Virulence, agr groups, antimicrobial resistance and epidemiology of Staphylococcus aureus isolated from bovine subclinical mastitis

Authors

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2021.186701

Keywords:

MSSA, MIONSA, Accessory gene regulator (agr), Bovine mastitis

Abstract

Fifty-two Staphylococcus aureus recovered from papillary ostium and milk samples collected from cows with subclinical mastitis and milking environments in three small dairy herds located in southeastern Brazil were subjected to PCR identification based on the thermonuclease (nuc) gene. All the strains were submitted to in vitro antimicrobial susceptibility testing, and we investigated the sequence types (STs), agr groups (I-IV), virulence genes encoding for Microbial Surface Components Recognizing Adhesive Matrix Molecules (MSCRAMMs), biofilm-associated proteins, bi-component toxins, pyrogenic toxin superantigens, and enterotoxins. Screening for oxacillin resistance (2-6 μg/ml oxacillin), beta-lactamase activity assays, and PCR for the mecA/mecC genes detected 26 methicillin-susceptible S. aureus (MSSA) and 26 mec-independent oxacillin-nonsusceptible S. aureus (MIONSA). While MSSA isolates were found to be susceptible to all antimicrobial agents tested, or only resistant to penicillin and ampicillin, MIONSA isolates were multidrug-resistant. ST126-agr group II MSSA isolates were prevalent in milk (n=14) and carried a broad set of virulence genes (clfA, clfB, eno, fnbA, fiB, icaA, icaD, lukED, hla, and hlb), as well as the ST126-agr group II MIONSA isolated from milking liners (n=1), which also carried the eta gene. ST1-agr group III MIONSA isolates (n=4) were found in papillary ostium and milk, but most MIONSA isolates (n=21), which were identified in both papillary ostium and milking liners, were agr-negative and assigned to ST126. The agr-negative and agr group III lineages showed a low potential for virulence. Studies on the characterization of bovine-associated MSSA/MIONSA are essential to reduce S. aureus mastitis to prevent economic losses in dairy production and also to monitor the zoonotic potential of these pathogens associated with invasive infections and treatment failures in healthcare.

Downloads

Download data is not yet available.

References

Abdelhady W, Chen L, Bayer AS, Seidl K, Yeaman MR, Kreiswirth BN, Xiong YQ. Early agr activation correlates with vancomycin treatment failure in multi-clonotype MRSA endovascular infections. J Antimicrob Chemother. 2015;70(5):1443-52. http://doi.org/10.1093/jac/dku547. PMid:25564565.

Altman DR, Sullivan MJ, Chacko KI, Balasubramanian D, Pak TR, Sause WE, Kumar K, Sebra R, Deikus G, Attie O, Rose H, Lewis M, Fulmer Y, Bashir A, Kasarskis A, Schadt EE, Richardson AR, Torres VJ, Shopsin B, van Bakel H. Genome Plasticity of agr-Defective Staphylococcus aureus during Clinical Infection. Infect Immun. 2018;86(10):e00331-18. http://doi.org/10.1128/IAI.00331-18. PMid:30061376.

Barkema HW, Schukken YH, Zadoks RN. Invited Review: the role of cow, pathogen, and treatment regimen in the therapeutic success of bovine Staphylococcus aureus mastitis. J Dairy Sci. 2006;89(6):1877-95. http://doi.org/10.3168/jds.S0022-0302(06)72256-1. PMid:16702252.

Becker K, Skov RL, von Eiff C. Staphylococcus, micrococcus, and other catalase-positive cocci. In: Jorgensen JH, Carroll KC, Funke G, Pfaller MA, Landry ML, Richter SS, Warnock DW, editors. Manual of clinical microbiology. Hoboken: John Wiley & Sons, Ltd; 2015. p. 354-82. http://doi.org/10.1128/9781555817381.ch21.

Benito Y, Kolb FA, Romby P, Lina G, Etienne J, Vandenesch F. Probing the structure of RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain involved in repression of protein A expression. RNA. 2000;6(5):668-79. http://doi.org/10.1017/S1355838200992550. PMid:10836788.

Chambers HF. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin Microbiol Rev. 1997;10(4):781-91. http://doi.org/10.1128/CMR.10.4.781. PMid:9336672.

Cifrian E, Guidry AJ, Bramley AJ, Norcross NL, Bastida-Corcuera FD, Marquardt WW. Effect of staphylococcal beta toxin on the cytotoxicity, proliferation and adherence of Staphylococcus aureus to bovine mammary epithelial cells. Vet Microbiol. 1996;48(3-4):187-98. http://doi.org/10.1016/0378-1135(95)00159-X. PMid:9054116.

Clinical and Laboratory Standards Institute – CLSI. Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals. 4th ed. Wayne, PA: CLSI; 2018. CLSI supplement VET08.

