3D printers in dentistry: a review of additive manufacturing techniques and materials

Authors

  • Leonardo Portilha Gomes da Costa Universidade de São Paulo
  • Stephanie Isabel Díaz Zamalloa Universidade de São Paulo
  • Fernando Amorim Mendonça Alves Universidade de São Paulo
  • Renan Spigolon Universidade de São Paulo
  • Leandro Yukio Mano Universidade Estadual do Rio de Janeiro
  • Claudio Costa Universidade de São Paulo
  • Alessandra Mazzo Universidade de São Paulo

DOI:

https://doi.org/10.11606/issn.2357-8041.clrd.2021.188502

Keywords:

Printing, Three-dimensional, Dental Materials, Dentistry

Abstract

3D printers manufacture objects used in various dental specialties. Objective: This literature review aims to explore different techniques of current 3D printers and their applications in printed materials for dental purposes. Methods: The online PubMed databases were searched aiming to find applications of different 3D printers in the dental area. The keywords searched were 3D printer, 3D printing, additive manufacturing, rapid prototyping, 3D prototyping, dental materials and dentistry. Results: From the search results, we describe Stereolithography (SLA), Digital Light Processing (DLP), Material Jetting (MJ), Fused Deposition Modeling (FDM), Binder Jetting (BJ) and Dust-based printing techniques. Conclusion: 3D printing enables different additive manufacturing techniques to be used in dentistry, providing better workflows and more satisfying clinical results.

Downloads

Download data is not yet available.

Author Biographies

  • Leonardo Portilha Gomes da Costa, Universidade de São Paulo

    Department of Restorative Dentistry, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (USP), Bauru, SP, Brazil

  • Stephanie Isabel Díaz Zamalloa, Universidade de São Paulo

    Department of Esthetic Dentistry, Faculty of Dentistry, University of São Paulo (USP), São Paulo, SP, Brazil

  • Fernando Amorim Mendonça Alves, Universidade de São Paulo

    Department of Stomatology, Faculty of Dentistry, University of São Paulo (USP), São Paulo, SP, Brazil

  • Renan Spigolon, Universidade de São Paulo

    Department of Stomatology, Faculty of Dentistry, University of São Paulo (USP), São Paulo, SP, Brazil

  • Leandro Yukio Mano, Universidade Estadual do Rio de Janeiro

    University of the State of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil

  • Claudio Costa, Universidade de São Paulo

    Department of Stomatology, Faculty of Dentistry, University of São Paulo (USP), São Paulo, SP, Brazil

  • Alessandra Mazzo, Universidade de São Paulo

    Faculty of Dentistry of Bauru, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (USP), Bauru, SP, Brazil

References

Khaledi AA, Farzin M, Akhlaghian M, Pardis S, Mir N. Evaluation of the marginal fit of metal copings fabricated by using 3 different CAD-CAM techniques: Milling, stereolithography, and 3D wax printer. J Prosthet Dent. 2020;124(1):81-6. doi: https://doi.org/10.1016/j.prosdent.2019.09.002.

Alharbi N, Wismeijer D, Osman RB. Additive Manufacturing Techniques in Prosthodontics: Where Do We Currently Stand? A Critical Review. Int J Prosthodont. 2017;30(5):474-84. doi: https://doi.org/10.11607/ijp.5079.

Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D Printing and Customized Additive Manufacturing. Chem Rev. 2017;117(15):10212-90. doi: https://doi.org/10.1021/acs.chemrev.7b00074.

Brito NMSO, Soares RSC, Monteiro ELT, Martins SCR, Cavalcante JR, Grempel RG, et al. Additive Manufacturing for Surgical Planning of Mandibular Fracture. Acta Stomatol Croat. 2016;50(4):348-53. doi: https://doi.org/10.15644/asc50/4/8.

Serrano C, van den Brink H, Pineau J, Prognon P, Martelli N. Benefits of 3D printing applications in jaw reconstruction: A systematic review and meta-analysis. J Craniomaxillofac Surg. 2019;47(9):1387-97. doi: https://doi.org/10.1016/j.jcms.2019.06.008.

Zeiderman MR, Pu LLQ. Contemporary reconstruction after complex facial trauma. Burns Trauma. 2020;8:tkaa003. doi: https://doi.org/10.1093/burnst/tkaa003.

