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RESUMO

O artigo examina a densidade exata de uma funcdo linear do estimator PRRF sob o
mesmo conjunto de suposicées de Nagar e Sahay (1978). Obtemos a expressdo geral
dos momentos exatos dessa fungdo, os quais podem ser utilizados para se chegar as
expressées para momentos de ordem arbitraria. Usando este resultado, determinamos
as férmulas explicitas dos quatro primeiros momentos. Em seguida estendemos os
resultados para o caso no qual apenas se assume que a matriz de varidveis exégenas
tem posto igual ao numero de colunas e a matriz de covariGncia das varidveis
endoégenas é positiva definida. A ferramenta analitica utilizada para obter esses
resultados é a técnica de cdiculo fraciondrio aplicada originalmente & econometria por
Phillips (1984).
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ABSTRACT

The paper considers the exact density of a linear function of the PRRF estimator under
the same set of assumptions as in Nagar and Sahay (I978). We obtain the general
expression for the exact moments of such a linear function, which can be used to obfain
expressions for moments of arbifrary order. Using this result the explicit formulae for the
first four infeger moments are given. We will then extend the resulfs to the case where
the matrix of exogenous variables is only assumed fo have full column rank, and the
covariance matrix of the endogenous variables has to be only positive definite. The
analytical tool used fo work out these results is the fechnique of fractional calculus first
applied to econometrics by Phillips (1984).
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226 Finite Sample Properties of the Partially Restvicted Reduced Form Estimator

INTRODUCTION

There are several approaches to the estimation of the reduced form coefticients of
a linear simultaneous system of equations. The traditional one is based on applying
the ordinary least squares method to each reduced form equation. The estimator
obtained is known as the unrestricted reduced form (URREF) estimator. This
estimator is a linear function of the disturbance terms and will have moments to
the order that disturbances have moments. Asymptotic properties of forecasts
derived using the URRF have been investigated by Hooper and Zellner (1961).
When the model is overidentified there will be some restrictions on the reduced
form parameters. The URRF approach ignores these restrictions and is then
inefficient.

An alternative approach is based on first estimating the structural coefficients using
some consistent estimation procedure and then, by employing the well known
relationship between reduced form and structural form coefficients, obtaining
estimates of the reduced form parameters. This approach has come to be known as
the restricted reduced form (RRF) estimation. Asymptotic properties of the RRF
estimator has been examined by Dhrymes (1973). He shows that the RRF estimator,
when three stage least squares estimates of structural coefficients are used, is
asymptotically more efficient than the URRF estimator. This result, however, does
not necessarily hold when two stage least squares estimates of structural coefficients
are used. Asymptotic properties of forecasts using the RRF estimators have been
considered by Goldberger, Nagar, and Odeh (1961). Finite sample properties of
RREF estimators were analyzed by McCarthy (1972). He demonstrated that if there
are overidentifying restrictions on the structural equations the RRF estimator,
using 2SLS, will have no moments. Sargan (1976) has shown this to be true for a
wide class of estimators that includes 2SLS and 3SLS. However he also shows
that the RRF estimator, based on the FIML estimators of the structural coefficients
will possess moments of certain order. The order of moments depends on the
number of observations, and on the number of endogenous and exogenous variables
in the model.

Obtaining the RRF estimator requires estimating the whole system of structural
equations. computational considerations aside, misspecification in any structural
equation will adversely affect the RRF estimator. The approach proposed by
Amemiya (1966) and Kakwani and Court (1972) alleviates this problem. They
suggest estimating parameters of a reduced form equation by utilizing
overidentifying restrictions on the corresponding structural equation alone. This
approach is known as the partially restricted reduced form (PRRF) estimator. The
existence of moments of the PRRF estimator has been analyzed by Knight (1977),
Swamy and Mehta (1980, 1981) and McCarthy (198l). It was shown by McCarthy
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that the PRRF estimator possesses moments to the order that dependent variables
possess moments. For this result to hold the k-class estimators of structural
coefticients should have 0 < k < 1. Nagar and Sahay (1978) derived the exact and
asymptotic bias and mean squared errors of the PRRF estimator and the forecasts
obtained using this estimator, in the special case where there are only two
endogenous variables in the structural equation under consideration and the matrix
of exogenous variables is assumed to be orthogonal. In addition, the covariance
matrix of the endogenous variables was assumed to be unity. Assuming orthogonal
exogenous variable matrix, Knight and Kinal (1994) examined the finite sample
properties of the PRRF estimator in a general (n+1) endogenous variable model.
Asymptotic properties of the PRRF estimator has been investigated by Dhrymes
(1983). It is shown that the PRRF estimator is not necessarily efficient
(asymptotically) relative to the URRF estimator.

