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FRACTIONAL INTEGRATION AND ITS INFLUENCE
ON UNIT ROOT AND CO-INTEGRATION ANALYSIS
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Abstract

Este estudo avalia o poder dos testes tradicionais de raízes unitárias e
de co-integração, quando aplicados em processos estocásticos fracionaria-
mente integrados no intervalo 0 ≤ d ≤ 1 . Foram conduzidas simulações
de Monte Carlo para avaliar a sensibilidade dos testes de raízes unitárias
em distinguir as condições I (1) − I (0) das condições fracionárias. Nos-
sos resultados mostraram que os testes possuem individualmente baixo
poder quando aplicados em séries pequenas com memória longa. No
entanto, percebemos que sob determinadas condições os testes de raízes
unitárias podem apresentar resultados que podem ajudar a evitar o prob-
lema da super-diferenciação na análise de estacionariedade das séries. Na
análise de co-integração, considerando alternativas fracionárias no inter-
valo 0 ≤ d ≤ 0.6, encontramos condições que podem conduzir a resultados
satisfatórios.
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Abstract

This study assesses the power of traditional unit root and co-integration
tests when they are applied to fractionally integrated stochastic processes
in the 0 ≤ d ≤ 1 range. Monte Carlo simulations were conducted to evalu-
ate the sensitivity of the unit root tests in distinguishing the I (1)−I (0) con-
ditions of the fractional conditions. Our results showed that unit root tests
have individually low power when applied to small sample series with
long-memory. However, we found that under specific conditions the unit
root tests can produce results that can help avoid the over-differentiation
problem. In the co-integration analysis for fractional alternatives on the
interval 0 ≤ d ≤ 0.6, we found some conditions that can lead to satisfac-
tory results.
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1 Introduction

Unit root and co-integration tests are widely used in econometric analysis.
These kinds of tests are traditionally constructed under the I(1) − I(0) di-
chotomy, representing, first order integrated series and covariance stationary
series, respectively. The I(1) − I(0) paradigm is the basis, for example, of the
ARIMA time series models and the co-integration analysis proposed by Engle
& Granger (1987) and Johansen (1995). The best known unit root tests are:
The Dickey-Fuller Test (DF) and the Augmented Dickey-Fuller Test (ADF)
proposed, respectively by Dickey & Fuller (1981) and Said e Dickey (1984);
the Dickey-Fuller Generalized Least Squares Test (DF-GLS) and the Elliot-
Rothenberg-Stock test (ERS), both introduced in Elliot et al. (1996), and the
KPSS Test suggested by Kwiatkowski et al (1992).

With the advent of fractional integration theory for stochastic processes,
the conditions established by the I(1)−I(0) paradigm become specific cases of
the extended I(d), d ∈ R. The parameter d is called the fractional integration
parameter and is also known as the "long-memory parameter." These models
have shown that the effects of past shocks do not remain in the series’ memory
permanently, but rather transitorily, for long periods.

Unit root tests are mainly concerned with the particular case d = 1 vs d = 0,
while long-memory models typically focus on 0 < d < 1. Unit root (d = 1) is
a singular mathematical condition that has important economic implications
according to Econometric Theory. The unit root economic time series exhibit
the "persistence" behavior or "unit root hysteresis" described as permanent
effects arising from a temporary stimulus1. The persistence issue has been ex-
plored in many macroeconomic areas, such as unemployment, exchange rates,
business cycles, permanent income theory, purchasing power parity, inflation,
etc. Seminal references in these areas are: Nelson & Plosser (1982), Blanchard
& Summers (1986), Ball & Mankiw (2002), Campbell & Mankiw (1987b,a),
Baillie & Bollerslev (1994), and others.

Applied economics research has increasingly been based on the fractional
integration paradigm due to its greater versatility in comparison with the
I(1) − I(0) paradigm. Diebold & Rudebusch (1991), for example, sought to
identify the persistence of economic shocks on U.S. gross domestic product
and unemployment. The study provided evidence in favor of fractional in-
tegration orders consistent with persistent mean reversible behavior in series.
Caporale & Gil-Alana (2004) investigated cointegration by analyzing the long-
memory dynamics between unemployment, oil prices and interest rates in
Canada. Gil-Alana & Henry (2003) analyzed the relationship between the
same variables and the terms of trade in the U.K. with impulse-response func-
tions. Shimotsu (2010) analyzed the data used by Nelson & Plosser (op. cit)
and found that the point estimates of the U.S. unemployment rate are mean-
reversible. The long-memory behavior of unemployment rates in Brazil and
Latin American countries was studied by Gomes & Gomes da Silva (2009),
Marques & Fava (2011) and Ayala et al. (2012). Fava & Alves (1998), Reisen
et al. (2003) and Figueiredo & Marques (2011) analyzed Brazilian inflation
rate series using ARFIMA Models. Caporale & Gil-Alana (2004) investigated
the Real Business Cycle doctrine based on monthly hours worked in the U.S.

1The term "unit root hysteresis" was used in order to differentiate it from the original concept
proposed in Physics. Other hysteresis concepts applied to Economics are described in Franz
(1990) and Gocke (2002).
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using Gegenbauer long-memory processes. Other important references will
be cited throughout this paper.