Liaw CY, Guvendiren M. Current and emerging applications of 3D printing in medicine. Biofabrication. 2017;9(2):024102. doi: https://doi.org/10.1088/1758-5090/aa7279.

Jockusch J, Özcan M. Additive manufacturing of dental polymers: An overview on processes, materials and applications. Dent Mater J. 2020;39(3):345-54. doi: https://doi.org/10.4012/dmj.2019-123.

Hada T, Kanazawa M, Iwaki M, Arakida T, Soeda Y, Katheng A, et al. Effect of Printing Direction on the Accuracy of 3D-Printed Dentures Using Stereolithography Technology. Materials (Basel). 2020;13(15):3405. doi: https://doi.org/10.3390/ma13153405.

Magalhães LSSM, Santos FEP, Elias CMV, Afewerki S, Sousa GF, Furtado ASA, et al. Printing 3D Hydrogel Structures Employing Low-Cost Stereolithography Technology. J Funct Biomater. 2020;11(1):12. doi: https://doi.org/10.3390/jfb11010012.

Baumgartner S, Gmeiner R, Schönherr JA, Stampfl J. Stereolithography-based additive manufacturing of lithium disilicate glass ceramic for dental applications. Mater Sci Eng C Mater Biol Appl. 2020;116:111180. doi: https://doi.org/10.1016/j.msec.2020.111180.

Dehurtevent M, Robberecht L, Hornez JC, Thuault A, Deveaux E, Béhin P. Stereolithography: A new method for processing dental ceramics by additive computer-aided manufacturing. Dent Mater. 2017;33(5):477-85. doi: https://doi.org/10.1016/j.dental.2017.01.018.

Methani MM, Revilla-León M, Zandinejad A. The potential of additive manufacturing technologies and their processing parameters for the fabrication of all-ceramic crowns: A review. J Esthet Restor Dent. 2020;32(2):182-92. doi: https://doi.org/10.1111/jerd.12535.

Oberoi G, Nitsch S, Edelmayer M, Janjić K, Müller AS, Agis H. 3D Printing-Encompassing the Facets of Dentistry. Front Bioeng Biotechnol. 2018;6:172. doi: 10.3389/fbioe.2018.00172.

Dawood A, Marti Marti B, Sauret-Jackson V, Darwood A. 3D printing in dentistry. Br Dent J. 2015;219(11):521-9. doi: https://doi.org/10.1038/sj.bdj.2015.914.

Kim T, Lee S, Kim GB, Hong D, Kwon J, Park JW, et al. Accuracy of a simplified 3D-printed implant surgical guide. J Prosthet Dent. 2020;124(2):195-201.e2. doi: https://doi.org/10.1016/j.prosdent.2019.06.006.

Yeung M, Abdulmajeed A, Carrico CK, Deeb GR, Bencharit S. Accuracy and precision of 3D-printed implant surgical guides with different implant systems: An in vitro study. J Prosthet Dent. 2020;123(6):821-8. doi: https://doi.org/10.1016/j.prosdent.2019.05.027.

Cha HS, Park JM, Kim TH, Lee JH. Wear resistance of 3D-printed denture tooth resin opposing zirconia and metal antagonists. J Prosthet Dent. 2020;124(3):387-94. doi: https://doi.org/10.1016/j.prosdent.2019.09.004.

Wang W, Sun J. Dimensional accuracy and clinical adaptation of ceramic crowns fabricated with the stereolithography technique. J Prosthet Dent. 2020;125(4):651-63. doi: https://doi.org/10.1016/j.prosdent.2020.02.032.

Höhne C, Rammler T, Schmitter M. 3D Printed Teeth with Included Veneer Preparation Guide. J Prosthodont. 2021;30(1):51-6. doi: https://doi.org/10.1111/jopr.13250.

Fernandes N, van den Heever J, Hoogendijk C, Botha S, Booysen G, Els J. Reconstruction of an Extensive Midfacial Defect Using Additive Manufacturing Techniques. J Prosthodont. 2016;25(7):589-94. doi: https://doi.org/10.1111/jopr.12487.

Yadav S, Narayan AI, Choudhry A, Balakrishnan D. CAD/CAM-Assisted Auricular Prosthesis Fabrication for a Quick, Precise, and More Retentive Outcome: A Clinical Report. J Prosthodont. 2017;26(7):616-21. doi: https://doi.org/10.1111/jopr.12589.