Cucarella C, Solano C, Valle J, Amorena B, Lasa I, Penadés JR. Bap, a Staphylococcus aureus surface protein involved in biofilm formation. J Bacteriol. 2001;183(9):2888-96. http://doi.org/10.1128/JB.183.9.2888-2896.2001. PMid:11292810.

Dohoo IR, Smith J, Andersen S, Kelton DF, Godden S. Diagnosing intramammary infections: evaluation of definitions based on a single milk sample. J Dairy Sci. 2011;94(1):250-61. http://doi.org/10.3168/jds.2010-3559. PMid:21183035.

Endo Y, Yamada T, Matsunaga K, Hayakawa Y, Kaidoh T, Takeuchi S. Phage conversion of exfoliative toxin A in Staphylococcus aureus isolated from cows with mastitis. Vet Microbiol. 2003;96(1):81-90. http://doi.org/10.1016/S0378-1135(03)00205-0. PMid:14516710.

Fitzgerald JR. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol. 2012;20(4):192-8. http://doi.org/10.1016/j.tim.2012.01.006. PMid:22386364.

Foster TJ, Geoghegan JA, Ganesh VK, Höök M. Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol. 2014;12(1):49-62. http://doi.org/10.1038/nrmicro3161. PMid:24336184.

García-Álvarez L, Holden MTG, Lindsay H, Webb CR, Brown DFJ, Curran MD, Walpole E, Brooks K, Pickard DJ, Teale C, Parkhill J, Bentley SD, Edwards GF, Girvan EK, Kearns AM, Pichon B, Hill RLR, Larsen AR, Skov RL, Peacock SJ, Maskell DJ, Holmes MA. Meticillin-resistant Staphylococcus aureus with a novel mecA homologue in human and bovine populations in the UK and Denmark: a descriptive study. Lancet Infect Dis. 2011;11(8):595-603. http://doi.org/10.1016/S1473-3099(11)70126-8. PMid:21641281.

Geoghegan JA, Ganesh VK, Smeds E, Liang X, Höök M, Foster TJ. Molecular characterization of the interaction of staphylococcal microbial surface components recognizing adhesive matrix molecules (MSCRAMM) ClfA and Fbl with fibrinogen. J Biol Chem. 2010;285(9):6208-16. http://doi.org/10.1074/jbc.M109.062208. PMid:20007717.

Gilot P, Lina G, Cochard T, Poutrel B. Analysis of the genetic variability of genes encoding the RNA III-activating components Agr and TRAP in a population of Staphylococcus aureus strains isolated from cows with mastitis. J Clin Microbiol. 2002;40(11):4060-7. http://doi.org/10.1128/JCM.40.11.4060-4067.2002. PMid:12409375.

Giulieri SG, Guérillot R, Kwong JC, Monk IR, Hayes AS, Daniel D, Baines S, Sherry NL, Holmes NE, Ward P, Gao W, Seemann T, Stinear TP, Howden BP. Comprehensive Genomic investigation of adaptive mutations driving the low-level oxacillin resistance phenotype in Staphylococcus aureus. MBio. 2020;11(6):e02882-20. http://doi.org/10.1128/mBio.02882-20. PMid:33293382.

Herman-Bausier P, Labate C, Towell AM, Derclaye S, Geoghegan JA, Dufrêne YF. Staphylococcus aureus clumping factor A is a force-sensitive molecular switch that activates bacterial adhesion. Proc Natl Acad Sci USA. 2018;115(21):5564-9. http://doi.org/10.1073/pnas.1718104115. PMid:29735708.

Jarraud S, Mougel C, Thioulouse J, Lina G, Meugnier H, Forey F, Nesme X, Etienne J, Vandenesch F. Relationships between Staphylococcus aureus genetic background, virulence factors, agr groups (alleles), and human disease. Infect Immun. 2002;70(2):631-41. http://doi.org/10.1128/IAI.70.2.631-641.2002. PMid:11796592.

Ji G, Beavis R, Novick RP. Bacterial interference caused by autoinducing peptide variants. Science. 1997;276(5321):2027-30. http://doi.org/10.1126/science.276.5321.2027. PMid:9197262.

Jolley KA, Bray JE, Maiden MCJ. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res. 2018;3:124. http://doi.org/10.12688/wellcomeopenres.14826.1. PMid:30345391.

Kondo Y, Ito T, Ma XX, Watanabe S, Kreiswirth BN, Etienne J, Hiramatsu K. Combination of multiplex PCRs for staphylococcal cassette chromosome mec type assignment: rapid identification system for mec, ccr, and major differences in junkyard regions. Antimicrob Agents Chemother. 2007;51(1):264-74. http://doi.org/10.1128/AAC.00165-06. PMid:17043114.

Magiorakos A-P, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012;18(3):268-81. http://doi.org/10.1111/j.1469-0691.2011.03570.x. PMid:21793988.

National Mastitis Council. Microbiological Procedures for use in the diagnosis of bovine udder infection and determination of milk quality. 4th ed. Verona, WI: National Mastitis Council; 2004.

