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Abstract

In this paper, we present a brief description of ARCH, GARCH and
EGARCH models. Usually, their parameter estimates are obtained us-
ing maximum likelihood methods. Considering new methodological pro-
cesses to model the volatilities of time series, we need to use other infer-
ence approach to get estimates for the parameters of the models, since we
can encouter great difficulties in obtaining the maximum likelihood es-
timates due to the complexity of the likelihood function. In this way, we
obtain the inferences for the volatilities of time series under a Bayesian ap-
proach, especially using popular simulation algorithms such as theMarkov
Chain Monte Carlo (MCMC) methods. As an application to illustrate the
proposed methodology, we analyze a financial time series of the Gillette
Company ranging from January, 1999 to May, 2003.
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Resumo

Neste artigo, apresentamos uma breve descrição dos modelos ARCH,
GARCH e EGARCH. Normalmente, as estimativas dos parâmetros des-
ses modelos são obtidos através de métodos de máxima verossimilhança.
Considerando-se novos processos metodológicos para modelar as volatili-
dades das séries temporais, precisamos usar outra abordagem de inferên-
cia para obter estimativas para os parâmetros dos modelos, uma vez que
podemos ter grandes dificuldades para obter as estimativas de máxima
verossimilhança, devido à complexidade da função de verossimilhança.
Desta forma, obtemos as inferências para as volatilidades das séries tem-
porais sob uma abordagem bayesiana, especialmente com o uso de algorit-
mos populares de simulação como o método de Monte Carlo em Cadeias
deMarkov (MCCM). Como uma aplicação para ilustrar ametodologia pro-
posta, analisamos uma série temporal financeira da empresa Gillette vari-
ando de janeiro de 1999 à maio de 2003.
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1 Introduction

Financial time series volatility has been an issue that academics have focused
on since Engle (1982) seminal paper. Mostly, volatility appeared to be an im-
portant issue after the abandonment of fixed parities dollar-gold by the USA
at the beginning of the 70’s. Since then, asset prices started changing more
broadly, especially international exchange rates. After exchange raa’ markets’
volatility rising, it was just amatter of time for verifying the same in stockmar-
kets, mainly in the 80’s and 90’s. In order to frame this new phenomenon into
feasible financial models, researchers kept on looking for alternative method-
ologies which reproduces excess volatility; a new stylized fact showed by fi-
nancial time series.

Engle (1982) and Bollerslev (1986) offered a primary sort of answer to this
issue, the so called ARCH class models. Intrinsically those models are lep-
tokurtic and are, for instance able to capture the excess volatility contained
in most financial time series. However this was not the first concern of Engle,
whose applicative example take the UK inflation rates time series into account.
Extending this empirical practice to other time series, mainly financial, was
the next step.

After obtaining success on incorporating excess volatility into ARCH class
models, another stylized fact arises from empirical data. Repeatedly, aca-
demics and financial analysts verified that financial volatility produced a skew
impact on asset prices; i.e. bad news tends to impact more severely on asset
prices than good news. In order to incorporate this stylized fact into volatility
models, Nelson (1991) proposed an EGARCH class of models.

Though all these models recognized volatility is a latent variable, a more
satisfactory answer to the problem of adjusting volatility as a stochastic model
was provided by the stochastic volatility models. Hull & White (1987) is a
reference on this matter by adjusting a stochastic volatility process into op-
tion pricing formulas and, obtaining better results than the original Black
& Scholes (1973) option pricing model. In fact stochastic volatility models
are a more flexible alternative for modeling financial time series, once one
stochastic process is assumed for the random terms. However, these stochas-
tic processes are still normal, guarantying a closed solution for the likelihood
function.

From a methodological point of view Bayesian models are a generalization
of those models briefly discussed above. Bayesian methods are more suitable
for modeling financial time series and forecasting their future behavior as
well, because they allow for an introduction of a broad variety of stochastic
processes for describing latent variables; i.e. prior distributions. Definitely,
classic inference dominates financial literature on modeling and forecasting
time series behavior, however Bayesian inference is becoming a better alterna-
tive for the same reason, mainly after the rapid computational development
in the 90s. Moreover, once Bayesian approach provides a broad way for mod-
eling the stochastic term, better results can be obtained for estimating and
forecasting financial time series behavior.

Another class of statistical models, the so-called stochastic volatility mod-
els (SV), has been a satisfactory alternative in analyzing financial time series,
when compared to GARCH models. SV models are more flexible to model
financial time series, given that they assume two processes for the noise. One
process is for the observation and the other for the latent volatility. Compar-
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ative studies between SV models and models type GARCH are well known
in the literature (see for example, Taylor 1994, Ghysels et al. 1996, Shephard
1996, Kim et al. 1998).