Moreno-Rabié C, Torres A, Lambrechts P, Jacobs R. Clinical applications, accuracy and limitations of guided endodontics: a systematic review. Int Endod J. 2020;53(2):214-31. doi: https://doi.org/10.1111/iej.13216.

Shah P, Chong BS. 3D imaging, 3D printing and 3D virtual planning in endodontics. Clin Oral Investig. 2018;22(2):641-54. doi: https://doi.org/10.1007/s00784-018-2338-9.

Verweij JP, Jongkees FA, Anssari Moin D, Wismeijer D, van Merkesteyn JPR. Autotransplantation of teeth using computer-aided rapid prototyping of a three-dimensional replica of the donor tooth: a systematic literature review. Int J Oral Maxillofac Surg. 2017;46(11):1466-74. doi: https://doi.org/10.1016/j.ijom.2017.04.008.

Anderson J, Wealleans J, Ray J. Endodontic applications of 3D printing. Int Endod J. 2018;51(9):1005-18. doi: https://doi.org/10.1111/iej.12917.

Gul M, Arif A, Ghafoor R. Role of three-dimensional printing in periodontal regeneration and repair: Literature review. J Indian Soc Periodontol. 2019;23(6):504-10. doi: https://doi.org/10.4103/jisp.jisp_46_19.

Smandri A, Nordin A, Hwei NM, Chin KY, Abd Aziz I, Fauzi MB. Natural 3D-Printed Bioinks for Skin Regeneration and Wound Healing: A Systematic Review. Polymers (Basel). 2020;12(8):1782. doi: https://doi.org/10.3390/polym12081782.

Unagolla JM, Jayasuriya AC. Hydrogel-based 3D bioprinting: A comprehensive review on cell-laden hydrogels, bioink formulations, and future perspectives. Appl Mater Today. 2020;18:100479. doi: https://doi.org/10.1016/j.apmt.2019.100479.

Seifert LB, Schnurr B, Herrera-Vizcaino C, Begic A, Thieringer F, Schwarz F, et al. 3D-printed patient individualised models vs cadaveric models in an undergraduate oral and maxillofacial surgery curriculum: Comparison of student’s perceptions. Eur J Dent Educ. 2020;24(4):799-806. doi: https://doi.org/10.1111/eje.12522.

Hanisch M, Kroeger E, Dekiff M, Timme M, Kleinheinz J, Dirksen D. 3D-printed Surgical Training Model Based on Real Patient Situations for Dental Education. Int J Environ Res Public Health. 2020;17(8):2901. doi: https://doi.org/10.3390/ijerph17082901.

Largo RD, Garvey PB. Updates in Head and Neck Reconstruction. Plast Reconstr Surg. 2018;141(2):271e-285e. doi: https://doi.org/10.1097/prs.0000000000004070.

Rogers-Vizena CR, Sporn SF, Daniels KM, Padwa BL, Weinstock P. Cost-Benefit Analysis of Three-Dimensional Craniofacial Models for Midfacial Distraction: A Pilot Study. Cleft Palate Craniofac J. 2017;54(5):612-7. doi: https://doi.org/10.1597/15-281.

Aly P, Mohsen C. Comparison of the Accuracy of Three-Dimensional Printed Casts, Digital, and Conventional Casts: An In Vitro Study. Eur J Dent. 2020;14(2):189-93. doi: https://doi.org/10.1055/s-0040-1705243.

Kessler A, Hickel R, Reymus M. 3D Printing in Dentistry-State of the Art. Oper Dent. 2020;45(1):30-40. doi: https://doi.org/10.2341/18-229-l.

Fiedor P, Ortyl J. A New Approach to Micromachining: High-Precision and Innovative Additive Manufacturing Solutions Based on Photopolymerization Technology. Materials (Basel). 2020;13(13):2951. doi: https://doi.org/10.3390/ma13132951.

Crafts TD, Ellsperman SE, Wannemuehler TJ, Bellicchi TD, Shipchandler TZ, Mantravadi AV. Three-Dimensional Printing and Its Applications in Otorhinolaryngology-Head and Neck Surgery. Otolaryngol Head Neck Surg. 2017;156(6):999-1010. doi: https://doi.org/10.1177/0194599816678372.

