Can Saccharomyces cerevisiae supplementation improve piglets’ performance and intestinal health after weaning?

Authors

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2024.215917

Keywords:

Escherichia coli, Gut microbiota, Nursery phase, Probiotics, Swine

Abstract

This study aimed to assess the impact of two commercial Saccharomyces cerevisiae strains (CHY1 and CHY2) on the intestinal health and performance of weaned piglets challenged with enterotoxigenic Escherichia coli during the nursery phase. One hundred ninety-two piglets with an average weight of 6.70 ± 0.92 kilograms were allocated in a randomized block design to one of four treatments: a negative control (C) without E. coli challenge and no yeast supplementation; a positive control (CH) with E. coli challenge and no yeast supplementation; and two treatment groups receiving an E. coli challenge with a CHY1 and CHY2 yeast strain supplementation. The challenge involved inoculating piglets with two dosages of E. coli F4 (106 CFU/ml and 109 CFU/ml) and a saline solution for the C group. Samples of intestinal tissue, blood, and cecal content were collected on the trial’s 11th, 28th, and 42nd days. All variables were subjected to analysis of variance, and upon detecting significant differences via the F-test (p < 0.05), Tukey’s test was applied to compare treatment means. For the analysis of diarrhea occurrence, the Kruskal-Wallis test was applied. When variables were rejected at a 5% probability level, a Dunn’s test was conducted as a post-hoc analysis for paired multiple comparisons (p < 0.05), with statistical significance set at this level. Weaned piglets supplemented with CHY1 exhibited superior performance metrics, including higher average daily gain (15.3% increase), body weight (3.4% increase), feed-to-gain ratio (9.5% increase), and average daily feed intake (12.3% increase) at 28 days compared to the CH group across two different nutritional phases. No discernible effects were observed on measuring blood parameters, intestinal morphology, or cecal short-chain fatty acids. Both yeast-treated groups displayed improved performance during the most challenging periods. However, the CHY1 yeast strain contributed to enhanced piglet performance in the initial 28 days without inducing changes in intestinal morphology. 

Downloads

Download data is not yet available.

References

Bontempo V, Di Giancamillo A, Savoini G, Dell’orto V, Domeneghini C. Live yeast dietary supplementation acts upon intestinal morpho-functional aspects and growth in weanling piglets. Anim Feed Sci Technol. 2006;129(3- 4):224-36. http://doi.org/10.1016/j.anifeedsci.2005.12.015.

Boontiam W, Bunchasak C, Kim YY, Kitipongysan S, Hong K. Hydrolyzed yeast supplementation to newly weaned piglets: growth performance, gut health, and microbial fermentation. Animals. 2022;12(3):350. http://doi.org/10.3390/ani12030350. PMid:35158673.

Brasil. Ministério da Agricultura, Pecuária e Abastecimento – MAPA. Instrução Normativa Nº 110, de 24 de novembro de 2020. Publica a lista de matérias-primas aprovadas como ingredientes, aditivos e veículos para uso na alimentação animal. Diário Oficial da União; Brasília; 2020 Dec 9; 235(seção 1): 8.

Chaucheyras-Durand F, Durand H. Probiotics in animal nutrition and health. Benef Microbes. 2010;1(1):3-9. http://doi.org/10.3920/BM2008.1002. PMid:21840795.

Che L, Xu Q, Wu C, Luo Y, Huang X, Zhang B, Wu D. Effects of dietary live yeast supplementation on growth performance, diarrhoea severity, intestinal permeability and immunological parameters of weaned piglets challenged with enterotoxigenic Escherichia coli K88. Br J Nutr. 2017;118(11):949-58. http://doi.org/10.1017/S0007114517003051. PMid:29166952.

Cremonesi P, Biscarini F, Castiglioni B, Sgoifo CA, Campioni R, Moroni P. Gut microbiome modifications over time when removing in-feed antibiotics from the prophylaxis of post-weaning diarrhea in piglets. PLoS One. 2022;17(3):e0262199. http://doi.org/10.1371/journal. pone.0262199. PMid:35255081.

Duttlinger AW, Martinez REC, Mcconn BR, Kpodo KR, Lay DC, Richert BT, Johnson TA, Johnson JS. Replacing dietary antibiotics with 0.20% L-glutamine in swine nursery diets: impact on intestinal physiology and the microbiome following weaning and transport. J Anim Sci. 2021;99(6):1- 13. http://doi.org/10.1093/jas/skab091. PMid:33755169.