Bayesian Methods using Markov Chain Monte Carlo (MCMC) methods are
considered in the analysis of financial time series assuming SV models (see
for example, Meyer & Yu 2000), given the great difficulties in the classical
statistical approach with the complexity of the likelihood function.

This article is divided into 5 sections. In section 2 we define the ARCH in
regressionmodels proposed by Engle (1982), the generalized ARCHmodels or
GARCH, introduced by Bollerslev (1986) and the exponential GARCHmodels
or EGARCH, proposed by Nelson (1991). In section 3, we propose a Bayesian
methodology to fit general exponential autoregressive models, GEGARCH. In
section 4, generalized stochastic volatility models or GSV, are defined. In sec-
tion 5, we introduce a Bayesian analysis for GSV models. In section 6, the
time series of prices and log-returns of the shares prices for the Gillette Com-
pany are analyzed, assuming different models for both time series. Finally,
in section 7, we present some conclusions. The selection of the best model is
made using the AIC (Akaike Information Criterion) and BIC (Bayes Informa-
tion Criterion).

Finally, in section 7, we present some conclusions.

2 ARCH, GARCH and EGARCH models

2.1 ARCH models

If a random variable yt is drawn from the conditional density function f (yt |
ψt−1), the forecast of today’s value based on the past information ψt−1 is given
by µt = E (yt |ψt−1) and can be modeled as a regression model µt = x

′
tβ, where

xt =
(
1,xt1, . . . ,xtq

)′
is the vector of the explanatory variables at time t, for ex-

ample xt =
(
1,yt−1, . . . ,yt−q

)′
, and β =

(
β0,β1, . . . ,βq

)′
is the vector of regression

mean parameters. At this time we also suppose that the conditional vari-
ance V (yt |ψt−1), depends on the past information through the model ht =

h
(
α0 +α1ǫ

2
t−1 + . . .+αpǫ

2
t−p

)
where α =

(
α0,α1, . . . ,αp

)′
is the vector of condi-

tional variance parameters, ǫt = yt−1 − x′tβ and h is a real monotone function
that takes into account the positivity of the variance.

Thus, the stochastic process {yt}t∈I follows a p-order linear ARCH model
or ARCH(p) (Engle 1983) that can be rewritten by:

yt |ψt−1 ∼N (µt ,ht) (1)

µt = x
′
tβ (2)

ht =z
′
tw = α0 +α1ǫ

2
t−1 + . . . +αpǫ

2
t−p

ǫt =yt−1 − x′tβ

where w′ =
(
α0,α1, . . . ,αp

)
and z′t =

(
1,ǫ2t−1,ǫ

2
t−2, . . . ,ǫ

2
t−p

)
.

One way to detect the presence of an ARCH structure, is to apply Ljung-
Box statistics to the results of the correlograms of the residuals from the mean
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model and from the squared residuals (Tsay 2002). Another way is to use a
Lagrange multipliers LM test, proposed by Engle (1982) and Bollerslev (1986)
in which, after expressing ht as ht = z

′
t1ω1 and ht = z

′
t1ω1 + z

′
t2ω2, we will test

the null hypothesis H0 : ω2 = 0. By accepting this hypothesis we demonstrate
the dimension of the ARCH effect is not more than the dimension of ω1.

2.2 GARCH Models

Let {yt}t∈I be a stochastic process, where I is a discrete process, as given in
section 2.1. In the GARCH(p, q) regression model the mean model is defined
by (2), but the conditional variance models also depends on the conditional
variances, as shown by the next equation

ht = z
′
tω = α0 +

p∑

i=1

αiǫ
2
t−i +

q∑

i=1

γiht−i (3)

where p ≥ 0, q > 0, αi ≥ 0, γi ≥ 0, i = 1, . . . ,p. In this equations ω′ = (α0,α1, . . . ,
αq ,γ1, . . . ,γp) and zt =

(
1,ǫ2t−1, . . . ,ǫ

2
t−q ,ht−1, . . . ,ht−p

)
are the vectors of the vari-

ance parameters and the variance explanatory variables, respectively. If q = 0,
we have an ARCH(p) regression process.

Usually, GARCH models do not fully reflect the nature of the volatility
of most financial assets. These models do not take into account asymmetri-
cal behavior typical of the price volatility of financial assets, which is a well-
known leverage effect. In GARCHmodels, the conditional volatility of the as-
set prices is affected symmetrically by positive or negative innovations. In ad-
dition, the parameters in the volatility model are restricted to non-negativity.
Evidences of this effect have been found by Nelson (1991), Glosten et al. (1993)
and Engle & Ng (1993), among many others.

