4-hydroxy-2-nonenal as a marker of the oxidative stress in brains of dogs with canine distemper

Authors

  • Érica Almeida Viscone Universidade Federal de Uberlândia, Faculdade de Medicina Veterinária https://orcid.org/0000-0001-8502-3516
  • Lígia Assunção Oliveira Universidade Federal de Uberlândia, Faculdade de Medicina Veterinária
  • Alexandra Ariadine Bittencourt Gonçalves Pereira Universidade de Brasília, Laboratório de Patologia Veterinária
  • Márcio Botelho Castro Universidade de Brasília, Laboratório de Patologia Veterinária
  • Paulo Eduardo Brandão Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal
  • Sueli Akemi Taniwaki Universidade de São Paulo, Faculdade de Medicina Veterinária e Zootecnia, Departamento de Medicina Veterinária Preventiva e Saúde Animal
  • Aline Santana da Hora Universidade Federal de Uberlândia, Faculdade de Medicina Veterinária
  • Márcio de Barros Bandarra Universidade Federal de Uberlândia, Faculdade de Medicina Veterinária

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2022.188941

Keywords:

Demyelination, Lipid peroxidation, RT-PCR, Immunohistochemistry, 4-HNE

Abstract

Canine Distemper is a disease caused by Canine morbillivirus (CM), a pantropic virus that can affect the central nervous system (CNS), causing demyelination. However, the pathogenesis of this lesion remains to be clarified. Brain samples of 14 naturally infected dogs by CM were analyzed to evaluate the presence of oxidative stress and demyelination. RT-PCR assay was performed to confirm a diagnosis of canine distemper in the brain, immunohistochemistry anti-CM was used to localize the viral proteins in the tissue, and anti-4-hydroxy-2 nonenal (4-HNE) was a marker of a product of lipid peroxidation. The results showed the presence of viral proteins in the demyelinated area with the presence of 4-HNE. Our results suggest that the CM virus infection causes oxidative stress leading to lipid peroxidation, which causes tissue damage and demyelination. In conclusion, oxidative stress plays a significant role in canine distemper pathogenesis in the CNS.

Downloads

Download data is not yet available.

References

Abramov AY, Smulders-Srinivasan TK, Kirby DM, Acin Perez R, Enriquez JA, Lightowlers RN, Duchen MR, Turnbull DM. Mechanism of neurodegeneration of neurons with mitochondrial DNA mutations. Brain. 2010;133(3):797-807. http://dx.doi.org/10.1093/brain/awq015. PMid:20157008.

Attig F, Spitzbarth I, Kalkuhl A, Deschl U, Puff C, Baumgärtner W, Ulrich R. Reactive oxygen species are key mediators of demyelination in canine distemper leukoencephalitis but not in theiler’s murine encephalomyelitis. Int J Mol Sci. 2019;20(13):3217. http://dx.doi.org/10.3390/ijms20133217. PMid:31262031.

Duque-Valencia J, Sarute N, Olarte-Castillo XA, Ruíz Sáenz J. Evolution and interspecies transmission of canine distemper virus: an outlook of the diverse evolutionary landscapes of a multi-host virus. Viruses. 2019;11(7):582. http://dx.doi.org/10.3390/v11070582. PMid:31247987.

Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radic Biol Med. 1991;11(1):81- 128. http://dx.doi.org/10.1016/0891-5849(91)90192-6. PMid:1937131.

Fischer AH, Jacobson KA, Rose J, Zeller R. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb Protoc [Internet]. 2008 [cited 2021, July 29];(5):4986. Available from: http://cshprotocols.cshlp.org/content/2008/5/pdb.prot4986.short.

Furtado MM, Taniwaki SA, Barros IN, Brandão PE, Catão-Dias JL, Cavalcanti S, Cullen L, Filoni C, Jácomo ATA, Jorge RSP, Silva NS, Silveira L, Ferreira-Neto JS. Molecular detection of viral agents in free-ranging and captive neotropical felids in Brazil. J Vet Diagn Invest. 2017;29(5):660-8. http://dx.doi.org/10.1177/1040638717720245. PMid:28677421.

Gandhi S, Abramov AY. Mechanism of oxidative stress in neurodegeneration. Oxid Med Cell Longev. 2012;2012: 428010. http://dx.doi.org/10.1155/2012/428010. PMid:22685618.

Guichardant M, Bernoud-Hubac N, Chantegrel B, Deshayes C, Lagarde M. Aldehydes from n-6 fatty acid peroxidation. Effects on aminophospholipids. Prostaglandins Leukot Essent Fatty Acids. 2002;67(2-3):147-9. http://dx.doi.org/10.1054/plef.2002.0412. PMid:12324234.

International Committee on Taxonomy of Viruses – ICTV. Master Species List ICTV 2018 v1 [Internet]. Washington, DC: ICTV; 2018 [cited 2021, July 29]. Available from: https://talk.ictvonline.org/files/master-species-lists/m/msl/7992.

Klemens J, Ciurkiewicz M, Chludzinski E, Iseringhausen M, Klotz D, Pfankuche VM, Ulrich R, Herder V, Puff C, Baumgärtner W, Beineke A. Neurotoxic potential of reactive astrocytes in canine distemper demyelinating leukoencephalitis. Sci Rep. 2019;9(1): 11689. http://dx.doi.org/10.1038/s41598-019-48146-9. PMid:31406213.