Although traditional unit root tests have been built on the I(1)−I(0) paradigm,
they can be powerful enough to distinguish the asymptotic stationary and
nonstationary mean-reversion conditions defined in the fractional integration
framework. This study proposes an evaluation of the properties of tradi-
tional unit root tests within the scope of long-memory processes. We analyze,
through Monte Carlo simulations, the rejection rate of the unit root hypoth-
esis when the process is fractionally integrated in the 0 ≤ d ≤ 1 range. We
have paid special attention to simulation results near the asymptotic station-
ary limit, d = 1/2 , to verify if these tests are able to distinguish asymptotic
stationary and nonstationary conditions in order to indicate if the series was
due to a long-memory process or not. The behavior of the tests was then eval-
uated on two intervals: 0 ≤ d < 1/2 and 1/2 < d ≤ 1.

Another important issue considered in this study is the power of the unit
root tests to distinguish the case 1/2 ≤ d < 1 from d = 1 in the co-integration
perspective. As indicated by Cheung & Lai (1993) and Caporale & Gil-Alana
(2004), if the residual series of the co-integration model is integrated in the
range, although nonstationary, it will still indicate the existence of co-integration
in the fractional integration framework. We provide Monte Carlo evidence
based on ADF and PP using simulated bivariate fractional co-integrated sys-
tems. The simulation analysis proposed allows identification of how unit root
tests behave in the nonstationary interval as d → 1 using the Phillips & Ou-
liaris (1990) distribution. We also expanded this analysis by exploring the
relative performance of the Johansen (1995) methodology compared to the
residual-based tests in the co-integration framework.

Previous research has demonstrated the importance of the subjects ad-
dressed in this study. Sowell (1990), for example, derived the asymptotic dis-
tribution from the DF test for nonstationary processes and demonstrated its
low power. Diebold & Rudebusch (1991) extended the scope of Sowell’s study,
performing a Monte Carlo experiment on stationary and nonstationary long-
memory processes. They also concluded that the DF test had a low power,
increasing as the sample size increased. In another study, Hassler & Wolters
(1994) carried out experiments similar to those of Diebold e Rudebusch, using
the "augmented" version of DF test with different lag lengths along with the
PP test. The authors demonstrated a high power for the DF and PP tests in
the asymptotic stationary interval, higher than that of the ADF test, which suf-
fered negative influences as time lags increased. Lee & Schmidt (1996) studied
the behavior of the KPSS test in series with long-memory and demonstrated
its consistency in the stationary interval |d | < 1/2. In general, all of these stud-
ies focus on the reduced power of specific unit root tests in evaluating the
I(d) condition. However, they disregard the possibility of using some tests
together. This is the strategy adopted in this study in order to show how to
better identify the stationary and nonstationary mean-reversion conditions.

The remainder of this paper is organized as follows: Section 2 introduces
somemathematical concepts related to fractional integration and long-memory
processes. Section 3 describes a simulation analysis on the power of tradi-
tional unit root tests to correctly identify stationary-nonstationary conditions;
Section 4 addresses the influence of long memory in residual-based methods
for co-integration analysis; Section 5 is dedicated to the same problem involv-
ing Johansen’s co-integration analysis, and finally Section 6 discusses some
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conclusions from the study.

2 Review of Fractional Integration and Long-Memory

Long-memory processes are characterized by a pole in their spectral density
function at zero frequency, limλ→0 f (λ) = +∞. Generally, though often im-
perceptible in graphical terms, long-memory processes are limited in their
field of variation and can exhibit locally persistent trends. Integrated pro-
cesses with d = 1, or I(1) for short, are known as unit root processes. The I(1)
processes represent a particular case of the general mathematical conception
of martingales. When d ≥ 1, the processes are nonstationary and not mean-
reverting. Applying suitable d ∈ Z differences on d ≥ 1 integrated processes
can transform them into long-memory processes. Processes with 1/2 < d < 3/2,
for example, have asymptotic stationary increments and will be asymptoti-
cally stationary in first differences.

In the early 1980s, Granger & Joyeux (1980) and Hosking (1981) indepen-
dently and almost simultaneously introduced the auto-regressive fractionally-
integratedmoving-averagemodel, ARFIMA(p,d,q), d ∈R, whose spectral prop-
erties reflect the typical shape of economic variables identified by Granger
(1966). This class of parametric models is able to describe both long-memory
properties and any remaining short-term structure in time series. A process
{yt}t∈Z is defined to be an ARFIMA(p,d,q) model if it represents a solution of

Φ(B)(1−B)d (yt − µ) =Θ(B)ǫt . (1)

E(yt) = µ, where B represents the lag operator, Φ(B) = 1−φ1B
1 − · · · −φpB

p

and Θ(B) = 1 + θ1B1 + · · ·+ θqBq are, respectively, the auto-regressive and the
moving-average polynomials of orders p and q, whose characteristic roots
Φ(B) = 0 and Θ(B) = 0 lie outside the unit circle and ǫt∈Z is a white noise
process. The component (1 − B)d represents the fractional difference opera-
tor which, through the gamma function, Γ(u) =

∫ +∞
0 e−ttu−1dt , promotes the

expansion:

1−Bd =
+∞
∑

j=0

Γ(j − d)
Γ(−d)Γ(j +1)

Bj ,d ∈R. (2)

According to Hosking (1981), an process is asymptotically stationary if
d < 1/2, although its autocovariance function decays hyperbolically to zero,
limh→±∞ h

αy(h) = ch , with ch > 0, 0 < α < 1 . ARFIMA processes with d >
−1/2 are invertible, implying that they can be represented in an infinite, auto-
regressive form. Therefore, ARFIMA processes whose fractional parameter
lies in the interval −1/2 < d < 1/2 are stationary and invertible. Fraction-
ally integrated processes with 1/2 ≤ d < 1 are nonstationary, but they exhibit
the mean-reversion pattern. Cases where 0 < d < 1 are traditionally called
long-range processes. When d < 0 , however, the processes are called "anti-
persistent." Anti-persistent processes are marked by a negative, long-range
correlation between their increments.