Katheng A, Kanazawa M, Iwaki M, Minakuchi S. Evaluation of dimensional accuracy and degree of polymerization of stereolithography photopolymer resin under different postpolymerization conditions: An in vitro study. J Prosthet Dent. 2021;125(4):695-702. doi: https://doi.org/10.1016/j.prosdent.2020.02.023.

Yu C, Schimelman J, Wang P, Miller KL, Ma X, You S, et al. Photopolymerizable Biomaterials and Light-Based 3D Printing Strategies for Biomedical Applications. Chem Rev. 202014;120(19):10695-743. doi: https://doi.org/10.1021/acs.chemrev.9b00810.

Le Guéhennec L, Van Hede D, Plougonven E, Nolens G, Verlée B, De Pauw MC, et al. In vitro and in vivo biocompatibility of calcium-phosphate scaffolds three-dimensional printed by stereolithography for bone regeneration. J Biomed Mater Res A. 2020;108(3):412-25. doi: https://doi.org/10.1002/jbm.a.36823.

Khatri B, Frey M, Raouf-Fahmy A, Scharla MV, Hanemann T. Development of a multi-material stereolithography 3D printing device. Micromachines (Basel). 2020;11(5):532. doi: https://doi.org/10.3390/mi11050532.

Mangano FG, Admakin O, Bonacina M, Biaggini F, Farronato D, Lerner H. Accuracy of 6 Desktop 3D Printers in Dentistry: A Comparative In Vitro Study. Eur J Prosthodont Restor Dent. 2020;28(2):75-85. doi: https://doi.org/10.1922/ejprd_2050mangano11.

Stansbury JW, Idacavage MJ. 3D printing with polymers: Challenges among expanding options and opportunities. Dent Mater. 2016;32(1):54-64. doi: https://doi.org/10.1016/j.dental.2015.09.018.

Ertugrul I. The Fabrication of Micro Beam from Photopolymer by Digital Light Processing 3D Printing Technology. Micromachines (Basel). 2020;11(5):518. doi: https://doi.org/10.3390/mi11050518.

Sherman SL, Kadioglu O, Currier GF, Kierl JP, Li J. Accuracy of digital light processing printing of 3-dimensional dental models. Am J Orthod Dentofacial Orthop. 2020;157(3):422-8. doi: https://doi.org/10.1016/j.ajodo.2019.10.012.

Morgan AJL, Hidalgo San Jose L, Jamieson WD, Wymant JM, Song B, Stephens P, et al. Simple and Versatile 3D Printed Microfluidics Using Fused Filament Fabrication. PLoS One. 2016;11(4):e0152023. doi: 10.1371/journal.pone.0152023.

Sommacal B, Savic M, Filippi A, Kühl S, Thieringer FM. Evaluation of Two 3D Printers for Guided Implant Surgery. Int J Oral Maxillofac Implants. 2018;33(4):743-6. doi: https://doi.org/10.11607/jomi.6074.

Muta S, Ikeda M, Nikaido T, Sayed M, Sadr A, Suzuki T, et al. Chairside fabrication of provisional crowns on FDM 3D-printed PVA model. J Prosthodont Res. 2020;64(4):401-7. doi: https://doi.org/10.1016/j.jpor.2019.11.004.

Maschio F, Pandya M, Olszewski R. Experimental Validation of Plastic Mandible Models Produced by a “Low-Cost” 3-Dimensional Fused Deposition Modeling Printer. Med Sci Monit. 2016;22:943-57. doi: https://doi.org/10.12659/msm.895656.

Tao O, Kort-Mascort J, Lin Y, Pham HM, Charbonneau AM, ElKashty OA, et al. The Applications of 3D Printing for Craniofacial Tissue Engineering. Micromachines (Basel). 2019;10(7):480. doi: https://doi.org/10.3390/mi10070480.

Miyanaji H, Zhang S, Lassell A, Zandinejad A, Yang L. Process Development of Porcelain Ceramic Material with Binder Jetting Process for Dental Applications. JOM. 2016;68(3):831-41. doi: https://doi.org/10.1007/s11837-015-1771-3.