In this paper we first derive the exact density of a linear function of the PRRF
estimator under the same set of assumptions as in Nagar and Sahay (1978). We
will also obtain the general expression for the exact moments of such a linear
function, which can be used to obtain expressions for moments of arbitrary order.
Using this result the explicit formulae for the first four integer moments are given.
We will then extend the results to the case where the matrix of exogenous variables
is only assumed to have full column rank, and the covariance matrix of the
endogenous variables has to be only positive definite. It is worth pointing out that
unlike the case of structural equation estimators, where the results obtained for
moments of estimators of coefficients of transtormed structural equation can be
casily extended to obtain moments of estimators of the coefficients of the original
structural equation, the moments of the PRRF estimators of the original reduced
form equation cannot be derived in a straightforward manner from the
corresponding expressions for estimators of the coefficients of the transformed
reduced form equation (except for the first moment).

The analytical tool used to work out these results is the technique of fractional
calculus first applied to econometrics by Phillips (1984). Further applications of
fractional calculus could be found in Phillips (1985, 1986), Knight (19864, 1986b),
and Knight and Kinal (1994). For a detailed survey of fractional calculus see Ross
(1974), Oldham and Spanier (1974), and Miller and Ross (1993).

The plan of this paper is as follows. In section 1 the linear model is specified. In
section 2 the PRRF estimator is defined and a simple proof of existence of its
moments is given. Section 3 discusses the standardizing transformations of the
model. In section 4 we derive the exact density of the PRRF estimator. Expressions
for the exact moments are given in section 5. In section 6 the exact bias and mean
squared prediction error of forecasts using the PRRF estimator are derived. For
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the sake of brevity, proofs are not given in the paper. They can be obtained from
the author upon request.

1. THE MODEL

Consider the simultaneous system of G linear structural equations

YIF+XB=U (L.1)

where 7 is a T x G matrix of T observations on G endogenous variables; X is a
T x K matrix of T observations on K exogenous variables; U is a T x G matrix of
disturbances; ' and B are respectively G x G and K x G matrices of structural
coefficients.

From (1.1) we obtain the reduced form
Y=XM+V, n=-Br+, vs=urt

We assume
(A.l) X is nonstochastic with rank K < T

(A.2) Each row of U is independently and identically distributed according to a G-
variate normal with mean zero and covariance matrix ), a positive definite
matrix.

2. THE PARTIALLY RESTRICTED REDUCED FORM (PRRF)
ESTIMATOR

The first equation of (1.1) may be written as
Y1 =Yoy+ X B+u (2.1)

where y, is a T x 1 vector and 7, is a T x G, matrix of observations on the
endogenous variables appearing in equation; X is a T x K| matrix of observations
on the included exogenous variables; (yand B are vectors of G, and K, components

respectively, and u is the first column of U. The matrix X is partitioned as X = (X, | X))
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where X, is a T x K, matrix of observations on the excluded exogenous variables
(K, =K-K,).

The reduced forms corresponding to y, and 7, can be written as

_ _ _ g0
i =X +V = X1 + XM, +v -XHTllm"Vl (2.2)
2[1
and
0, O
Yy = XM, +V, = X Ty + X, T, +V, = 0tV (2.3)
ETZZD

where each row of (v, V) is normally distributed with covariance matrix Q, a
positive definite matrix:

[0, Gy, 0

Q= 0
1 Q0

Substituting (2.3) into (2.1) we get
x

Y1 = ¥+ XBHu+V,y
ETZZD

O, | OoyO (2.4)
=X u+V,y
H, odsd ™"

Comparison of (2.4) and (2.2) suggests estimating the coefficient vector

T, =(T4; T0,) using the relationship

M,0 O, | Oy0

5112 E: 5122 O%E (2:5)

The PRRF estimator is then given by
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.0 . OHBH
| YO (2.6)

=g X' X)X'Y,
X ot

where T, =[Th, Th,] =(X'X)X'Y; is the URRF estimator of

T, =[ T, T,]" in(2.3),and ¥ and B are consistent estimators of the structural

coefticients y and B respectively. I is a K| x K| identity matrix and O is a K, x K,
null matrix.

