Interferon gamma kinetics associated with immunodiagnostic techniques in experimental goats infected with biofilm producer and non-biofilm producer strains of Corynebacterium pseudotuberculosis

Authors

  • Maria da Conceição Aquino de Sa Universidade Federal da Bahia https://orcid.org/0000-0001-8145-7018
  • José Tadeu Raynal Universidade Federal da Bahia
  • Maria Emília Alcantara Universidade Federal da Bahia
  • Gilvan Anésio Ribeiro Lima Universidade Federal da Bahia
  • Ramon Mendes dos Santos Universidade Federal da Bahia
  • Marcos Borges Ribeiro Universidade Federal da Bahia
  • Soraya Castro Trindade Universidade Estadual de Feira de Santana
  • Mateus Matiuzii Costa Universidade Federal do Vale de São Francisco
  • Roberto Meyer Universidade Federal da Bahia

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2024.221231

Keywords:

Antigenicity, Goat, Humoral immunity, Cellular immunity, Caseous lymphadenitis

Abstract

Caseous lymphadenitis can be diagnosed using serological tests, mainly the enzyme-linked immunosorbent assay (ELISA). In this work, we evaluated interferon-gamma production in goats infected and not infected with Corynebacterium pseudotuberculosis, correlating it with the ELISA diagnostic test and analyzing the cellular and humoral responses, respectively. Eighteen Canindé goats experimentally infected with biofilm-producing and non-biofilm-producing strains were used. The sensitivity of the antigens was above 80%, with seroconversion observed from 14 days post-infection. A significant band between 64 and 70 kDa was shown in Western blotting. The production of IFN-y shows a tendency towards greater production in goats infected with the biofilm-producing strain stimulated by the TPP antigen of the same strain. The results help better understand the cellular and humoral response and antigenicity of the strains under study, correlated with the production of IFN-y, which plays a vital role in infection.

Downloads

Download data is not yet available.

References

Abbas AK, Lichtman AH, Pillai S. Imunologia celular e molecular. 8ª ed. Rio de Janeiro: Elsevier; 2015. 532 p.

Baird GJ, Malone FE. Control of caseous lymphadenitis in six sheep flocks using clinical examination and regular ELISA testing. Vet Rec. 2010;166(12):358-62. http://doi.org/10.1136/vr.b4806. PMid:20305291.

Barral TD, Rebouças MF, Loureiro D, Raynal JT, Sousa TJ, Moura-Costa LF, Azevedo V, Meyer R, Portela RW. Produção de quimiocinas induzida por Corynebacterium pseudotuberculosis em modelo murino. Braz J Microbiol. 2022;53(2):1019-27. http://doi.org/10.1007/s42770-022-00694-5. PMid:35138630.

Barral TD, Mariutti RB, Arni RK, Santos AJ, Loureiro D, Sokolonski AR, Azevedo V, Borsuk S, Meyer R, Portela RD. A painel of recombinant proteins for the serodiagnosis of caseous lymphadenitis in goats and sheep. Microb Biotechnol. 2019;12(6):1313-23. http://doi.org/10.1111/1751-7915.13454. PMid:31287241.

Calderón VCWG, Rocha Filho JTR, Sá MCA, Bastos B, Trindade SC, Cavalcante NAS, Farias APF, Portela RWD, Azevedo V, Meyer R. Avaliação de antígenos por imunoensaio enzimático ELISA durante infecção experimental em caprinos por Corynebacterium pseudotuberculosis. Res Soc Dev. 2022;11(12):e440111234549. http://doi.org/10.33448/rsd-v11i12.34549.

Carminati R, Bahia R, Costa LFM, Paule BJA, Vale VL, Regis L, Freire SM, Nascimento I, Schaer R, Meyer R.. Determinação da sensibilidade e da especificidade de um teste de ELISA indireto para o diagnóstico de linfadenite caseosa em caprinos. Rev Ciênc Méd Biol. 2003;2(1):88-93. http://doi.org/10.9771/cmbio.v2i1.4256.

Cunningham JG. Tratado de fisiologia veterinária. 5ª ed. Rio de Janeiro: Elsevier; 2014. 528 p.

Farias AM, Alves JRA, Alves FSF, Pinheiro RR, Faccioli-Martins PY, Lima AMC, Azevedo SS, Alves CJ. Soroprevalência da infecção pro Corynebacterium pseudotubercolis em caprinos no Nordeste brasileiro utilizando técnica de imunoabsorção enzimática (ELISA-indireto). Pesq Vet Bras. 2018;38(7):1344-50. http://doi.org/10.1590/1678-5150-pvb-5282.

Farias APF, Rocha-Filho JTR, Marchioro SB, Moreira LS, Marques AS, Sá MCA, Oliveira AAS, Alcântara ME, Mariutti RB, Arni RK, Trindade SC, Meyer R. rSodC is a potencial antigen to diagnose Corynebacterium pseudotuberculosis by enzyme-linked immunoassay. AMB Express. 2020;10:186. PMid:33074348.

