Contribuições de aprendizado por reforço em escolha de rota e controle semafórico

Autores

DOI:

https://doi.org/10.1590/s0103-4014.2021.35101.008

Palavras-chave:

Inteligência artificial, Aprendizado de máquina, Aprendizado por reforço, Sistemas inteligentes de transporte, Mobilidade urbana

Resumo

A área de sistemas inteligentes de transporte há muito investiga como empregar tecnologias da informação e comunicação a fim de melhorar a eficiência do sistema como um todo. Isso se traduz basicamente em monitorar e gerenciar a oferta (rede viária, semáforos etc.) e a demanda (deslocamentos de pessoas e mercadorias). A esse esforço, mais recentemente, estão sendo adicionadas técnicas de inteligência artificial. Essa tem o potencial de melhorar a utilização da infraestrutura existente, a fim de melhor atender a demanda. Neste trabalho é fornecido um panorama focado especificamente em duas tarefas onde a inteligência artificial tem contribuições relevantes, a saber, controle semafórico e escolha de rotas. Os trabalhos aqui discutidos objetivam otimizar a oferta e/ou distribuir a demanda.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Ana L. C. Bazzan, Universidade Federal do Rio Grande do Sul. Instituto de Informática

    é professora do Instituto de Informática da Universidade Federal do Rio Grande do Sul (UFRGS). @ – bazzan@inf.ufrgs.br / https://orcid.org/0000-0002-2803-9607.

Referências

ABDOOS, M.; MOZAYANI, N.; BAZZAN, A. L. Holonic multi-agent system for traffic signals control. Engineering Applications of Artificial Intelligence, v.26, n.5-6, p.1575-87, 2013.

ADLER, J. L.; BLUE, V. J. Toward the Design of Intelligent Traveller Information

Systems. Transportation Research Part C, v.6, p.157-72, 1998.

ARNOTT, R.; PALMA, A. de; LINDSEY, R. Departure Time and Route Choice for

the Morning Commute. Transportation Research B, v.24, p.209-28, 1990.

BARTHÉLEMY, J.; CARLETTI, T. A dynamic behavioural traffic assignment model

with strategic agents. Transportation Research Part C: Emerging Technologies, v.85, p.23-46, 2017.

BAZZAN, A. L. C. A Distributed Approach for Coordination of Traffic Signal Agents.

Autonomous Agents and Multiagent Systems, v.10, n.1, p.131-64, March 2005.

BAZZAN, A. L. C. Opportunities for Multiagent Systems and Multiagent Reinforcement Learning in Traffic Control. Autonomous Agents and Multiagent Systems, v.18,

n.3, p.342-75, June 2009.

BAZZAN, A. L. C. IA Multiagente: mais inteligência, mais desafios. In: MEIRA JUNIOR, W.;

CARVALHO, A. C. P. L. F. de (Ed.). Atualizações em informática 2010. Rio de Janeiro: PUC-Rio, 2010. p.111-59.

CARVALHO, A. C. P. L. F. Aligning individual and collective welfare in complex socio-technical systems

by combining metaheuristics and reinforcement learning. Eng. Appl. of AI, v.79, p.23-

, 2019.

BAZZAN, A. L. C.; FEHLER, M.; KLÜGL, F. Learning To Coordinate In a Network

Of Social Drivers: the role of information. In: INTERNATIONAL WORKSHOP ON

LEARNING AND ADAPTATION IN MAS (LAMAS 2005), 2006. Proceedings. . .

S.l.: s.n., 2006. n.3898, p.115-28. (Lecture Notes in Artificial Intelligence).

BAZZAN, A. L. C.; GRUNITZKI, R. A multiagent reinforcement learning approach

to en-route trip building. In: INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016., 2016. Anais. . . s.l.: s.n., 2016. p.5288-95.

BAZZAN, A. L. C.; KLÜGL, F. Case Studies on the Braess Paradox: simulating route

recommendation and learning in abstract and microscopic models. Transportation Research C, v.13, n.4, p.299-319, August 2005.

BAZZAN, A. L. C.; KLÜGL, F. Sistemas Inteligentes de Transporte e Tráfego: uma abordagem de tecnologia

da informação. In: KOWALTOWSKI, T.; BREITMAN, K. K. (Ed.). Anais das Jornadas de Atualização em Informática. s.l.: SBC, 2007.

BAZZAN, A. L. C.; KLÜGL, F. Introduction to Intelligent Systems in Traffic and Transportation. s.l.: Morgan

and Claypool, 2013a. 1-137p. n.3. (Synthesis Lectures on Artificial Intelligence and

Machine Learning, v.7).