2.3 EGARCH Models

Including the asymmetrical effect given by the fluctuations in the volatility of
the asset prices, Nelson (1991) proposed the Exponential class GARCH mod-
els, or EGARCH(p,q) models. In this class of models, the conditional variance
equation is defined in terms of the standard normal variate zt = ǫt /σt and the
unexpected log-return through the equation,

log
(
σ2
t

)
= α0 +

p∑

i=1

αi (|zt−i |+λizt−i ) +
q∑

j=1

βj log
(
σ2
t−j

)

where θ =
(
α1, . . . ,αp ,β1, . . . ,βq

)
is de vector of parameters. In this model, the

effect of asymmetry is considered. Bad news can have a large impact on the
volatility, and the values of λi would expected to be negative.

Several studies have found that EGARCH models fit financial data very
well, much better than the other GARCH models. The advantages of the ex-
ponential specification for the variance are given by many others (see, for ex-
ample, Taylor 1994, Heynen et al. 1994, Lumsdaine 1995).

Inferences of interest for the ARCH, GARCH and EGARCH models usu-
ally are obtained using standard maximum likelihood methods.
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3 A General EGARCH Model: a Bayesian approach

Similar to Engle (1982), the {yt}t∈I process follows the autoregressive condi-
tional heteroscedastic model if,

yt | ψt−1 ∼N (µt ,ht) (4)

µt =x
′
tβ

ht =exp
(
α0 +α1z1,t + . . .+αpzp,t

)

where, for example, zi,t = ǫt−i , zi,t = ǫ
2
t−i , zi,t =

ǫt−i
ht−i

, zi,t = ht−i , and ǫt = yt − x′tβ.
The explanatory variables of the volatility model can also include terms of
some other financial time series. As in section 2.1, in this model, β is the
vector of mean parameters, xt is the vector of the mean explanatory variables
and α′ =

(
α0,α1, . . . ,αp

)
is the vector of volatility parameters.

Assuming a general EGARCH model, we could have difficulties in obtain-
ingmaximum likelihood estimates for the parameters of themodel. A suitable
alternative is to use Bayesian methods.

In order to estimate the parameters under the Bayesian methodology, we
need a prior distribution for the parameters assessing the information about
what we would anticipate as the relative frequency from a very large num-
ber of observations. For simplicity, we assign the prior distribution p (β,α) ∼
N (θ0,Σ0), where θ′0 = (b,g) and Σ0 is a (q + p) × (q + p) variance covariance
matrix for θ = (β,α). Then, with the likelihood L (β,α) given by some distri-
bution that belongs to the two parameter exponential family, and using Bayes
theorem, we find the posterior distribution π (β,γ) ∼ L (β,α)p (β,α). Given
that π (β,α) is analytically intractable and not easily generated, we propose
sampling (β,α)

′
in an iterative process; i.e. sampling β from a q-dimensional

random walk and α from π (α|β) distribution.
Consequently, if β(c) and α(c) are the current values of β and α, the new

values of β =
(
β0,β1,β2, . . . ,βq

)′
are proposed as a multivariate random walk.

New values of α are obtained as it is proposed by Cepeda & Gamerman (2001)
from

q2
(
α|α̂, β̂

)
=N (g∗,G∗) (5)

where g∗ = G∗
(
G−1g + 1

2Z
′Ỹ

)
,G∗ =

(
G−1 + 1

2Z
′Z

)−1
, b and G are given by the

conditional prior distribution γ |β ∼N (g,G), and Z is the matrix with t-th row
equal to

(
1, z1,t , . . . , zp,t

)
and Ỹ is the n-dimensional vector with the i-th com-

ponent equal to ỹi =
yi−µi
σi
− 1. This proposal is obtained from Fisher scoring.

We also could obtain the working variables by Taylor approximation. In this
case the working variable is ỹi =

yi−µi
σi

.

4 Stochastic Volatility Models

Given the so-called log-returns time series {yt}t∈I this section is devoted to the
analysis of volatility models, stated as follows:
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yt = σtǫt , t = 1,2, . . . ,n (6)

where ǫt is a sequence of i.i.d. random variables with normal distribution
N

(
0,σ2

ǫ

)
. In this model, the volatility of the time series yt is given by the

conditional variance σ2
t = E

(
y2t |Ht

)
, where Ht = {yt−1,yt−2 . . .} are the observed

values at times t − 1, t − 2, . . .. Here we assume that the standard deviation is
given by the model,