Forestier C, Billard E, Milon G, Gueirard P. Unveiling and characterizing early bilateral interactions between biofilm and the mouse innate immune system. Front Microbiol. 2017;8:2309. http://doi.org/10.3389/fmicb.2017.02309. PMid:29209305.

Galvão IE, Fragoso SP, Oliveira CE, Forner O, Pereira RRB, Soares CO, Rosinha GOS. Identification of new Corynebacterium pseudotuberculosis antigens by immunoscreening of gene expression library. BMC Microbiol. 2017;17(1):202. http://doi.org/10.1186/s12866-017-1110-7. PMid:28934943.

Guimarães AS, Carmo FB, Pauletti RB, Seyffert N, Ribeiro D, Lage AP, Heinemann MB, Miyoshi A, Azevedo V, Gouveia AMG. Caseous lymphadenitis: epidemiology, diagnosis and control. IIOAB J. 2011;2(2):33-43.

Hoelzle LE, Scherrer T, Muntwyler J, Wittenbrink MM, Philipp W, Hoelzle K. Differences in the antigen structures of Corynebacterium pseudotuberculosis and the induced humoral imune response in sheep and goats. Vet Microbiol. 2013;164(3-4):359-65. http://doi.org/10.1016/j.vetmic.2013.02.031. PMid:23538285.

Marques A, Bastos BL, Raynal Filho JT, Fróes AP, Nascimento RJM. Identificação in silico de potenciais alvos antigênicos de Corynebacterium pseudotuberculosis. Pubvet. 2019;13(8):1-7. http://doi.org/10.31533/pubvet.v13n8a391.1-7.

Meyer R, Regis L, Vale V, Paule B, Carminati R, Bahia R, Moura-Costa L, Schaer R, Nascimento I, Freire S. In vitro IFN-gamma production by goat blood cells after stimulation with somatic and secreted Corynebacterium pseudotuberculosis antigens. Vet Immunol Immunopathol. 2005;107(3):249-54. http://doi.org/10.1016/j.vetimm.2005.05.002. PMid:15982750.

Moura-Costa LF. Corynebacterium pseudotuberculosis, o agente etiológico da linfadenite caseosa em caprinos. R. Ci. Med Biol. 2002;1(1):105-15.

Moura-Costa LF, Bahia RC, Carminati R, Vale VLC, Paule BJA, Portela RW, Freire SM, Nascimento I, Schaer R, Barreto LMS, Meyer R. Evaluation of the humoral and cellular imune response to diferente antingens of Corynebacterium pseudotuberculosis in Canindé goats and their potential protection against caseous lymphadenitis. Vet Immunol Immunopathol. 2008;126(1-2):131-41. http://doi.org/10.1016/j.vetimm.2008.06.013. PMid:18752855.

Olender A, Bogut A, Magrys A, Tabarkiewicz J. Cytokine levels in the in vitro response of t cells to planktonic and biofilm Corynebacterium amycolatum. Pol J Microbiol. 2019;68(4):457-64. http://doi.org/10.33073/pjm-2019-045. PMid:31880890.

Paule BJA, Azevedo V, Moura-Costa LF, Freire SM, Regis LF, Vale VLC, Bahia RC, Carminati R, Nascimento I, Meyer R. SDS-PAGE and Western blot analysis of somatic and extracellular antigens of Corynebacterium pseudotuberculosis. R Ci Med Biol. 2004;3(1):44-52.

Paule BJA, Azevedo V, Regis LF, Carminati R, Bahia CR, Vale VL, Moura-Costa LF, Freire SM, Nascimento I, Schaer R, Goes AM, Meyer R. Experimental Corynebacterium pseudotuberculosis primary infection in goats: kinetics of IgG and interferon-γ production, IgG avidity and antigen recognition by Western blotting. Vet Immunol Immunopathol. 2003;96(3-4):129-39. http://doi.org/10.1016/S0165-2427(03)00146-6. PMid:14592726.

Raynal JT, Rocha MSN, Cavalcanti NAS, Bastos BL, Farias APF, Costa Silva M, Sá MCA, Moura-Costa LF, Portela RWD, Trindade SC, Meyer R. Influence of iron chelating agents on the in vitro growth curve of Corynebacterium pseudotuberculosis strains. Ens Cien. 2022;26(2):270-80.

Raynal JT, Bastos BL, Vilas-Boas PCB, Sousa TJ, Costa-Silva M, Sá MCA, Portela RW, Moura-Costa LF, Azevedo V, Meyer R. Identification of membrane-associated proteins with pathogenic potential expressed by Corynebacterium pseudotuberculosis grown in animal sereum. BMC Res Notes. 2018;11(1):1-6. http://doi.org/10.1186/s13104-018-3180-5. PMid:29291749.