BAZZAN, A. L. C.; KLÜGL, F. A review on agent-based technology for traffic and transportation. The Knowledge Engineering Review, v.29, n.3, p.375-403, 2013b.

BAZZAN, A. L. C.; OLIVEIRA, D. de; KLÜGL, F.; NAGEL, K. Adapt or not to

adapt – Consequences of adapting driver and traffic light agents. In: TUYLS, K.;

NOWÉ, A.; GUESSOUM, Z.; KUDENKO, D. (ed.). Adaptive agents and multi-

-agent systems III. [S.l.]: Springer-Verlag, 2008, v.4865, p.1–14. (Lecture Notes in

Artificial Intelligence).

BAZZAN, A. L. C.; OLIVEIRA, D. de; SILVA, B. C. da. Learning in Groups of Traffic

Signals. Eng. Applications of Art. Intelligence, v.23, p.560-8, 2010.

BAZZAN, A. L. C.; WAHLE, J.; KLÜGL, F. Agents in Traffic Modelling - from Reactive to Social Behavior. In: ADVANCES IN ARTIFICIAL INTELLIGENCE, 1999,

Berlin/Heidelberg. Anais...Springer, 1999. n.1701, p.303-6. (Lecture Notes in Artificial Intelligence). Extended version appeared in Proc. of the U.K. Special Interest

Group on Multi-Agent Systems (UKMAS), Bristol, UK.

BEN-AKIVA, M.; PALMA, A. de; KAYSI, I. Dynamic Network Models and Driver

Information Systems. Transp. Res. A, v.25, n.5, p.251-66, 1991.

BITTENCOURT, G. Inteligência Artificial: ferramentas e teorias. 2.ed. Florianópolis:Editora da UFSC, 2001.

BONSALL, P. W. The Influence of Route Guidance Advice on Route Choice in Urban

Networks. Transportation, v.19, n.1, 1992.

BRAESS, D. Über ein Paradoxon aus der Verkehrsplanung. Unternehmensforschung,

v.12, p.258, 1968.

BURIOL, L. S. et al. A biased random-key genetic algorithm for road congestion minimization. Optimization Letters, v.4, p.619-33, 2010.

CAGARA, D.; SCHEUERMANN, B.; BAZZAN, A. L. Traffic optimization on Islands. In: IEEE VEHICULAR NETWORKING CONFERENCE (VNC 2015), 7.,

, Kyoto, Japan. Anais. . . IEEE, 2015. p.175-82.

CLAES, R.; HOLVOET, T.; WEYNS, D. A decentralized approach for anticipatory

vehicle routing using delegate multiagent systems. IEEE Transactions on Intelligent

Transportation Systems, v.12, n.2, p.364-73, March 2011.

DIA, H.; PANWAI, S. Intelligent Transport Systems: neural agent (neugent) models of

driver behaviour. s.l.: LAP Lambert Academic Publishing, 2014.

DIAKAKI, C. et al. Extensions and New Applications of the Traffic Signal Control Strategy TUC. In: ANNUAL MEETING OF THE TRANSPORTATION RESEARCH

BOARD, 82., 2003. Proceedings. . . s.l.: s.n., 2003. p.12-16.

DIAS, J. C. et al. An Inverted Ant Colony Optimization approach to traffic. Engineering Applications of Artificial Intelligence, v.36, n.0, p.122-33, 2014.

HUNT, P. B. et al. A Traffic Responsive Method of Coordinating Signals. Berkshire:

Transport and Road Research Laboratory, 1981. TRRL Lab. Report. (1014).

KLÜGL, F.; BAZZAN, A. L. C. Route Decision Behaviour in a Commuting Scenario.

Journal of Artificial Societies and Social Simulation, v.7, n.1, 2004a.

KLÜGL, F.; BAZZAN, A. L. C. Simulation Studies on Adaptative Route Decision and the Influence of Information on Commuter Scenarios. Journal of Intelligent Transportation Systems: Technology, Planning, and Operations, v.8, n.4, p.223-32, October/December 2004b.

KLÜGL, F.; BAZZAN, A. L. C.Agent-based modeling and simulation. AI Magazine, v.33, n.3, p.29-40,

KOBAYASHI, K.; DO, M. The Informational Impacts of Congestion Tolls upon Route

Traffic Demands. Transportation Research A, v.39, n.7-9, p.651–670, August-November 2005.

LEMOS, L. L.; BAZZAN, A. L. C. Combining adaptation at supply and demand levels in microscopic simulation: a multiagent learning approach. Transportation Research Procedia, v.37, p.465-72, 2019. Selected and peer-reviewed from the 21st EURO

Working Group on Transportation (EWGT) meeting.