Identifying the power of the unit root tests on the interval 1/2 ≤ d < 1
is of great importance for econometric analysis. Taking an integer difference
of these series results in "over-differentiation," generating noninvertible series
from invertible ones. This mistake can, for example, increase the variance of
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filtered series and can result in the estimation of spurious parameters. For 0 <
d ≤ 1/2, we investigate the ability of the tests to correctly indicate the necessity
of unit differentiation of the series to make it stationary on the interval −1/2 <
d ≤ 0.

3 Simulation Analysis

The simulation analysis was based on simple, persistent fractional processes
in the Fractional Gaussian Noise class,

(1−B)dyt = ǫt ,ǫt ∼N (0,1). (3)

We compare the results for Fractional Noise with 0 < d < 1 and the classical
cases d = 0 and d = 1 represented, by Gaussian and unit-integrated Gaussian
processes, respectively. Deterministic components, such as linear trends or
short memory structure terms, were not included in the simulated processes2.
Anti-persistent processes, d < 0, were excluded from the studies involving
unit root and co-integration tests because they are not common in economic
analyses.

Initially, ADF, DF-GLS and ERS tests that are pivotal under the null hy-
pothesis H0 : d = 1 were evaluated. The KPSS test, which is pivotal under the
null H0 : d = 0 was evaluated separately. The rejection of H0 : d = 1 for the
ADF, DF-GLS and ERS tests, for the fractional cases, implies d < 1. Thus, our
experiment allows us to consider two types of analyses: a "strict" analysis that
evaluates the condition H0 : d = 1 vs. Ha : d < 1 and a "broad" analysis that
evaluates the power of these tests to detect asymptotic stationary and nonsta-
tionary mean-reversible conditions. One may analyze, for example, the hy-
potheses H0 : d = 1 vs. Ha : 0 ≤ d < 1/2 andH0 : 1/2 ≤ d ≤ 1 vs. Ha : 0 ≤ d < 1/2.
The latter case is that in which the researcher would need to determine if the
series needs to be differentiated in order to become asymptotic stationary, that
is, inside the fractional integration scope. In this case the non-rejection of H0
when it is false (type II error) leads to the application of an integer difference
on the series that will produce noninvertible processes, d < −1/2.

The procedure adopted in the simulations was to identify the percentage
of rejections of the unit root null hypothesis, when the process is constructed
in such a way that 0 ≤ d ≤ 1, thus covering all possibilities foreseen in the
broad and strict analyses. The number of lags used in the auto-regressive
structure of all tests except PP was chosen based on the criteria defined by Ng
& Perron (1995), with a maximum of 12 lags. This maximum number of lags
was chosen based on the traditional procedures for short-memory processes
and suggested as a default by many econometric software packages. Even
for long-memory processes, the Ng-Perron criteria hardly exceed the number
of 12 lags implemented in our simulations. In the PP test the number of
lags is set to one. The computer simulation routines were written in the S
and R languages, using Finmetrics 2.02 module code. For each value in 0 ≤
d ≤ 1, with intervals of δ = 0.10, M = 1000 simulated processes with sizes
typical of economic time series were generated: N = 100,200,300,1000 . Each
unit root test was applied to theM simulated processes and the null rejection
proportions were calculated.

2Definitions of Gaussian fractional processes are found in Beran (1994).
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The nonstationary, mean-reversion processes, 1/2 < d < 1, were generated
by applying the accumulated sum to anti-persistent processes with −1/2 <
d < 0. The unit root processes, d = 1, were generated by applying the accu-
mulated sum to Gaussian white noise processes. The specific point d = 1/2
that represents the threshold between asymptotic stationary and nonstation-
ary conditions was not evaluated in this study due to its high instability in the
simulation procedures.

Table 1 shows the percentage of rejections of the unit root null hypothesis
for the ADF, DF-GLS, ERS and KPSS tests with 1%, 5% and 10% significance
levels. For d = 0 or d = 1, the tests were well-behaved with the significance lev-
els adopted. As might be expected, the rate of rejection of the null H0 : d = 1
for the ADF, DF-GLS and ERS tests decreased as the process integration or-
der moved away from the zero. The rate decreased more quickly in the range
defining nonstationary mean-reversible processes than in the range defining
asymptotic stationary processes. The opposite was observed when using the
KPSS test. The power of the tests clearly depends on the sample size. There-
fore, in the strict analysis, the pivotal tests around H0 : d = 1 have low power
against the fractional condition Ha : d < 1. This fact may be deduced by the
high rate of non-rejection of H0 in the 1/2 ≤ d < 1 range. The values in Table
1 for 0 ≤ d < 1/2 represent the percentage rejection of H0 : d = 1, when H0
is false in the broad analysis, which defines the power of tests for asymptotic
stationarity3

For large samples, the rate of rejection of H0 in the ADF and DF-GLS tests
was close to 100% in the asymptotic stationary range. For series with 300,
200 and 100 observations, the H0 rejection percentage decreases significantly,
indicating the low power of the tests to detect asymptotic stationarity in small
samples. As approaches to the asymptotic stationarity threshold d = 0,5 (the
closest point evaluated in this study was d = 0,4 ), the tests ADF, DF-GLS and
ERS rejected H0 : d = 1, with a significance level of 5% and N = 100 only in
33.0%, 37.0% and 19.2% of the cases, respectively. In series with sample size
N = 200, the percentage rises to 64.1%, 59.8% and 34.3% respectively. For
large samples, N = 1000, the percentage of rejection was high: 99.5%, 99.5%
and 93.1%. This results shows that the tests are not powerful when series are
asymptotic stationary.