Oliveira L, Hulland C, Ruegg PL. Characterization of clinical mastitis occurring in cows on 50 large dairy herds in Wisconsin. J Dairy Sci. 2013;96(12):7538-49. http://doi.org/10.3168/jds.2012-6078. PMid:24119795.

Omoe K, Ishikawa M, Shimoda Y, Hu D-L, Ueda S, Shinagawa K. Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates Harboring seg, seh, or sei genes. J Clin Microbiol. 2002;40(3):857-62. http://doi.org/10.1128/JCM.40.3.857-862.2002. PMid:11880405.

Painter KL, Krishna A, Wigneshweraraj S, Edwards AM. What role does the quorum-sensing accessory gene regulator system play during Staphylococcus aureus bacteremia? Trends Microbiol. 2014;22(12):676-85. http://doi.org/10.1016/j.tim.2014.09.002. PMid:25300477.

Pyörälä S. Indicators of inflammation in the diagnosis of mastitis. Vet Res. 2003;34(5):565-78. http://doi.org/10.1051/vetres:2003026. PMid:14556695.

Reyes-Robles T, Alonzo F 3rd, Kozhaya L, Lacy DB, Unutmaz D, Torres VJ. Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe. 2013;14(4):453-9. http://doi.org/10.1016/j.chom.2013.09.005. PMid:24139401.

Schalm OW, Noorlander DO. Experiments and observations leading to development of the California mastitis test. J Am Vet Med Assoc. 1957;130(5):199-204. PMid:13416088.

Schukken YH, Wilson DJ, Welcome F, Garrison-Tikofsky L, Gonzalez RN. Monitoring udder health and milk quality using somatic cell counts. Vet Res. 2003;34(5):579-96. http://doi.org/10.1051/vetres:2003028. PMid:14556696.

Seidl K, Chen L, Bayer AS, Hady WA, Kreiswirth BN, Xiong YQ. Relationship of agr expression and function with virulence and vancomycin treatment outcomes in experimental endocarditis due to methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 2011;55(12):5631-9. http://doi.org/10.1128/AAC.05251-11. PMid:21968365.

Shopsin B, Drlica-Wagner A, Mathema B, Adhikari RP, Kreiswirth BN, Novick RP. Prevalence of agr dysfunction among colonizing Staphylococcus aureus strains. J Infect Dis. 2008;198(8):1171-4. http://doi.org/10.1086/592051. PMid:18752431.

Smith EM, Green LE, Medley GF, Bird HE, Fox LK, Schukken YH, Kruze JV, Bradley AJ, Zadoks RN, Dowson CG. Multilocus sequence typing of intercontinental bovine Staphylococcus aureus isolates. J Clin Microbiol. 2005;43(9):4737-43. http://doi.org/10.1128/JCM.43.9.4737-4743.2005. PMid:16145135.

Takeuchi S, Maeda T, Hashimoto N, Imaizumi K, Kaidoh T, Hayakawa Y. Variation of the agr locus in Staphylococcus aureus isolates from cows with mastitis. Vet Microbiol. 2001;79(3):267-74. http://doi.org/10.1016/S0378-1135(00)00354-0. PMid:11240104.

Tristan A, Ying L, Bes M, Etienne J, Vandenesch F, Lina G. Use of multiplex PCR to identify Staphylococcus aureus adhesins involved in human hematogenous infections. J Clin Microbiol. 2003;41(9):4465-7. http://doi.org/10.1128/JCM.41.9.4465-4467.2003. PMid:12958296.

van den Borne BHP, van Schaik G, Lam TJGM, Nielen M, Frankena K. Intramammary antimicrobial treatment of subclinical mastitis and cow performance later in lactation. J Dairy Sci. 2019;102(5):4441-51. http://doi.org/10.3168/jds.2019-16254. PMid:30827563.

Vasudevan P, Nair MKM, Annamalai T, Venkitanarayanan KS. Phenotypic and genotypic characterization of bovine mastitis isolates of Staphylococcus aureus for biofilm formation. Vet Microbiol. 2003;92(1-2):179-85. http://doi.org/10.1016/S0378-1135(02)00360-7. PMid:12488081.

Yarwood JM, Schlievert PM. Quorum sensing in Staphylococcus infections. J Clin Invest. 2003;112(11):1620-5. http://doi.org/10.1172/JCI200320442. PMid:14660735.

Downloads

Published

2021-12-01

Issue

Section

FULL ARTICLE

Funding data

How to Cite

1.
Zorzi FM, Zafalon LF, Santos FB, Borges AF, Nascimento TG, Basílio-Júnior ID, et al. Virulence, agr groups, antimicrobial resistance and epidemiology of Staphylococcus aureus isolated from bovine subclinical mastitis. Braz. J. Vet. Res. Anim. Sci. [Internet]. 2021 Dec. 1 [cited 2024 Apr. 19];58:e186701. Available from: https://www.revistas.usp.br/bjvras/article/view/186701