Tahayeri A, Morgan M, Fugolin AP, Bompolaki D, Athirasala A, Pfeifer CS, et al. 3D printed versus conventionally cured provisional crown and bridge dental materials. Dent Mater. 2018;34(2):192-200. doi: https://doi.org/10.1016/j.dental.2017.10.003.

Fina F, Goyanes A, Gaisford S, Basit AW. Selective laser sintering (SLS) 3D printing of medicines. Int J Pharm. 2017;529(1-2):285-93. doi: https://doi.org/10.1016/j.ijpharm.2017.06.082.

Mangano C, Mangano FG, Shibli JA, Roth LA, d’Addazio G, Piattelli A, et al. Immunohistochemical Evaluation of Peri-Implant Soft Tissues around Machined and Direct Metal Laser Sintered (DMLS) Healing Abutments in Humans. Int J Environ Res Public Health. 2018;15(8):1611. doi: https://doi.org/10.3390/ijerph15081611.

Msallem B, Sharma N, Cao S, Halbeisen FS, Zeilhofer HF, Thieringer FM. Evaluation of the Dimensional Accuracy of 3D-Printed Anatomical Mandibular Models Using FFF, SLA, SLS, MJ, and BJ Printing Technology. J Clin Med. 2020;9(3):817. doi: https://doi.org/10.3390/jcm9030817.

Barazanchi A, Li KC, Al-Amleh B, Lyons K, Waddell JN. Additive Technology: Update on Current Materials and Applications in Dentistry. J Prosthodont. 2017;26(2):156-63. doi: https://doi.org/10.1111/jopr.12510.

Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016;15(1):115. doi: https://doi.org/10.1186/s12938-016-0236-4.

Kröger E, Dekiff M, Dirksen D. 3D printed simulation models based on real patient situations for hands-on practice. Eur J Dent Educ. 2017;21(4):e119-25. doi: https://doi.org/10.1111/eje.12229.

Wang C, Shi YF, Xie PJ, Wu JH. Accuracy of digital complete dentures: A systematic review of in vitro studies. J Prosthet Dent. 2020;125(2):249-56. doi: https://doi.org/10.1016/j.prosdent.2020.01.004.

Adel-Khattab D, Giacomini F, Gildenhaar R, Berger G, Gomes C, Linow U, et al. Development of a synthetic tissue engineered three-dimensional printed bioceramic-based bone graft with homogenously distributed osteoblasts and mineralizing bone matrix in vitro. J Tissue Eng Regen Med. 2018;12(1):44-58. doi: https://doi.org/10.1002/term.2362.

Berger M, Probst F, Schwartz C, Cornelsen M, Seitz H, Ehrenfeld M, et al. A concept for scaffold-based tissue engineering in alveolar cleft osteoplasty. J Craniomaxillofac Surg. 2015;43(6):830-6. doi: https://doi.org/10.1016/j.jcms.2015.04.023.

Wubneh A, Tsekoura EK, Ayranci C, Uludağ H. Current state of fabrication technologies and materials for bone tissue engineering. Acta Biomater. 2018;80:1-30. doi: https://doi.org/10.1016/j.actbio.2018.09.031.

Ma Y, Xie L, Yang B, Tian W. Three-dimensional printing biotechnology for the regeneration of the tooth and tooth-supporting tissues. Biotechnol Bioeng. 2019;116(2):452-68. doi: https://doi.org/10.1002/bit.26882.

Salmi M, Ituarte IF, Chekurov S, Huotilainen E. Effect of build orientation in 3D printing production for material extrusion, material jetting, binder jetting, sheet object lamination, vat photopolymerisation, and powder bed fusion. Int J Collab Enterp. 2016;5(3-4):218. doi: https://doi.org/10.1504/IJCENT.2016.082334.

Thompson MK, Moroni G, Vaneker T, Fadel G, Campbell RI, Gibson I, et al. Design for Additive Manufacturing: Trends, opportunities, considerations, and constraints. CIRP Ann. 2016;65(2):737-60. doi: https://doi.org/10.1016/j.cirp.2016.05.004.

Schönherr JA, Baumgartner S, Hartmann M, Stampfl J. Stereolithographic Additive Manufacturing of High Precision Glass Ceramic Parts. Materials (Basel). 2020;13(7):1492. doi: https://doi.org/10.3390/ma13071492.

Downloads

Published

2021-08-18

Issue

Section

Original Research