σt = exp

{
ht
2

}
(7)

where ht is a latent variable defined by the autoregressive model

ht = µ+φ (ht−1 − µ) + ηt t = 2,3, . . . (8)

and we assume that h1 is a random variable with known distribution P1 (h1)
and ηt is a sequence of i.i.d. random variables with normal distribution N (0,
σ2
η ). If |φ| < 1 the mean and the non-conditional variance of ht are E (ht) = µ

and Var (ht) =
σ2η

(1+φρ1)
, where ρ1 is the coefficient of autocorrelation between

ht and ht−1 (see for example, Taylor 1994).
With the assumptions (5), (6) and (7), we have

yt ∼N
(
0,σ2

ε exp {ht}
)

(9)

h1 ∼N
(
µ,σ2

η

)
(10)

ht |ht−1 ∼N
(
µ+φ (ht−1 − µ) ,σ2

η

)
(11)

for t = 2,3, . . . n.
A generalization of the stochastic volatility model, given by (5) and (6), can

be obtained by defining a model through (11) for the latent variable defined
by

ht = µ+
p∑

j=1

φj
(
ht−j − µ

)
+ ηt (12)

for t = p + 1, . . . ,n, with roots of polynomial φ (B) = 1 −∑p
j=1φjB

j outside the
unit circle (B is the retarded operator defined by Bqht = ht−q). The model
defined by (5) and (6) and (11) is called Generalized Stochastically Volatility
model (GSV).

In this case,

ht |ht−1, . . . ,ht−p ∼N


µ+

p∑

j=1

φj
(
ht−j − µ

)
,σ2
η


 (13)

for t = 2,3, . . . ,n.
The likelihood function of the GSV, taking into account (5) and (6) is given

by the following:
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L =
n∏

t=1

p (yt |ht) (14)

From (8), we obtain:

L =
n∏

t=1

1√
2πσ2

ǫ exp{ht}
exp

{
− y2t
2σ2

ǫ exp{ht}

}
(15)

With this new generalized stochastic Volatility Model, we can obtain better
inferences for the volatilities of financial time series.

5 Bayesian analysis of GSV model

For a Bayesian analysis of the Stochastic volatility model defined by (5) and
(6), with latent variables defined by (11), we assume the following prior dis-

tributions for µ, Φ =
(
φ1,φ2, . . . ,φp

)′
, σ2

ǫ and σ2
η .

φj ∼ B
(
aj ,bj

)
, j = 1, . . . ,p (16)

σ2
ǫ ∼ IG (c1,d1) (17)

σ2
η ∼ IG (c2,d2) (18)

µ ∼N
(
0, e2

)
(19)

where B
(
aj ,bj

)
denotes a beta distribution with mean

aj

(aj+bj )
and variance

ajbj[
(aj+bj )

2(aj+bj+1)
] ; IG (c,d) denotes the inverse gamma distribution with mean

d
(c−1) and variance d2[

(c−1)2(c−2)
] , c > 2, and N

(
µ,σ2

)
denotes the normal distri-

bution with mean µ and variance σ2. We assume that the hyperparameters(
aj ,bj

)
, j = 1, . . . ,p, (ci ,di ) , i = 1,2, and e2 are known.

If hl = 0, for l = 0,−1, . . . ,−p + 1 in (12), the conditional distribution of ht
given h

(p)
t−1 = {ht−1, . . . ht−p}, for t = 1, . . . ,n, is given by

p
(
ht |h

(p)
t−1

)
=

1√
2πσ2

η

exp


− 1

2σ2
η


ht − µ−

p∑

j=1

φj
(
ht−j − µ

)



2
(20)

Thus, ifΦ =
(
φ1 . . . ,φp

)′
,θ =

(
µ,Φ,σ2

ǫ ,σ
2
η

)
,h = (h1, . . . ,hn)

′ and if µ,Φ,σ2
ǫ ,σ

2
η

have independent prior distributions, the posterior density function for ϕ =
(θ,h) is given by
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π (ϕ|y) =
n∏

t=1

1√
2πσ2

ǫ exp{ht}
exp

{
− y2t
2πσ2

ǫ exp{ht}

}

× 1√
2πσ2

ǫ

exp


− 1

2σ2
η


ht − µ−

p∑

j=1

φj
(
ht−j − µ

)





2

π (θ)

where y = (y1, . . . ,yn)
′ and π (θ) is given by

π (θ) ∝



p∏

j=1

φ
aj−1
j

(
1−φj

)bj−1


(
σ2
η

)− (c1+1)
2 exp

−
d1

σ2
η



×
(
σ2
ǫ

)− (c2+1)
2 exp

−
d2

σ2
η

exp
{
− µ

2

2e2

}

Thus, the posterior density can be rewritten as

π (ϕ|y) ∝
(
σ2
ǫ

)− n2 exp
−

1
2

n∑

t=1

ht −
1

2σ2
ǫ

n∑

t=1

y2t exp {−ht}


×
(
σ2
η

)− n2 exp


− 1

2σ2
η

n∑

t=1


ht − µ−

p∑

j=1

φj
(
ht−j − µ

)