Faccin JEG, Tokach MD, Allerson MW, Woodworth JC, DeRouchey JM, Dritz SD, Bortolozzo FP, Goodband RD. Relationship between weaning age and antibiotic usage on pig growth performance and mortality. J Anim Sci. 2020;98(12):skaa363. http://doi.org/10.1093/jas/skaa363.

Ferreira EM, Vaz Pires A, Susin I, Biehl MV, Gentil RRS, Parente MOM, Polizel DM, Ribeiro CVM, Almeida E. Nutrient digestibility and ruminal fatty acid metabolism in lambs supplemented with soybean oil partially replaced by fish oil blend. Anim Feed Sci Technol. 2016;216:30-9. http://doi.org/10.1016/j.anifeedsci.2015.09.007.

Food and Agricultural Organization of the United Nations – FAO. World Health Organization – WHO. Joint FAO/ WHO working group report on drafting guidelines for the evaluation of probiotics in food [Internet]. Rome: FAO; 2002 [cited 2023 Sep 12]. Available from: https://www.fao.org/3/a0512e/a0512e.pdf

Fukuda S, Toh H, Hase K, Oshima K, Nakanish Y, Yoshimura K, Ohno H. Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature. 2011;469(7331):543-7. http://doi.org/10.1038/nature09646. PMid:21270894.

Gao J, Yin J, Xu K, Li T, Yin Y. What is the impact of diet on nutritional diarrhea associated with gut microbiota in weaning piglets: a system review. BioMed Res Int. 2019;6916189:1-14. http://doi.org/10.1155/2019/6916189.

Guilloteau P, Martin L, Eeckhaut V, Ducatelle R, Zabielsi R, Van Immerseel F. From the gut to the peripheral tissues: the multiple effects of butyrate. Nutr Res Rev. 2010;2(2):366-84. http://doi.org/10.1017/S0954422410000247. PMid:20937167.

Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME. International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol. 2014;11(8):506-14. http://doi.org/10.1038/nrgastro.2014.66. PMid:24912386.

Jiang Z, Wei S, Wang Z, Zhu C, Hu S, Zheng C, Chen Z, Hu Y, Wang L, Ma X, Yang X. Effects of different forms of yeast Saccharomyces cerevisiae on growth performance, intestinal development, and systemic immunity in earlyweaned piglets. J Anim Sci Biotechnol. 2015;6(1):47. http://doi.org/10.1186/s40104-015-0046-8. PMid:26568826.

Karasova D, Crhanova M, Babak V, Jerabek M, Brzobohaty L, Matesova Z, Rychlik I. Rychlik. Development of piglet gut microbiota at the time of weaning influences development of postweaning diarrhea – A field study. Res Vet Sci. 2021;135:59-65. http://doi.org/10.1016/j.rvsc.2020.12.022. PMid:33444908.

Keimer B, Pieper R, Simon A, Zentek J. Effect of time and dietary supplementation with processed yeasts (Kluyveromyces fragilis) on immunological parameters in weaned piglets. Anim Feed Sci Technol. 2018;245:136-46. http://doi.org/10.1016/j.anifeedsci.2018.09.008.

Kiros TG, Derakhshani H, Pinloche E, D’inca R, Marshall EJ, Auclair E, Khafipour EA, Van Kessel A. Effect of live yeast Saccharomyces cerevisiae (Actisaf Sc 47) supplementation on the performance and hindgut microbiota composition of weanling pigs. Sci Rep. 2018;8(1):5315. http://doi.org/10.1038/s41598-018-23373-8. PMid:29593306.

Liu H, Zhang J, Zhang S, Yang F, Thacker PA, Zhang G, Ma X. Oral administration of Lactobacillus fermentum I5007 favors intestinal development and alters the intestinal microbiota in formula-fed piglets. J Agric Food Chem. 2014;62(4):860- 6. http://doi.org/10.1021/jf403288r. PMid:24404892.

Guimarães EBB. Efeito da inclusão de duas cepas de levedura no desempenho produtivo de leitões desafiados com E. coli F4 na fase de creche [dissertation]. Pirassununga: Universidade de São Paulo; 2021. https://doi.org/10.11606/D.10.2021.tde-15032022-122317.

Markowiak P, Śliżewska K. The role of probiotics, prebiotics and symbiotic in animal nutrition. Gut Pathog. 2018;10:21. http://doi.org/10.1186/s13099-018-0250-0. PMid:29930711.