An alternative approach to deriving the PRRF estimator lies in a suggestion by
Amemiya (1966) for predicting y, using equation (2.1). Amemiya suggested
predicting y, by

5 =Yy + X B (2.7)
where Y~2 = X'ﬁ2 =X(X'X )‘1X’Y2. Substituting for ?2 in (2.7) we get

3/1 =X(X'X )_1X'Y2§/+ X1B
_ . loyo
:XgX'X)1X'Y : 0 (2.8)
0 2" oHpH

which when compared to (2.2) suggests estimating the reduced form coefficients
by the PRRF estimators (2.6).

We now give a simple proof of the existence of moments of the PRRF estimator

for the case where y and f3 are the 2SLS estimators of y and B.! Write (2.6) as

=3,

1 Several authors have proved the existence of moments of arbitrary order for the PRRF estimator.
However, some of these proofs are erroneous and some are rather lengthy (see McCARTHY,
1972, for a discussion of this point).
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where
. 0Oy,0
= 0
%ﬁzD’
- IO
J= gx X)X, 0
O o
and
N @/D N
0= = (W PW,)"W/R, , the 2SLS estimator of §= %D
0

The matrix W, is defined as W,
defined as

= (T, | X)), and the idempotent matrix P_is
P, =X(X'X)*X",

Now

I=(X'X)X'(Y,:X,)
:(X’X)_lX'VVl,

hence
T = (X" X)X W(W PW ) WPy,
and
= X7y = BW,(W PW ) "WRy; »

from which we get
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$1%n = [ AR WA(WY P, )™ WER, 1T PWo (W BW, ) WP,y ]
= ViR WL(W RW, ) "W/R, y,
= Vi~ Wil = BW (W) RW ) " WR T v,
< ViV

where the inequality follows since | — P, W, (W, PW, )*W,P, is an idempotent
matrix. Therefore, ¥§; will have moments to the order that y; y, possesses

moments. Since Yy, =T X' X7, it is easy to show that Tr; will have moments

to the order that y, has moments.

3. THE EFFECTS OF STANDARDIZED TRANSFORMATIONS ON
THE PRRF ESTIMATOR

We assume there are only two endogenous variables in the structural equation
(2.1). Hence 7, is a T x 1 vector and we denote it by y,. We apply the usual

2
standardizing transformations which reduce Q, the covariance matrix of the

endogenous variables, and X'X to identity matrices. The transformed structural
equation for y, is

Yi =Yy + X BUHU (3.1)
and the transformed reduced form equations are

Yo = XM +vp = X,Th + XoTh, +V) (3.2)

Yo = X +Vy = XiThy + X,Thy + Vs, (3.3)

where [J indicates reduction to canonical form and indicates orthogonalization

of X'X. Consequently y, and vy, are now independently normally distributed

with identity covariance matrix for each row of ( yi | y*2 ),and X'X =1 .
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The relationship between estimators of coefficients of the original equations with
estimators of coefficients of the transformed equations are given by

. [, |
Yaus = 1 Veas = 2 (3.4)
1 1
L T
Bass _r‘JHBZSLSv (3.5)
1
~n_ 1. 1. . [,y ~ ~
T = = Tty + = 370, =2 (I T + 3T, ), (3.6)
Iy Iy lal2
20 _ 1. . Ly . =
hy = Ty 1 Iy, (3.7)
|y gl

where ~ and ” stand for URRF and PRRF estimators respectively; T, and T,

are the PRRF estimators of the coefficients of the original reduced form equation