LEMOS, L. L.; BAZZAN, A. L. C.; PASIN, M. Co-Adaptive Reinforcement Learning

in Microscopic Traffic Systems. In: IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, CEC 2018, RIO DE JANEIRO, BRAZIL, JULY 8-13, 2018, 2018.,

Anais. . . s.l.: s.n., 2018. p.1-8.

LOWRIE, P. The Sydney Coordinate Adaptive Traffic System - Principles, Methodology, Algorithms. In: INTERNATIONAL CONFERENCE ON ROAD TRAFFIC SIGNALLING, 1982, Sydney, Australia. Proceedings. . . s.l.: s.n., 1982.

MAHMASSANI, H. S.; CHEN, P. S. Comparative Assessment of Origin-based and

en route Real-time Information under Alternative user Behavior Rules. Transportation

Research Record, v.1306, p.69-81, 1991.

MANNION, P.; DUGGAN, J.; HOWLEY, E. An Experimental Review of Reinforcement Learning Algorithms for Adaptive Traffic Signal Control. In: MCCLUSKEY, L.

T. et al. (Ed.). Autonomic Road Transport Support Systems. s.l.: Springer, 2016. p.47-66.

MITCHELL, W. J.; BORRONI-BIRD, C. E.; BURNS, L. D. Reinventing the Automobile. Cambridge, MA: MIT Press, 2010.

RAMOS, G. de. O.; BAZZAN, A. L. C.; SILVA, B. C. da. Analysing the impact of travel information for minimising the regret of route choice. Transportation Research Part

C: Emerging Technologies, v.88, p.257-71, Mar 2018.

RAMOS, G. de. O.; GRUNITZKI, R. An Improved Learning Automata Approach

for the Route Choice Problem. In: KOCH, F.; MENEGUZZI, F.; LAKKARAJU, K.

(Ed.). Agent Technology for Intelligent Mobile Services and Smart Societies. s.l.: Springer

Berlin Heidelberg, 2015. p.56-67. (Communications in Computer and Information

Science, v.498).

ROBERTSON, D. I. TRANSYT: a traffic network study tool. London: Road Res.

Lab., 1969. Rep. LR. (253).

SHARON, G. et al. Real-time Adaptive Tolling Scheme for Optimized Social Welfare

in Traffic Networks. In: INTERNATIONAL CONFERENCE ON AUTONOMOUS

AGENTS AND MULTIAGENT SYSTEMS (AAMAS 2017), 16., 2017, São Paulo.

Proceedings. . . IFAAMAS, 2017. p.828-36.

SILVA, B. C. d. et al. Dealing with Non-Stationary Environments using Context Detection. In: INTERNATIONAL CONFERENCE ON MACHINE LEARNING ICML,

, 2006. Proceedings. . . New York: ACM Press, 2006. p.217-24.

TAALE, H.; VAN KAMPEN, J.; HOOGENDOORN, S. Integrated signal control and

route guidance based on back-pressure principles. Transportation Research Procedia,

v.10, p.226-35, 2015.

WAHLE, J.; BAZZAN, A. L. C.; KLÜGL, F. The Impact of Real Time Information in

a Two Route Scenario using Agent Based Simulation. Transportation Research Part C:

Emerging Technologies, v.10, n.5-6, p.73-91, 2002.

WAHLE, J. et al. Decision Dynamics in a Traffic Scenario. Physica A, v.287, n.3-4,

p.669-81, 2000.

WARDROP, J. G. Some theoretical aspects of road traffic research. Proceedings of the

Institution of Civil Engineers, Part II, v.1, n.36, p.325-62, 1952.

WATKINS, C. J. C. H.; DAYAN, P. Q-learning. Machine Learning, Hingham, v.8, n.3,

p.279-92, 1992.

WEI, H. et al. A Survey on Traffic Signal Control Methods. CoRR, , v.abs/1904.08117, 2019.

WIERING, M. Multi-Agent Reinforcement Learning for Traffic Light Control. In: SEVENTEENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING

(ICML 2000), 2000. Proceedings. . . s.l.: s.n., 2000. p.1151-8.

YAU, K.-L. A. et al. A Survey on Reinforcement Learning Models and Algorithms for Traffic Signal Control. ACM Comput. Surv., v.50, n.3, 2017.

Downloads

Publicado

2021-04-30

Edição

Seção

Inteligência Artificial

Como Citar

Bazzan, A. L. C. (2021). Contribuições de aprendizado por reforço em escolha de rota e controle semafórico. Estudos Avançados, 35(101), 95-110. https://doi.org/10.1590/s0103-4014.2021.35101.008