2
π (θ)

(21)

Finally, ifΦ =
(
φ1 . . . ,φp

)′
,y =

(
y21 , . . . ,y

2
n

)
,h = (hi , . . . ,hn)

′ ,E (h) =
(
e−hi , . . . , e−hN

)′

and the matrix X given by:

X =




h0 h−1 . . . h−p+1
h1 h0 . . . h−p+2
...

... . . .
...

hp hp−1 . . . h1
hp+1 hp . . . h2
...

... . . .
...

hn−1 hn−2 . . . hn−p



n×p

,

the posterior density (20) can be written as

π (ϕ|y) ∝
(
σ2
ǫ

)− n2 exp
{
−1
2
1′h− 1

2σ2
ǫ

y′E (h)

}

×
(
σ2
η

)− n2 exp
−

1

2σ2
η

(h− µ−X ′Φ)′ (h− µ−X ′Φ)

π (θ)

where 1 = (1, . . . ,1)′ is the vector n× 1 of 1′s and µ is de vector of n× 1 of µ′s.
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Sampling from the joint posterior distribution of ϕ (θ,h), we use MCMC
methods with Gibbs Sampling algorithm (Gelfand & Smith 1990) orMetropolis-
Hastings (Smith & Roberts 1993). These samples are generated from the con-
ditional distributions φ

(
θj |θ(j),y

)
, where θ(j) denotes the vector of all compo-

nents of θ, except the j − th component.

6 An Application

As an application, we analyze the time series of prices and log-returns of share
prices of the Gillette Company, taken daily at the closing of the market, from
January, 1999 to May, 2003. The results were obtained using the statistical
program Eviews 5.0, for ARCH, GARCH and EGARCHmodels under the clas-
sical inference approach, and WinBugs software (Spiegelhalter et al. 1999)
under Bayesian inference approach. Moreover, the selection procedure was
based on the AIC (Akaike Information Criterion) and BIC (Bayes Information
Criterion). In all cases, the Q statistics of Ljung-Box do not reject the nullhy-
pothesis 1

BIC (Bayes Information Criterion) is a model discrimination criterion in-
troduced by Schwarz (1978) and modified by Carlin & Louis (2000) to be ap-
plied assuming the posterior density for the parameters of the fitted model.
This criterion weights between the maximized likelihood function and the
number of parameters of the model. The best model is the one with larger
value of BIC.

6.1 Models for shares’ prices

In order to illustrate the results provided by the models discussed in this pa-
per we took Gillette’s stock prices time series on a daily basis at the closing
market index lasting from January, 1999 to May, 2003. Figure 1 shows the
behavior of this time series and what strikes us most is a general descending
feature of these prices. This behavior is surely explained by the microeco-
nomic aspects of this Company, once this used to be a typical period of stock
market boom.

Observing the pattern showed in Figure 1, it is quite precise to state that
there are four price cycles lasting one year each. Probably, as a stylized fact,
this finding is linked to the product’s life cycle released to the market on an
annual basis. Gillette is an internationally well-known brand of men’s safety
razors, amongst other personal care products and it used to be a leading global
supplier of these products until it merged with Procter & Gamble in 2005. It
appears to be the Company’s strategies on releasing new products followed a
life cycle as expected, but these strategies were also accompanied by a steady
decrease in the Company’s market value.

After taking a closer look at Gillette’s history since the 70’s, we can see
that this Company went through takeover attempts more than once and faced
judicial dispute claims for its products prior to merging with P&G in 2005.

From the macroeconomic point of view Gillette’s stock prices diverged
from the expected behavior of stock market prices in this time period. Stock

1H: there is no serial correlation for residuals, as for square residuals., at a 1% significance
level.
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prices data for Gillette covers roughly the second term of Clinton’s adminis-
tration in USA, a period of economic and financial boom. In recent times this
period demonstrated one of the most economic and financial growing virtu-
ous cycle, contrasting with the poor performance of Gillette’s stock prices.

Besides these incidents in corporate management, Gillette also faced the
fact that it used to be a traditional Company clearly affected by issues such
as technology decline, more efficient competitors, amongst others. Definitely,
Gillette did not introduce itself into the technological development stream
that characterized the time period analyzed. After merging with Procter &
Gamble in 2005, Gillette faced its dissolution and was finally incorporated as
a division of P&G in 2007.
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Figure 1: Time series of the prices.