Maron DF, Smith TJ, Nachman KE. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Global Health. 2013;9(1):48. http://doi.org/10.1186/1744-8603-9-48. PMid:24131666.

Mathew AG, Chattin SE, Robbins CM, Golden DA. Effects of a direct-fed yeast culture on enteric microbial populations, fermentation acids, and performance of weanling pigs. J Anim Sci. 1998;76(8):2138-45. http://doi.org/10.2527/1998.7682138x. PMid:9734864.

Ming D, Wang W, Huang C, Wang Z, Shi C, Ding J, Liu H, Wang F. Effects of weaning age at 21 and 28 days on growth performance, intestinal morphology and redox status in piglets. Animals. 2021;11(8):2169. http://doi.org/10.3390/ani11082169. PMid:34438627.

National Research Council. Nutrient requirements of swine: eleventh revised edition. 11th ed. Washington: The National Academies Press; 2012. Pecquet S, Guillaumin D, Tancrede C, Andremont A. Kinetics of Saccharomyces cerevisiae elimination from the intestines of human volunteers and effect of this yeast on resistance to microbial colonization in gnotobiotic mice. Appl Environ Microbiol. 1991;57(10):3049-51. http://doi.org/10.1128/aem.57.10.3049-3051.1991. PMid:1746964.

Pedersen KS, Toft N. Intra- and inter-observer agreement when using a descriptive classification scale for clinical assessment of faecal consistency in growing pigs. Prev Vet Med. 2011;98(4):288-91. http://doi.org/10.1016/j.prevetmed.2010.11.016. PMid:21185096.

SAS Institute Inc. SAS 9.4. Cary, NC: SAS Institute Inc.; 2009. Schalm OW. Veterinary hematology. 6th ed. Hoboken: John Wiley & Sons; 2011.

Silveira H. Ácido benzoico para leitões na fase inicial: avaliação in vivo e ex vivo [thesis]. Lavras: Departamento de Zootecnia, Universidade Federal de Lavras; 2014.

St-Pierre B, Palencia JYP, Samuel RS. Impact of early weaning on development of the swine gut microbiome. Microorganisms. 2023;11(7):1753. http://doi.org/10.3390/microorganisms11071753. PMid:37512925.

Surek D, Almeida LM, Panisson JC, Krabbe EL, Oliveira SG, Alberton GC, Maiorka A. Impact of birth weight and daily weight gain during suckling on the weight gain of weaning piglets. Arq Bras Med Vet Zootec. 2019;71(6):2034-40. http://doi.org/10.1590/1678-4162-10786.

Upadhaya SD, Lei XJ, Serpunja S, Kim IH. Efficacy of Bacillus subtilis RX7 and Bacillus methylotrophicus C14 as probiotics on growth performance, digestibility, blood profile and fecal microbiota in weaned pigs. Indian J Anim Res. 2019;53(8):1059-63. http://dx.doi.org/10.18805/ijar.B-838.

Wang L, Zou L, Li J, Yang H, Yin Y. Effect of dietary folate level on organ weight, digesta pH, short-chain fatty acid concentration, and intestinal microbiota of weaned piglets. J Anim Sci. 2021;99(1):skab015. http://doi.org/10.1093/jas/skab015. PMid:33476395.

Yang HS, Wu F, Long LN, Li TJ, Xiong X, Liao P, Liu HN, Yin YL. Effects of yeast products on the intestinal morphology, barrier function, cytokine expression, and antioxidant system of weaned piglets. J Zhejiang Univ Sci B. 2016;17(10):752- 62. http://doi.org/10.1631/jzus.B1500192. PMid:27704745.

Zhaxi Y, Meng X, Wang W, Wang L, He Z, Zhang X, Pu W. Duan-Nai-An, A Yeast probiotic, improves intestinal mucosa integrity and immune function in weaned piglets. Sci Rep. 2020;10(1):4556. http://doi.org/10.1038/s41598-020-61279-6. PMid:32165666.

Downloads

Published

2024-05-02

Issue

Section

FULL ARTICLE

Funding data

How to Cite

1.
Guimarães EBB, Oliveira ACR de, Carnino BB, Alves LKS, Sousa RLM de, Pairis-Garcia MD, et al. Can Saccharomyces cerevisiae supplementation improve piglets’ performance and intestinal health after weaning?. Braz. J. Vet. Res. Anim. Sci. [Internet]. 2024 May 2 [cited 2024 Oct. 8];61:e215917. Available from: https://www.revistas.usp.br/bjvras/article/view/215917