(2.2); Aﬁi and Aﬁfz are the PRRF estimators of the coefficients of the transformed

equation (3.2); and Ti,jand Ti,, are the PRRF estimators of coefficients of the

original reduced form equation (2.3);J,,,/,, ,and J,, are elements of a nonsingular

upper triangular matrix J such that J'/ = X'X, and /|, /,,, and /,, are elements of a

non singular lower triangular matrix L such that L'L = W. Explicitly

Jllz(xixl)llz ) |11:((,011—Q)122/Q)22)1/2,
Jip :(Xixl)_llz( X1X3), Iy =@y, /(0 2,
J2 :(Xéﬁxlxz )2, |, = (0, )2,

where B =1 =B, =1 =X, (X;X;)"X;.

Alternatively, we may write (3.6) and (3.7) as

T, = |11~]1_11ﬁlD1 - |11~]1_11~]12~]2721ﬁ1.é + I21\11_11721 - |21~]1_11~]12~]2721 ﬁzuw (3.8)
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T, =133 T[1‘32 +lyJ5 (3.9)

where ﬁzml and T[ZDZ are the URREF estimators of the transformed reduced form

equation (3.3). Combining (3.8) and (3.9) we get
Ty =1, 3 T+, 07T (3.10)

The PRRF estimator of in (3.2) is defined as

%[D:aﬁ-g:a?[zml I *Z&S% (3 11)
'ognLg O O#ssH '

where

o DXy, 0 (3.12)

and the 2SLS estimators of the coefficients of the transformed structural equation
(3.1) are given by
st_s :(yg X, )?'23/; )_1)’5 X, )?'2)’;’ (3.13)
BZSLS X ( y1 y*zvzs_s )- (3.14)

Inserting (3.12), (3.13) and (3.14) in (3.11) we obtain

Eﬁm 0 X"y,

20—

Tt F A 3.15
' U-[‘ljz %ZYZ(Yz 2y2)1 X XzY1D ( )

Define Z,i=1234, as follows
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2 = X3y, , 2, = X3Y,, .
Z3=X1V;, 2, = X1Ys. (3.16)

We then have

lDD z, 0 0z O

T EF a0 0 1
2D % 2,2,)" %20 407 (3.17)
-~ 0,0 o0
Tl PO L 3.18
’ %0 %2D (3.18)
Vous =(22,)" 22, (3.19)
and
B;s_s =2,-2,(22, )_12'221- (3.20)

From (3.16) it is obvious that Z,i=1234, are independently normally

distributed with
2= E(7) = XoE( X + X,Th, +V, ) = Thy,
2, =E(2,) = X5E( XyThy + X,Th, +V, ) = Thy (3.21)
z;=E(z)= )?iE( Xlﬁil-i- Xzﬁiz +VI ):ﬁilv
7, =E(z,) = X\E( X T, + X, T, +V, ) =0,
and

E(z-z)(z-2)=I =]

“o ] (3.22)
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where I'is a K, x K, unit matrix and O is a K, x K, null matrix.

Nagar and Sahay (1978) have obtained the first two moments of AT[Il and AT[IZ .
However as is seen from (3.8) and (3.9) to derive the exact moments of T, and

?‘[12 we need to work out the covariances between the right hand terms.

To obtain the exact density and exact moments of Ty we first derive the

corresponding results for the PRRF estimator of coefticients of the transformed
reduced form equation (3.2). The next section is devoted to this task.

4. THE EXACT DENSITY OF THE PRRF ESTIMATOR

We consider deriving the exact density of a linear function, r =h'Tg , of T by
first conditioning on z, and then finding the unconditional density of 7. We partition

i conformably with AT[I and write 7 as

r= h'Aﬁ; = m:ﬁ;l + h'z%[Iz
=hz;+hP, 7.