ARCH Models

Among different ARCH models, the ARCH(4) model has the smallest BIC
value. The maximum likelihood estimates (MLE) of the mean and variance
parameters, and their standard deviations, are given in Table 1.

Table 1: Maximum likelihood parameter estimates of ARCH(4) model.

Parameter β0 β1 α0 α1 α2 α3 α4

Mean −0.1350 1.005 0.2195 0.4652 0.0826 0.2009 0.0892
s. d. 0.0610 0.001 0.0199 0.0398 0.0277 0.0306 0.0179

The p-values associated with the tests H : θ = 0 versus θ , 0, where θ
represents the parameters α0,α1,α2,α3,α4 or β0 and β1, are all smaller than
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0.004, except the p-value associated with β0, that is given by 0.027. The AIC
and BIC values are given by 2.2201 and 2.2524, respectively.

GARCH Models

Among different GARCH models, the GARCH(1, 2) model has the smallest
BIC value. The MLE estimates of the mean and variance parameters, and
their standard deviations are given in Table 2.

Table 2: Maximum likelihood parameter estimates of GARCH(1,2)
model.

Parameter β0 β1 α0 α1 α2 γ1

Mean 0.4566 0.9857 0.2195 0.4656 0.0826 0.2009
s. d. 0.1583 0.0044 0.0199 0.0398 0.0277 0.0306

The p-values associated with the test H:θ = 0 versus θ , 0, where θ repre-
sents all regression parameters, are all smaller than 0.006. The AIC and BIC
values are given by 2.1059 and 2.1336, respectively.

General EGARCH Models

In this section, we fit two models to analyze the time series of prices and log-
returns of Shares of the Gillette Company, applying the Bayesianmethodology
given in section 3. In both models, yt | ψt−1 ∼ N (µt ,ht) with µt = β0 + β1yt−1,
where β′ = (β0,β1) is the mean parameter vector.

We assume normal prior distribution, N
(
0,10k

)
, for all parameters with

large variances, k = 5 to have approximately non informative priors, consider-
ing two different models for the prices.

Model 1. Here we assume that the conditional variance of the stochastic
process Yt,t∈T is given by the model

ht = exp
(
α0 +α1ǫ

2
t−1 +α2ǫt−2

)

where α′ = (α0,α1,α2) is the vector of variance parameters and ǫt = yt − x′tβ.
The parameter estimates (posterior means) of this model are given in Table 3.
Figure 2 shows the behavior of the chain sample for each parameter, each one
of which has a small transient stage, indicating the speed convergence of the
algorithm. The chain samples are given for the first 4500 iterations. The other
results reported in this section are based on a sample of 4000 draws after a
burn-in of 1000 draws.

Table 3: Posterior summaries for the prices model (model 1)

Parameter β0 β1 α0 α1 α2

Mean −0.0222 1.0008 −0.7402 0.3183 −0.1768
s.d. 0.1182 0.0035 0.0551 0.0499 0.0462



190 Cuervo, Achcar and Barossi-Filho Economia Aplicada, v.18, n.2

The histograms of the generated samples for each parameter seem to show
that the posterior marginal distribution for all the parameters is approxi-
mately normal. Figure 3 shows the histograms for the posterior marginal
distributions of the variance parameters.

According to a theoretical result in which themodel where the information
matrix is not block diagonal, Table 4 shows a large correlation between mean
and variance parameters. For this model the AIC and BIC values are given by
2.330 and 2.3228, respectively.

Table 4: Posterior summaries for the correlation between
the parameters (model 1)

Parameters β0 β1 α0 α1 α2

β0 1
β1 −0.976 1
α0 0.121 −0.156 1
α1 −0.196 0.230 −0.633 1
α2 0.156 −0.141 0.178 −0.234 1
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Figure 2: Time series plots for the simulated sample for each parameter

Model 2. Here we assume that the conditional variance of the stochastic
process Yt,t∈I is given by the model,

ht = exp
(
α0 +α1ǫ

2
t−1 +α2ǫ

2
t−2

)

where α′ = (α0,α1,α2) is the vector of variance parameters and ǫt = yt − x′tβ.
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Figure 3: Marginal posterior distribution for the variance parameters

The posterior samples were recorded every 10th sample, after a burn-in
period of 1,000 Gibbs samples, to have approximately uncorrelated samples.
The posterior summaries for this model are given in Table 5.