For series sizes typical of macroeconomic research series sizes (except fi-
nancial series),N ≤ 300 , the tests do not clearly distinguish the asymptotic
stationary condition. The rate of rejections of H0 : d = 1 when 1/2 < d ≤ 1
is similar for the three tests. For series with N = 1000 and integrated order
d = 0,7, for example, the ADF, DF-GLS and ERS tests reject the null hypothe-
sis under the 5% significance level for only 54.1%, 47.5% and 53.8% of cases,
respectively. The percentage is even lower for series with fewer observations,
or as d → 1. With N = 100 samples and d = 0,7, the ADF test rejected the
null hypothesis of the unit root level with a 5% significance level in 15.8% of
the cases, and the DF-GLS and ERS tests rejected it in 18.5% and 18.1% of
cases, respectively. For d = 0,8, the proportions found are 13.7%, 13.0% and
13.0%. The level of non rejection of the null hypothesis H0 : d = 1 in the range
1/2 ≤ d < 1 reflects the low power of tests to distinguish series with a unit root

3Although the null hypothesis is specific for d = 1, the ability of the tests to detect the nonsta-
tionarity of series in the 1/2 < d ≤ 1 interval can be evaluated. In this case, the values presented
in the table 1 1/2 < d ≤ 1 represent the proportion of rejections of H0: nonstationary series when
is true. The levels shown in the table reveal the low power of tests for this case.
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Table 1: Percentage of Rejections of the Unit Root Hypothesis for Long-Memory
(M=1000)

ADF† DF −GLS† ERS† KPSS‡

N 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

d = 0.0

100 68.3 88.0 95.6 67.4 84.6 95.6 48.6 61.2 68.4 0.4 3.3 9.0
200 98.5 100 100 98.9 100 100 65.8 81.1 86.9 0.5 4.0 9.1
300 100 100 100 100 100 100 85.6 94.2 97.5 1.1 5.7 10.3
1000 100 100 100 100 100 100 99.7 100 100 1.3 4.7 8.6

d = 0.1

100 52.9 76.1 90.6 53.0 76.2 88.1 30.6 41.6 50.0 2.4 10.2 17.3
200 94.2 99.5 100 95.3 99.4 100 50.6 69.5 80.6 4.5 12.5 23.2
300 99.8 100 100 100 100 100 71.7 85.5 93.1 4.4 13.7 22.2
1000 100 100 100 100 100 100 98.9 99.9 100 7.6 17.9 26.3

d = 0.2

100 35.9 60.4 77.6 39.7 63.3 78.5 21.0 33.2 41.7 5.1 18.7 28.7
200 79.4 96.6 99.1 79.7 97.3 99.5 36.3 56.8 70.6 10.7 26.1 36.9
300 97.9 100 100 97.7 99.9 100 56.8 78.4 86.9 14.7 29.5 40.1
1000 100 100 100 100 100 100 96.2 98.8 99.7 21.5 41.9 53.0

d = 0.3

100 24.6 49.7 68.1 23.9 46.9 63.4 12.2 23.9 36.3 12.7 32.0 43.4
200 79.4 96.6 99.1 79.7 97.3 99.5 36.3 56.8 70.6 10.7 26.1 36.9
300 97.9 100 100 97.7 99.9 100 56.8 78.4 86.9 14.7 29.5 40.1
1000 100 100 100 100 100 100 96.2 98.8 99.7 21.5 41.9 53.0

d = 0.4

100 15.2 33.0 51.2 15.7 37.0 53.2 5.3 19.2 32.8 19.3 35.5 49.5
200 31.6 64.1 79.5 31.0 59.8 74.4 14.2 34.3 51.9 34.8 55.0 66.2
300 48.0 76.3 87.7 50.2 77.9 87.7 23.8 52.4 68.5 41.6 60.3 70.0
1000 96.0 99.5 99.9 96.2 99.5 99.9 79.6 93.1 96.5 62.1 79.8 88.1

d = 0.6

100 7.4 19.6 30.1 6.6 18.8 32.0 7.2 21.7 33.2 39.9 56.5 68.1
200 10.5 32.5 48.6 10.2 30.8 47.6 11.6 31.4 45.9 57.9 76.8 85.1
300 17.4 43.1 58.4 18.6 42.5 55.8 16.3 40.4 57.2 61.3 79.6 87.6
1000 50.4 71.8 83.3 50.0 70.0 81.5 50.2 71.3 82.9 88.4 95.8 98.3

d = 0.7

100 4.7 15.8 28.9 6.4 18.5 29.2 4.1 18.1 32.5 45.4 65.4 74.7
200 7.4 24.5 38.8 11.4 28.5 39.4 8.1 23.9 38.3 66.5 84.4 90.6
300 11.9 30.8 45.0 12.3 31.8 44.6 12.2 32.4 48.4 72.8 86.3 91.7
1000 31.4 54.1 68.1 26.1 47.3 61.4 31.7 53.8 67.3 91.9 96.8 98.5

