity to forest disturbance in southeast Asia: insights from long-term research in Malaysia. In: Adams R, Pedersen S, editors. Bat evolution, ecology, and conservation. New York: Springer; 2013.

Lee DN, Papeş M, Van Den Bussche RA. Present and potential future distribution of common vampire bats in the Americas and the associated risk to cattle. PLoS One. 2012;7(8):e42466. PMid:22900023.

Mayen F. Haematophagous bats in Brazil, their role in rabies transmission, impact on public health, livestock industry and alternatives to an indiscriminate reduction of bat population. J Vet Med B Infect Dis Vet Public Health. 2003;50(10):469-72. PMid:14720182.

Medina A, Harvey CA, Merlo DS, Vílchez S, Hernández B. Bat diversity and movement in an agricultural landscape in Matiguás, Nicaragua. Biotropica. 2007;39(1):120-8.

Mialhe PJ. Preferential prey selection by Desmodus rotundus (E. Geoffroy, 1810, Chiroptera, Phyllostomidae) feeding on domestic herbivores in the municipality of São Pedro, SP. Braz J Biol. 2014;74(3):579-84. PMid:25296205.

QGIS Development Team. QGIS Geographic Information System [Internet]. Bern: QGIS; 2016 [cited 2020 Aug 26]. Available from:

Rosemberg M. La ganadería bovina en Perú [Internet]. Panama city, Panama: Veterinaria Digital; 2018 [cited 2020 Aug 27]. Available from:

Schneider MC, Romijn PC, Uieda W, Tamayo H, Silva DF, Belotto A, Silva JB, Leanes LF. Rabies transmitted by vampire bats to humans: an emerging zoonotic disease in Latin America? Rev Panam Salud Publica. 2009;25(3):260- 9. PMid:19454154.

Society for Range Management Rangeland Assessment and Monitoring Committee. Does size matter? Animal units and animal unit months. Rangelands. 2017;39(1):17-9.

Streicker DG, Allgeier JE. Foraging choices of vampire bats in diverse landscapes: potential implications for land-use change and disease transmission. J Appl Ecol. 2016;53(4):1280-8. PMid:27499553.

Streicker DG, Recuenco S, Valderrama W, Benavides JG, Vargas I, Pacheco V, Condori-Condori RE, Montgomery J, Rupprecht CE, Rohani P, Altizer S. Ecological and anthropogenic drivers of rabies exposure in vampire bats: implications for transmission and control. Proc R Soc B. 2012;279:3384-92.

Streicker DG, Winternitz JC, Satterfield DA, Condori Condori RE, Broos A, Tello C, Recuenco S, Velasco-Villa A, Altizer S, Valderrama W. Host-pathogen evolutionary signatures reveal dynamics and future invasions of vampire bat rabies. Proc Natl Acad Sci USA. 2016;113(39):10926-31. PMid:27621441.

University of Maryland. Global Land Analysis & Discovery. Global 2010 Tree Cover (30 m) [Internet]. College Park, MD: Department of Geographical Sciences. [date unknown] - [cited 2020 Aug 27]. Available from:

United States Geological Survey. EarthExplorer [Internet]. Reston: USGS; 2020 [cited 2020 Aug 26]. Available from:

Voigt CC, Kelm DH. Host preference of the common vampire bat (Desmodus rotundus; Chiroptera) assessed by stable isotopes. J Mammal. 2006;87(1):1-6.




How to Cite

Dias, R. A., & Ulloa-Stanojlovic, F. M. . (2021). Predictive risk model of livestock rabies occurrence in Peru. Brazilian Journal of Veterinary Research and Animal Science, 58, e183270.




Most read articles by the same author(s)

1 2 > >>