Table 5: Posterior summaries for the prices model (model 2)

Parameter β0 β1 α0 α1 α2

Mean 0.0473 0.9989 −0.7217 0.2714 0.0395
s. d. 0.1327 0.0040 0.0553 0.0533 0.0229

In this case, each one of the chain shows small transient stage, indicating
the speed convergence of the algorithm. The histograms for the generated
samples for the parameters also show that the posterior marginal distribu-
tions for all the parameters are approximately normal, and the correlation
between posterior parameter sampling shows that 0.11 < corr(βi ,αj ) < 0.31,
that is, a small value, but all significatively different from zero. The AIC and
BIC values for this model are given by 2.3198 and 2.3234, respectively.

From the obtained results for all assumed models, we observed that model
1 is a best model fit for time series of prices for Gillette, since the BIC value
associated with this model is the smallest when compared to the other models.

6.2 Models for the log-return Gillette series

Let Pt , t = 1.2, . . ., be the price of an asset over time t. Assuming that the asset
does not pay dividends, its tenure by a time period, from t − 1 to t, generates
a log-return sample, defined by

Rt =
Pt
Pt−1
− 1 =

Pt −Pt−1
Pt−1
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In this period of time the log-returns, rt , are defined by,

rt = ln(Rt +1) = ln(Pt)− ln(Pt−1)
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Figure 4: Time series of log-returns of the Gillette Company stock

Figure 4 represents the log-return behavior of Gillette’s stock prices for the
same period. Although the loss of value faced by the company is a feature in-
ferred by price behavior, changing volatility pattern is a stylized fact deduced
from this picture. It is evident there are two striking behaviors for returns
volatility, a broader one from 1999 to the beginning of 2002 and a narrower
one from 2002 on. This picture describes a situation that shows more volatil-
ity during the time Gillette was losing more value, an expected fact because
stockholders are more sensitive when their losses are bigger. Shareholders
who detain broader slices of the company’s control are expected to remain un-
til the complete company’s selling, otherwise their losses can be even bigger.
Probably this explains the company’s diminishing stock prices volatility after
2002.

Assuming Gillette stockholders are experiencing loss of value of their shares,
the return volatility picture shows more volatility between 1999 and 2002,
which coincides with the period Gillette was facing more abrupt problems
in its management. After 2002 to the end of the period this time series was
taken, Gillette experienced less volatility, probably reflecting the conclusion
of the merger with P&G was concluded. Certainly, the mean value estimated
foreturns and volatility resembles the returns behavior change after 2002. But
obviously volatility is an issue for pricing Gillette’s main asset: its share price.
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Models for the log-returns series

For modeling log returns of asset prices models of the classes GARCH and
EGARCH are mostly used and estimated, once the residuals and the square of
residuals satisfy the autocorrelation principle. The selected estimated model
for the series of log-returns of share’ prices of Gillette is the EGARCH(2,1),
with:

µ̂t =− 0.0007
ln

(
ĥt

)
=− 0.1014+0.9910ln

(
ĥt−1

)
+0.338|zt−1| − 0.1467zt−1

− 0.2973|zt−2|+0.0724zt−2

where µ̂t is the MLE estimate of the mean, ĥt is the MLE estimate of the vari-
ance and zt =

ǫt√
ĥt

is the standardized residual deviation. The p-values of the

tests for all parameters are all smaller than 0.001, except the p-value associ-
ated with the parameter γ2, which is given by 0.045. For this model the AIC
and BIC values are −4.9383 and −4.9062, respectively.

General Exponential GARCH Model

In this section we consider the {rt}t∈I process, where rt is the log-return at time
t centered in zero. In this case we consider two very simple models. The first
one is given by the equation

ht = exp(α0 +α1|rt−1|+α2rt−2)

has Bayesian parameter estimates (and standard deviations) given in Table 6.
For this model, the AIC and BIC values are equal to −3.8590 and −3.8454,
respectively.

Table 6: Posterior summaries for General
Exponential model

Parameter α0 α1 α2

Mean −8.098 25.970 −4.345
s. d. 0.0631 2.878 1.808

The second one given by the equation

ht = exp
(
α0 +α1|rt−1|

1
2 +α2rt−1 +α3rt−2

)

has Bayesian parameter estimates (and standard deviations) given in Table 7.
For this model, the AIC value are equal to −3.8767 and BIC values are equal
to −3.8631. Thus, the last model is better suited by the data using AIC and
BIC as the selection criterion, since it has the smallest value.