Clearly
11z, ~N(hz+hP,z ,  hh+hP,hy),

hence

1

Jan

_ 0 1[r-(hz+hP,z)]*0
'h + P, h, )™ 2 exp¥ = 2 O (4.1
(hih +h,P, h,) eng 5 (h]'_h_l.+hépzzh2) : (4.1)

pdf (r]2,)=

Following Phillips (1984) we can write (4.1) as

1
NE
O l[r—(hi23+h'26XA;16'X21)]2|:|X,22|

pdf (1 |z,) = —==(hh, +h50,A50%h, ) ™'

&XpD— I U -. I
O 2 (hlhl+hzaxAxlaxh2) O

x=0 "
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where 0, denotes the vector operator @/ 0, and A, is the Laplacian operator 9’0
Now

|00|f(r)=_[z2 pdf (r |z, ) pdf (2, )dz,

—l/ 2

1 21 X2
-—(r- df dz,|,.
.[Zz ,— exp[ 2cpx(r Ny) 1€ %pdf(z,) Zz|x_0

J—cp;“ p[—%(r ] SC AL AN
=% /2 exp - E(r 0,71 &X(X 2, + XX/ 2)] o,
where
=hh, +h,0,A.9'h,, (4.3)
and
Ny =hzs + 10,450, 7. (4.4)

To derive the exact density of a linear function, r, = rﬁ"n ,of T[ll alone we set 7, = 0

in (4.3) and (4.4), and from (4.2) we get

O

df L —1/2 1(1 hI.ZS)ZD
paf (1, ) \/—(hlhl) DZ—M -

which implies that r = hfﬁ*ll has a normal distribution with mean hZ; and

variance hjh,. This is not surprising since from (3.17) we have

:ﬁil:ZS"N(zS'I)I

which implies
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r=hTg, ~ N(hz, , hh).

To obtain the exact density of a linear function, r, = h';ﬁ;z , of %éz alone we set s, = 0
in (4.3) and (4.4), and from (4.2) we get

1 . dar L A-
pdf ( r2 ) = E( hzaxAxlaxhz ) vz

0 1(r,—h,0,4,0,7)°0

s L (4.5)
X' Z, + XX/ 2)| 40 -
T2 (mo,aran) o PKE K D

Also, notice that when the structural equation is just identified 7, will be scalar.

Hence @, will be the scalar differential operator, and A, =@2. Assuming 4, = 1,

(4.5) reduces to
ekt 1 1,2 =
pdf(l'[lz):EeXp[ _E(T[12 -z)],

which shows that T, has a normal distribution with mean 2, and variance one.

This is to be expected since in the just identified case z, will be scalar and from
(3.16) we get

Zx

T, =2(22,) 22=2~N(z,1).

5. THE EXACT MOMENTS OF THE PRRF ESTIMATOR

To derive the exact moments of r = h'AﬁI we use (4.2)
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E(r”)=f:r“pdf(r)dr

Jo g e (0 (X 2 X1 20

g (1/2) K -2k
=nl K exp(X Z, + XX/ 2) ], -

[n/2] k
— D22 (1/ 2) n-2k
—-e 242 nl m(pwnw eXp(WW/Z)‘W:zZ,

where [n/2] is the integral part of n/2. For the special case of n = 1, 2, we have

E(r)=e‘“r]Wexp(V\/W/2)‘

wW=2Z,

=e(hz+ 10,800, 2) ep(Ww/ 2) |, (5-2)
and
E(r®)=e™(@, +n5)ep(Ww/ 2)|,.,,
=e™(hihy +h;0, 450, hy ) ep(WW/ 2) ., 5.3
+et(hz +h,0,8,0,2) ep(Ww/ 2) |y, ,
where W =1Z,Z,/2. Bysetting s, = 0in (5.1) we get
[n/2] k
ny — § o n _— - (1/2)
H JE Sl A
E(r;')=E(h;m,)" =e™n! 2Ok »

(10,850, h, ) (0,859, 2)" > exp(Ww/ 2) |y,

Similarly, setting 4, = 0 in (5.1) will result in the general expression for the

moments of r = hfﬁ;l:
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[n/2]
W2 v o
E(r)")=n! Zﬂ T Zk),k,(hlhl)k(hlza) %, (5.5)

In what follows we focus our attention on 7,, since 7| is normally distributed. To
make (5.4) computationally operational we apply the technique of fractional
calculus. By extending one form of the Weyl fractional integral to A  operator,
Phillips (1984) gives the following definition for negative powers of A :