d = 0.8

100 3.7 13.7 21.5 2.7 13.0 24.8 1.6 13.1 23.8 55.0 72.0 81.7
200 4.8 18.7 30.4 5.6 19.2 28.5 4.6 18.5 32.1 75.7 87.9 93.8
300 7.0 19.8 33.0 6.5 20.8 32.0 7.9 22.2 36.8 80.8 92.0 96.3
1000 14.8 32.7 45.9 12.9 32.5 44.4 13.2 31.3 46.1 96.4 99.3 99.8

d = 0.9

100 1.3 9.3 17.9 2.5 9.1 17.3 1.0 9.0 16.9 63.8 80.8 87.8
200 2.1 9.0 18.2 3.2 11.4 21.1 2.4 8.7 17.0 80.3 90.8 94.7
300 3.6 11.4 20.3 3.2 12.9 23.0 3.6 12.8 22.7 86.2 94.9 97.3
1000 5.2 15.9 26.1 3.9 14.7 23.6 5.2 16.3 25.8 98.0 99.8 99.9

d = 1.0

100 0.5 4.0 7.4 0.5 3.3 8.4 0.5 3.2 8.6 71.3 84.5 90.3
200 0.8 3.9 11.0 0.8 4.9 9.9 0.4 4.1 9.7 86.5 95.6 97.5
300 1.1 4.8 8.6 1.1 6.0 10.0 0.9 5.5 10.6 91.6 97.5 98.9
1000 1.3 3.6 7.8 1.3 7.3 11.2 0.9 4.5 10.5 99.3 99.7 99.8

†H0 : d = 1
‡H0 : d = 0
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from those that are nonstationary with mean-reversion. Such imprecision can
reflect the low power of co-integration tests of Engle e Granger’s type when
the model’s residuals are fractionally integrated in the 1/2 ≤ d < 1 range. This
topic will be discussed further in the next section. The analysis based on the
KPSS test is particularly distinct. Due to its construction, the KPSS test is piv-
otal around H0 : d = 0 , meaning a "covariance stationary series." Therefore,
the inference for this test is the opposite of that of the three tests evaluated
earlier. Figure 1 shows the null hypothesis rejection index curves for simu-
lated series with sample sizes N = 100,200,300,1000.

For simulated fractionally integrated series the KPSS test showed low lev-
els of rejection ofH0 : d = 0 for 0 < d < 1/2, revealing the low power of the test
in the strict sense, that is, for H0 : d = 0 versus H0 : d > 0. For example, with
d = 0,3 and andN = 200 a significance level of 5%, the KPSS rejects H0 : d = 0
in only 38.7% of cases. For large integrated series with 1/2 ≤ d < 1, the KPSS
test shows satisfactory power. For d = 0,7 and N = 1000, the test rejected H0
in 96.8% of cases. For the same sample size, simulations with d = 0,8 and
d = 0,9 rejected H0 in 93.3% of the cases and 99.8% of the cases. That is, the
KPSS test is able to identify the condition H0 : d = 0 vs. Ha : 1/2 ≤ d ≤ 1 ,
which represents its ability to identify the nonstationary (mean-reversible or
not) condition in time series.

If one is interested in evaluating the need to apply an integer difference on
the series to make it stationary and invertible, that is, inside the −1/2 < d <
1/2 interval, the results of this study show that, if large series are available,
such as N ≥ 1000, one can use the results of the ADF and KPSS tests. Table
2 summarizes the proportion of hits using these two tests in the simulation
experiment at the 5% significance level. It is interesting to note that the best
test depends on both the sample size and the integration order. For example,
for series with N = 100 samples on the asymptotic stationarity interval, the
KPSS test is more powerful than the ADF test. For the same sample size, the
ADF test is better on the nonstationary interval. As the sample size increases,
the ADF and KPSS tests change their positions: the ADF test becomes more
accurate than the KPSS test in identifying the stationary condition and the
KPSS test is more accurate than the ADF test in the nonstationary interval.
For N = 1000, both tests together result in a significance level higher than 5%
for all integration orders. For series with a reasonable sample size satisfying
the fractional integration condition, if the ADF test indicates that series is
stationary and KPSS does not, our results reveal that ADF is preferable and
one should not apply an ordinary difference on the series. However, if KPSS
indicates that a series is not stationary and ADF indicates the contrary, then
preference should be given to the KPSS result. If both tests reject their null
hypotheses, our results suggests that the ADF result is preferable to the KPSS
because the power of ADF is higher on the interval 0 ≤ d < 1/2 than the power
of KPSS on the 1/2 ≤ d ≤ 1 interval.