The simulated MCMC samples were obtained using the same procedure
shown in section 3, and normal prior distribution for all parameters with a
large variance.
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Table 7: Posterior summaries for General Exponential
model

Parameter α0 α1 α2 α3

Mean −8.483 6.937 −6.2050 −6.937
s. d. 0.0972 0.7762 1.9730 0.7762

Stochastic Volatility Model

Assuming the stochastic volatility model introduced in section 4 by equations
4, 5 and 5, with σǫ = 1, and prior distributions 13, 14, 15 and 16 with hyper-
parameter values a1 = b1 = c1 = c2 = 1 and e2 = 100, we have in Table 8, the
posterior summaries of interest based on a final Gibbs sample of size 1000
and a burn-in-sample of 5000 samples using the software WinBugs.

Table 8: Posterior summaries (SV model)

Parameters µ φ ση

Mean −8.076 0.7661 3.132
s. d. 0.09724 0.05706 0.7626

For this model, the AIC and BIC values are −5.3819 and −5.3682, respec-
tively. Observe that based on the AIC and BIC values, the SV models with
AR(1) structure give a better fit for the log-returns of Gillette, since they have
smaller AIC and BIC values than using the general exponential GARCHmod-
els. In the same way, based on these criteria, we observe that SV provides a
better fit for the log-return time series when compared to the EGARCH(2,1)
model.

7 Concluding Remarks

Different volatility models have been introduced in the literature to analyze
financial time series. Using Bayesian methods is a suitable alternative to ana-
lyzing the volatility of financial time series, since the complexity of the likeli-
hood function can be a problem for obtaining maximum likelihood estimates
for the parameters of the proposed models, especially when we assume gen-
eral exponential GARCH models and SV models.

For the example of financial time series included in this paper, we observe
that SV models give better fit for the data, especially for the log-return series.

Further studies should be carried on for other applications mainly in the
special cases of multivariate time series.

It is important to point out that General Exponential GARCH models or
SV models usually provide improvements in the fit of time series data when
compared to the usual ARCH or GARCH models as we can see by the results
achieved in this paper.

A set of four different models are estimated in this paper for the stock
prices of Gillette and their estimates are presented in section 6. From the
usual estimates of ARCH, GARCH and EGARCH models, two stylized facts



New volatility models under a bayesian perspective: A case study 195

are confirmed: volatility is an issue to be concerned with and its incidence
over the stock prices is skewed. Excess volatility is inferred by its parameters
significance and distortion is demonstrated by the signal changes in EGARCH
estimates.

Concerning log-returns estimates, Bayesian estimates are a better fit. Among
three estimated models, a Bayesian stochastic volatility model representation
turns out to be the best one, a conclusion that is based on AIC and BIC crite-
ria. Bayesian stochastic volatility model estimates outperform others because
introducing prior distributions to each parameter is a more flexible inference
procedure. Moreover, the possibility of introducing an order one autoregres-
sive structure to represent the noise better fits Gillette’s stock returns.

The obtained results allow us to conclude that an order one autoregressive
process is significant in determining returns of this Company in this period
of time; its return is almost zero on average and total volatility is expressive, a
statement that is confirmed by the estimate of ση . Clearly these results resem-
bles the main features of the log-returns contained in Figure 4 and validates
the hypotheses of significance of null expected average returns; autoregres-
sive behavior for volatility of financial time series and the excess volatility are
presented in these time series.

All the estimates provided by ARCH, GARCH and EGARCH class models
confirm the expected excess volatilityshowed by financial time series. More-
over, the long lasting memory volatility hypothesis is accepted in both cases;
i.e. for the error term and for the entire volatility structure. In particu-
lar, EGARCH models reflect the leverage effect that weighs more bad news
than good news’ likelihood. Changing estimates signals and their magnitudes
strengthen these results.

The magnitudes of β1 estimates in all models reinforce the idea of time se-
ries integration, a common feature in financial asset prices. However, express-
ing the model in returns the problem is overcomed, as expected. Possibly, this
finding is a matter for demanding the introduction of a autoregressive struc-
ture into the latent variable, what is successfully done when estimating SV
Bayesian Models.

Concerning SV Bayesian models, it is clear its results strictly reproduce
the main features presented by finamcial asset prices time series. Volatility is
an issue, since it is expressive and significant by the estimates presented in
table 6. With a coefficient magnitude of 3.132 for σn the investor can expect a
deviation of approximately 4.78% from the mean return, which is significant
for a US stock market perspective.

Autoregressive coefficient is also significant and its estimated value re-
flects the existence of a memory structure on determining returns volatility.
Roughly, 75% of a volatility generated in a period of time is transmitted to
the following period, which is a despicable mark. Finally, the estimated mean
returns resembles the one exhibited in figure 6; i.e. though the estimated coef-
ficient is negative and equal to -8.076, we remember this is a result for returns
in logarithm, so the real percentage return is close to zero.
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