Lassmann H, van Horssen J. Oxidative stress and its impact on neurons and glia in multiple sclerosis lesions. Biochim Biophys Acta. 2016;1862(3):506-10. http://dx.doi.org/10.1016/j.bbadis.2015.09.018. PMid:26432481.

Lempp C, Spitzbarth I, Puff C, Cana A, Kegler K, Techangamsuwan S, Baumgärtner W, Seehusen F. New aspects of the pathogenesis of canine distemper leukoencephalitis. Viruses. 2014;6(7):2571-601. http://dx.doi.org/10.3390/v6072571. PMid:24992230.

Niki E. Lipid peroxidation: physiological levels and dual biological effects. Free Radic Biol Med. 2009;47(5):469-84. http://dx.doi.org/10.1016/j.freeradbiomed.2009.05.032. PMid:19500666.

Pan YQ, Liu XY, Meng LP, Zhu GR, Xia YK, Chen JS, Takashi Y. Pathogenesis of demyelinating encephalopathy in dogs with spontaneous acute canine distemper. J Integr Agric. 2013;12(2):334-43. http://dx.doi.org/10.1016/S2095-3119(13)60233-6.

Pratakpiriya W, Teh APP, Radtanakatikanon A, Pirarat N, Lan NT, Takeda M, Techangamsuwan S, Yamaguchi R. Expression of canine distemper virus receptor nectin-4 in the central nervous system of dogs. Sci Rep. 2017;7(1):349. http://dx.doi.org/10.1038/s41598-017-00375-6. PMid:28336928.

Rendon-Marin S, Budaszewski RF, Canal CW, Ruiz-Saenz J. Tropism and molecular pathogenesis of canine distemper virus. Virol J. 2019;16(1):30. http://dx.doi.org/10.1186/s12985-019-1136-6. PMid:30845967.

Spickett CM. The lipid peroxidation product 4-hydroxy 2-nonenal: advances in chemistry and analysis. Redox Biol. 2013;1(1):145-52. http://dx.doi.org/10.1016/j.redox.2013.01.007. PMid:24024147.

Stein VM, Czub M, Schreiner N, Moore PF, Vandevelde M, Zurbriggen A, Tipold A. Microglial cell activation in demyelinating canine distemper lesions. J Neuroimmunol. 2004;153(1-2):122-31. http://dx.doi.org/10.1016/j.jneuroim.2004.05.001. PMid:15265670.

Ulrich R, Puff C, Wewetzer K, Kalkuhl A, Deschl U, Baumgärtner W. Transcriptional changes in canine distemper virus-induced demyelinating leukoencephalitis favor a biphasic mode of demyelination. PLoS One. 2014;9(4):e95917. http://dx.doi.org/10.1371/journal.pone.0095917. PMid:24755553.

Vandevelde M, Higgins RJ, Kristensen B, Kristensen F, Steck AJ, Kihm U. Demyelination in experimental canine distemper virus infection: Immunological, pathologic, and immunohistological studies. Acta Neuropathol. 1982;56(4):285- 93. http://dx.doi.org/10.1007/BF00691260. PMid:7090737.

Vandevelde M, Zurbriggen A. Demyelination in canine distemper virus infection: a review. Acta Neuropathol. 2005;109(1):56-68. http://dx.doi.org/10.1007/s00401-004-0958-4. PMid:15645260.

Wang X, Michaelis EK. Selective neuronal vulnerability to oxidative stress in the brain. Front Aging Neurosci. 2010;2:12. http://dx.doi.org/10.3389/fnagi.2010.00012. PMid:20552050.

Zarkovic K, Jakovcevic A, Zarkovic N. Contribution of the HNE-immunohistochemistry to modern pathological concepts of major human diseases. Free Radic Biol Med. 2017;111:110- 26. http://dx.doi.org/10.1016/j.freeradbiomed.2016.12.009. PMid:27993730.

Zhang H, Forman HJ. 4-hydroxynonenal-mediated signaling and aging. Free Radic Biol Med. 2017;111:219-25. http://dx.doi.org/10.1016/j.freeradbiomed.2016.11.032. PMid:27876535.

Zheng R, Dragomir AC, Mishin V, Richardson JR, Heck DE, Laskin DL, Laskin JD. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats. Toxicol Appl Pharmacol. 2014;279(1):43-52. http://dx.doi.org/10.1016/j.taap.2014.04.026. PMid:24832492.

Zhong H, Yin H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: focusing on mitochondria. Redox Biol. 2015;4:193-9. http://dx.doi.org/10.1016/j.redox.2014.12.011. PMid:25598486.

Downloads

Published

2022-05-26

How to Cite

Viscone, Érica A., Oliveira, L. A., Pereira, A. A. B. G., Castro, M. B. ., Brandão, P. E. ., Taniwaki, S. A. ., Hora, A. S. da, & Bandarra, M. de B. . (2022). 4-hydroxy-2-nonenal as a marker of the oxidative stress in brains of dogs with canine distemper. Brazilian Journal of Veterinary Research and Animal Science, 59, e188941. https://doi.org/10.11606/issn.1678-4456.bjvras.2022.188941

Issue

Section

FULL ARTICLE

Most read articles by the same author(s)