4 Evaluating the Power of Residual-based Co-integration Tests
Under Fractional Integration

The previous results lead to another important question in econometrics: what
are the implications of the low power of unit root tests under fractional inte-
gration conditions for co-integration analysis? The residual-based test pro-
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Table 2: Proportion of Hits of the Need to Apply or Not an Integer Difference

Condition d
N = 100 N = 200 N = 300 N = 1000

ADF (%) KPSS (%) Best ADF (%) KPSS (%) Best ADF (%) KPSS (%) Best ADF (%) KPSS (%) Best
Hits Hits Hits Hits Hits Hits Hits Hits

I(0) 0.0 88.0 96.7 KPSS 100 96.0 ADF 100 94.3 ADF 100 95.3 ADF

Asymptotic Stationary

0.1 76.1 89.8 KPSS 99.5 87.5 ADF 100 86.3 ADF 100 82.1 ADF
0.2 60.4 81.3 KPSS 96.6 73.9 ADF 100 70.5 ADF 100 58.1 ADF
0.3 49.7 68.0 KPSS 85.0 61.3 ADF 96.4 54.0 ADF 100 38.2 ADF
0.4 33.0 64.5 KPSS 64.1 45.0 ADF 76.3 39.7 ADF 99.5 20.2 ADF

Nonstationary Mean-Reversible

0.6 80.4 56.5 ADF 67.5 76.8 KPSS 56.9 79.6 KPSS 28.2 95.8 KPSS
0.7 84.2 65.4 ADF 75.5 84.4 KPSS 69.2 86.3 ADF 45.9 96.8 KPSS
0.8 86.3 72.0 ADF 81.3 87.9 KPSS 80.2 92.0 KPSS 67.3 99.3 KPSS
0.9 90.7 80.8 ADF 91.0 90.8 ADF 88.6 94.9 KPSS 84.1 99.8 KPSS

I(1) 1.0 96.0 84.5 ADF 96.1 95.6 ADF 95.2 97.5 KPSS 96.4 99.7 KPSS
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Figure 1: Percentage of Rejections of Null Hypothesis by the KPSS
(5% Significance Level)

posed by Engle & Granger (1987) is traditionally calculated using the ADF
and PP tests to infer a long-term relationship between two variables. Kramer
(1998) and Kramer & Marmol (2004) deduced the theoretical behavior rates
of divergence of unit root tests when applied to fractional disturbances in
co-integration analyses, and showed that these tests tend to have low power
when the co-integration error follows a nonstationary mean-reversion process.
In order to address this subject empirically, we provide Monte Carlo evidence
based on ADF and PP tests under fractional integration using the adjusted
Phillips & Ouliaris (1990) distributions for co-integration analysis.

The notion of fractional co-integration follows the econometric principles
introduced by Engle & Granger (1987) within the scope of the I(1) − I(0)
paradigm. According to Caporale &Gil-Alana (2004), fractional co-integration
may be defined as:

Definition 1: The components xit of a (N ×1) vector xt are said to be fraction-
ally co-integrated of order (d.b) with notation xt ∼ CI(d,b), if: (I) all processes xit
are integrated of the same order , xitI(d), d ∈ R and (II) there exists at least one
vector βi = 0 in theN ×r) co-integration matrix β such that βxtI(d−b), with b > 0
.

In our simulations, we assumed a simple I(1) bivariate fractionally coin-
tegrated system x′t = (X1t ,x2t )′ with normalized co-integration vector, β′ =
(1− β2) , β2 , 0 and one common stochastic trend dictated by the unit root in
x2t . Using the triangular representation, the simulated systems may be writ-
ten as:

(1−B)d(x1t − β2x2t ) = ǫ1t ,

(1−B)dx2t = ǫ2t
(4)

where ǫ1t ,ǫ2t ∼ N (0,1) and 0 < d < 1. According to Definition 1 the fractional
co-integration may be analyzed on two intervals: as resulting from the sta-
tionary invertible long-memory relation, 0 < d < 1/2, or resulting from a non-
covariance stationary mean reversion process, 1/2 ≤ d < 1 .

Phillips & Ouliaris (1990) showed that the statistical distributions for ADF
and PP tests do not follow the usual distributions for ordinary unit root tests
when they are applied to traditional co-integration analysis. As described by
Zivot & Wang (2006), the Phillips e Ouliaris distribution depends on the de-
terministic components present in the series. Following these indications, we
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used the critical values in this study obtained by using the surface-response
methodology introduced by MacKinnon (1996).

The procedures are quite similar to the previous analysis performed in
this study: we analyzed the percentage of rejections of the null using the ad-
justed distributions for residual-based co-integration tests. The basic differ-
ence is that the analyzed series are the residuals from ordinary least-squares
estimates of the model involving two integrated series that are fractionally
co-integrated.

For each order in 0 ≤ d ≤ 1, with intervals δ = 0,1, we generated fractional
co-integrated systems with sample sizes 2N , N = {100,200,300,1000}, and
applied the ADF and PP tests to the last N samples of each simulation. This
procedure of discarding the first half of the samples was used to reduce the
effects of initial conditions. The simulated series x1t and x2t were calculated
recursively based on ǫ1t and ǫ2t for a given value β2 = 2 and 0 ≤ d ≤ 1. No
deterministic trends or AR andMA short-memory components were added to
the models. Table 3 shows the proportion of rejections of the null hypothe-
sis (no co-integration) obtained using the ADF and PP tests. Once simulated
series were generated without constant or deterministic terms, we used the
Phillips e Ouliaris distribution with one constant, as indicated by the authors.

The values presented in Table 3 reveal that co-integration analysis based
on the ADF Test using the Ng & Perron (1995) criteria and a maximum of 12
lags has low power for small samples (N < 1000) for both intervals 0 ≤ d < 1/2
and 1/2 ≤ d < 1.