Rebouças MF, Loureiro D, Barral TD, Seyffert N, Raynal JT, Sousa TJ, Figueiredo HCP, Azevedo V, Meyer R, Portela RW. Cell wall glycolipids from Corynebacterium pseudotuberculosis strains with different virulences differ in terms of composition and immune recognition. Braz J Microbiol. 2020;51(4):2101-10. http://doi.org/10.1007/s42770-020-00343-9. PMid:32712830.

Rebouças MF, Loureiro D, Bastos BL, Moura-Costa LF, Hanna SA, Azevedo VR, Meyer R, Portela RW. Development of an indirect ELISA to detect Corynebacterium pseudotuberculosis specific antibodies in sheep employing T1 strain culture supernatant as antigen. Pesq Vet Bras. 2013;33(11):1296-302. http://doi.org/10.1590/S0100-736X2013001100002.

Rebouças MF, Portela RW, Lima DD, Loureiro D, Bastos BL, Moura-Costa LF, Vale VL, Miyoshi A, Azevedo V, Meyer R. Corynebacterium pseudotuberculosis secreted antigen-induced specific gamma-interferon production by peripheral blood leukocytes: potential diagnostic marker for caseous lymphadenitis in sheep and goats. J Vet Diagn Invest. 2011;23(2):213-20. http://doi.org/10.1177/104063871102300204. PMid:21398439.

Rezende AFS, Brum AA, Reis CG, Angelo HR, Leal KS, Silva MTO, Simionatto S, Azevedo V, Santos A, Portela RW, Dellagostin O, Borsuk S. In silico identification of Corynebacterium pseudotuberculosis antigenic targets and application in immunodiagnosis. J Med Microbiol. 2016;65(6):521-9. http://doi.org/10.1099/jmm.0.000263. PMid:27071381.

Sá MCA, Silva WM, Rodrigues CCS, Rezende CP, Marchioro SB, Rocha Filho JTR, Sousa TJ, Oliveira HP, Costa MM, Figueiredo HCP, Portela RD, Castro TLP, Azevedo V, Seyffert N, Meyer R. Comparative proteomic analyses between biofilm-forming and non-biofilm-forming strains of Corynebacterium pseudotuberculosis isolated from goats. Front Vet Sci. 2021;8:614011. http://doi.org/10.3389/fvets.2021.614011. PMid:33665217.

Sampaio PG, Vale VLC, Moura-Costa LF, Fraga RE, Santos HHM, Sá MCA, Bastos BL, Rocha-Filho JTR, Trindade SC, Nascimento TJM. Padronização de técnicas por citometria de fluxo para avaliar Corynebacterium pseudotuberculosis e células fagocitárias murinas. Pubvet. 2019;13(11):1-9.

Santana-Jorge KT, Santos TM, Tartaglia NR, Aguiar EL, Souza RF, Mariutti RB, Eberle RJ, Arni RK, Portela RW, Meyer R, Azevedo V. Putative virulence factors of Corynebacterium pseudotuberculosis FRC41: vaccine potential and protein expression. Microb Cell Fact. 2016;15(1):83. http://doi.org/10.1186/s12934-016-0479-6. PMid:27184574.

Trost E, Ott L, Schneider J, Schröder J, Jaenicke S, Goesmann A, Husemann P, Stoye J, Dorella FA, Rocha FS, Soares SC, D’Afonseca V, Miyoshi A, Ruiz J, Silva A, Azevedo V, Burkovski A, Guiso N, Join-Lambert OF, Kayal S, Tauch A. The complete genome sequence of Corynebacterium pseudotuberculosis FRC41 isolated from a 12-year-old girl with necrotizing lymphadenitis reveals insights into gene-regulatory networks contributing to virulence. BMC Genomics. 2010;11(1):728-45. http://doi.org/10.1186/1471-2164-11-728. PMid:21192786.

Vogt CM, Schraner EM, Aguilar C, Eichwald C. Heterologous expression of antigenic peptides in Bacillus subtilis biofims. Microb Cell Fact. 2016;15(1):137. PMid:27514610.

Downloads

Published

2024-11-11

Issue

Section

FULL ARTICLE

How to Cite

1.
Sa M da CA de, Raynal JT, Alcantara ME, Lima GAR, Santos RM dos, Ribeiro MB, et al. Interferon gamma kinetics associated with immunodiagnostic techniques in experimental goats infected with biofilm producer and non-biofilm producer strains of Corynebacterium pseudotuberculosis. Braz. J. Vet. Res. Anim. Sci. [Internet]. 2024 Nov. 11 [cited 2024 Dec. 11];61:e221231. Available from: https://www.revistas.usp.br/bjvras/article/view/221231