As expected, the percentage of rejections decreases as d → 1. By reducing
the number of lags in the Ng e Perron algorithm, the power of the ADF test
increased. For a 5% significance level, for example, simulations of series with
d = 0.1 and N = 100 and with a maximum of 12 lags rejected the null hypoth-
esis of no co-integration in only 22.6% of cases. However, with a maximum
of 3 lags, the percentage of rejections of no co-integration grew to 100%. As
shown in Table 4, for a fixed number of 1 lag the ADF and PP tests have shown
good results for the covariance stationary interval even with small samples4

With large sample sizes, these tests give similar, good results up to order
d = 0.7. These interesting results with respect to the number of lags in unit
root tests are probably due to long-memory effects. The test equations of unit
root models are specified in first differences, and the co-integration residuals
are fractionally integrated on the interval 0 < d < 1. Thus, over-differentiation
may produce an anti-persistent process with negative autocorrelations that
causes mistakes in identification in the Ng e Perron (1995) procedure.

Following the usual procedures of the I(1) − I(0) co-integration analysis,
we found that ADF and PP tests have, in general, low power when applied
to small-sample fractionally co-integrated systems. Although this study is
based on specific cases of fractional co-integration, we found evidence that
under certain conditions the traditional co-integration analysis has reasonable
power to detect the common long-term relationship in the asymptotic station-
ary interval 0 < d < 1/2. The power of the tests was shown to be strongly
influenced by the number of lags chosen, and the long-memory structure may
make correct identification in small samples difficult.

4The mechanics of the PP test is based on just one lag.
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Table 3: Percentage of Rejections of no Co-Integration Null Hypothesis – Max. 12 lags

d
N = 100 N = 200 N = 300 N = 1000

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

ADF

0.0 0.1450 0.2780 0.4030 0.5500 0.8610 0.9510 0.9650 0.9970 1.0000 1.0000 1.0000 1.0000
0.1 0.1120 0.2260 0.3310 0.3790 0.7410 0.8880 0.8350 0.9780 0.9950 1.0000 1.0000 1.0000
0.2 0.0840 0.1700 0.2620 0.2310 0.5510 0.7190 0.6350 0.9000 0.9630 1.0000 1.0000 1.0000
0.3 0.0750 0.1620 0.2490 0.1600 0.4110 0.5740 0.3740 0.7120 0.8690 1.0000 1.0000 1.0000
0.4 0.0390 0.1010 0.1860 0.0830 0.2530 0.3930 0.1900 0.4570 0.6330 1.0000 1.0000 1.0000
0.6 0.0170 0.0680 0.1280 0.0290 0.1060 0.1840 0.0550 0.1850 0.3020 0.9990 0.9990 1.0000
0.7 0.0060 0.0380 0.0780 0.0170 0.0840 0.1420 0.0330 0.1170 0.2050 0.9140 0.9640 0.9780
0.8 0.0030 0.0270 0.0490 0.0020 0.0340 0.0720 0.0100 0.0530 0.1120 0.4160 0.6080 0.7290
0.9 0.0010 0.0150 0.0360 0.0040 0.0290 0.0630 0.0090 0.0290 0.0700 0.0380 0.1210 0.1950
1.0 0.0010 0.0080 0.0270 0.0010 0.0110 0.0270 0.0020 0.0160 0.0410 0.0050 0.0260 0.0440
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Table 4: Percentage of Rejections of no Co-Integration Null Hypothesis – 1lag fixed

d
N = 100 N = 200 N = 300 N = 1000

1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

ADF

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3 0.9980 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 0.9840 0.9980 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 0.4510 0.6990 0.8190 0.8120 0.9200 0.9570 0.9190 0.9790 0.9930 0.9980 1.0000 1.0000
0.7 0.1600 0.3980 0.5300 0.4110 0.6570 0.7550 0.5610 0.7560 0.8380 0.9150 0.9770 0.9850
0.8 0.0330 0.1330 0.2370 0.0930 0.2560 0.3610 0.1470 0.3320 0.4350 0.4140 0.6060 0.7070
0.9 0.0090 0.0420 0.0820 0.0160 0.0630 0.1110 0.0220 0.0970 0.1640 0.0280 0.1250 0.2110
1.0 0.0040 0.0180 0.0370 0.0000 0.0210 0.0460 0.0060 0.0240 0.0440 0.0020 0.0130 0.0310

PP

0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.3 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.4 0.9770 0.9950 0.9990 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.6 0.3850 0.6280 0.7340 0.6690 0.8100 0.8790 0.8260 0.9160 0.9460 0.9740 0.9930 0.9970
0.7 0.1570 0.3420 0.4530 0.2680 0.4670 0.5770 0.3970 0.5920 0.6860 0.7350 0.8490 0.8930
0.8 0.0320 0.1010 0.1920 0.0710 0.1920 0.2740 0.0910 0.1950 0.2970 0.2110 0.3830 0.4750
0.9 0.0100 0.0430 0.0800 0.0090 0.0340 0.0820 0.0120 0.0520 0.0960 0.0270 0.0990 0.1620
1.0 0.0020 0.0220 0.0400 0.0020 0.0150 0.0330 0.0030 0.0160 0.0430 0.0020 0.0190 0.0410
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5 A comparison Between Johansen’s Co-Integration Tests ans
Residual-Based Method When Applied to Fractionally
Integrated Bivariate Systems

The relative performance of unit root tests in identifying the I(1) condition
when time series are fractionally integrated of order lower than one leads
to another issue in applied econometric analysis using the Johansen (1995)
methodology. Johansen’s test was developed to infer co-integration in systems
composed of I(1) series. As discussed earlier, the empirical researcher has
difficulty distinguishing the cases d = 1 and d < 1 using the traditional unit
root tests. In this section, the Johansen co-integration test is compared to the
residual-based test in the fractional co-integration perspective.

Johansen’s methodology is widespread in applied econometric analysis, so
it will not be fully described here. Details on Johansen’s approach can be
found in Johansen (1988, 1992), Johansen & Juselius (1990), Banerjee et al.
(2003), Hamilton (1994), and in many other references. In order to apply Jo-
hansen’s test to fractional co-integrated systems similar to those simulated in
the previous section, we followed these steps: (i) we first simulated the bivari-
ate fractionally co-integrated systems using the same algorithm used earlier
in Section 4; (ii) we choose the orders of the VARs by applying the Hanann-
Quinn (HQ) statistic minimization criteria and estimated the VARs using Or-
dinary Least Squares (OLS) following Lutkepohl (1990); (iv) we applied the
Johansen test using the maximum eigenvalue statistic at a 5% significance
level; (v) and finally a vector containing three possible results was created:
null, incomplete or full rank. The relative number of incomplete-rank (r = 1)
results reveal the percentage of positive co-integration results.

Table 5 shows the simulation results and Figure 2 shows the comparative
efficiency of the ADF residual-based test and Johansen’s test for small and
large series. For both small and large series, the residual-based test was supe-
rior. Surprisingly, for large series the superiority of the ADF-based test was
even higher on the 0.6 ≤ d ≤ 0.8 interval. For d = 1, that is, for the non co-
integrated cases, the results of Johansen’s test are slightly better than those of
the ADF test.

Figure 2: Comparative Percentage of Non Rejections of Co-Integration Based on Jo-
hansen and ADF Methods (5% Significance Level)

6 Conclusion

This study assessed problems that frequently arise in empirical time series
econometric analysis. One of the reasons for interest in the power of unit
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Table 5: Percentage of Null, Incomplete and Full Rank of Johansen’s Test

d N = 100 N = 200 N = 300 N = 1000

π = 0 π = 1 π = 2 π = 0 π = 1 π = 2 π = 0 π = 1 π = 2 π = 0 π = 1 π = 2

0.0 0.0000 0.9390 0.0610 0.0000 0.9500 0.0500 0.0000 0.9450 0.0550 0.0000 0.9410 0.0590
0.1 0.0010 0.9570 0.0420 0.0000 0.9490 0.0510 0.0000 0.9470 0.0530 0.0000 0.9580 0.0420
0.2 0.0020 0.9540 0.0440 0.0000 0.9420 0.0580 0.0000 0.9490 0.0510 0.0000 0.9540 0.0460
0.3 0.0070 0.9420 0.0510 0.0010 0.9540 0.0450 0.0000 0.9500 0.0500 0.0000 0.9560 0.0440
0.4 0.0280 0.9340 0.0380 0.0050 0.9340 0.0610 0.0000 0.9450 0.0550 0.0000 0.9480 0.0520
0.6 0.2790 0.6990 0.0220 0.1500 0.8180 0.0320 0.0890 0.8730 0.0380 0.0100 0.9400 0.0500
0.7 0.5580 0.4190 0.0230 0.3420 0.6320 0.0260 0.2840 0.6890 0.0270 0.1430 0.8200 0.0370
0.8 0.7850 0.2070 0.0080 0.6610 0.3330 0.0060 0.5890 0.3950 0.0160 0.4960 0.4920 0.0120
0.9 0.9220 0.0750 0.0030 0.8740 0.1210 0.0050 0.8730 0.1220 0.0050 0.7990 0.1940 0.0070
1.0 0.9330 0.0640 0.0030 0.9400 0.0580 0.0020 0.9330 0.0660 0.0010 0.9440 0.0560 0.0000
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root tests is the induction of over-differentiation. Given the popularity of unit
root tests in econometric studies, we evaluated the power of these tests in a
fractional integration approach.

Our results show that the ADF, DF-GLS and ERS tests, individually, have
low power to distinguish the null hypothesis H0 : d = 1 against Ha : 0 ≤ d <
1/2 in small sample series. Similarly, the KPSS test has low power to reject
H0 : d = 0 when Ha : 0 ≤ d < 1 in small sample series. For large sample
series, we have shown that onemay use the ADF andKPSS tests together to get
better results in identifying the stationary and nonstationary mean-reversion
conditions. This study also shows that when 1/2 ≤ d < 1 the ADF test has low
power even with large sample series.

Since ADF is the most used unit root test in residual-based co-integration
analysis, its low power can induce low power in co-integration analysis. We
provided Monte Carlo evidence of this, based on the ADF and PP tests and
using the Phillips e Ouliaris adjusted distributions. Particularly in this case,
the results of the simulation showed that the improper use of these tests in de-
tecting the nonstationary mean-reversion condition, especially on the interval
0.7 ≤ d < 1 , is the source of the low power of residual-based co-integration
tests. For the asymptotic stationary interval, 0 ≤ d < 1/2, these tests gave sat-
isfactory results under certain conditions even for small sample series. The
co-integration analysis in fractional orders based on the ADF test had better
results than that based on the PP test.

Finally, a specific comparison of Johansen’s co-integration tests and ADF
residual-based co-integration tests was made using bivariate fractionally co-
integrated systems. Following themaximum eigenvalue statistic for Johansen’s
test, our results indicate that the ADF residual-based test has better results for
both small and large series.
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