NS f(w)= I [exp(-A,8)f(w)]s*Mds, a>0

r( Jo (5.6)

provided the integral converges. Applying the above definition to (5.4) yields

“[n/2 [n/2]-j n-2j-2u [n/2-k/2]
SCOLENED TS R SEEck

(2j)(n-2j-2u+1),,(n-k=-2v+1), (n—-2j —2u—k+1),
' JI ulv! 2n+2u+2v (57>

(052,)(22, )22, 32, (2hgh, ) (hy2, )™

df(n=j-k-u-v;2n-2j-k-u-v),

where
x!
%E:q!(x—q)!’
(a) =(a)(a+l)(a+2)...(a+t-1) fort>0
=1, fort=0

and

oo _T(m/2+i1) .

fliii)= r(mi2+)* F(m/2+i;m/2+);u), (5.8)
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where m=k, , and , F,(a; b;X) is the confluent hypergeometric function defined
by

- () i

For the transformed structural equation (3.1) to be identified it requires the
tollowing relationships to hold

T, =Ty +B
Th, = ThY

from which it follows that Zz = y Z,. Inserting this result in (5.7) we get

[n/2] [n/2]-j n- 2] -2u [n/2-k/2]
=52 3 b

(2] (n=-2j-2u+1),,(n-k=-2v+1),,(n-2)-2u-k+1),
) JI ul v 22u+2j+k+v (510)

(T, )" (g, ) (Y )P ()2
f(n-j-k-u-v;2n-2j-k-u-v).

Letn =1, 2, 3, 4. Then from (5.10) we get the following expressions for the first
four integer moments of 7,

E(r,)=e*[hp f(1;2)+1/ 2h,f(0;1)] 7, (5.11)
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E(r?) = eM{(hTe, 202 F(2:4) + |roh,y 2% + 51 2T, )] F(1:3)
+1/ 207, )? + Why 2] £(0; 2) (5.12)

+1) AT, Y P H(12) + 1 2hph, F(O1)} 5

E(rs)=e™[ Ny f(3;6)+Nsf(2;5)+ Ny, F(1,4) + N f(0;3) (5.13)

N5 F(2:4)+ N3 (1:3) 40, £(0;2) |
and
E(r) ) =] a,f(4:8)+a,(3;7)+a,f(2;6)+a,f(15)
+80,(0;4)+a5f(3;6) +a,(2;5)+a,f(1;4) (5.14)
+agf(0;3)+a, f(2;4)+a,f(1;3)+a,f(0;2) |
where
Nas =(MT, )1,
Nos =3( T, )(hoh, )Y 21° +6(yTh, )°p?,
N =18( TG, )(hoh, )Y 2+ 27/ A(MoTE, )u,
No =9/ 4(h;Th, )(hoh, )y *H+ 3/ 4( 5T, )%,
Mo =3/ 20T, )’y 2H,
Nis =9/ 207G, )(hoh, Ju+9/ 4(hyTh, )’y 72,
Nee =9/ 8(hsT4, )(hohy ),
and

s =( hlzﬁzz )t
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ag; =6(h,TG, )?(hoh, )y 2 +11( by, ),

ay = 3(oh, )2y *u* +51/ 2(hyT, )2 (hoh, )y 2u® + 75/ 4y, ) u?,
ags = hoh, )2y *W® +117/ 20T, )P (hph, )y 20 + 210 hTh, )i,
ag, =9/ 4(hyh, )2y +3/ 2(h,m, )*(hoh, )y 2+ 3/ (T, )
ag, = (TG, )y 2p?,

ays =18( oo, )2 (hoh, Ju? + 27/ 2(hyTg, )y ~2u,

ay, = A hoh, )2y ?u? +45( e, )2 (hoh, Ju+9( e, )y 72,

ags =9/ 2(hph, )2y 2u+9( Wy, 2(hh, ),

a,, =3/ 4N, )ty 4,

ay; =9/ 2( T, ) (ohy )y 72,

ag, = —144(hph, )2
Since r, = h’ZAT[;2 , it follows from (5.11) and (5.12) that

E(TE,)=e*[uf(1;2)+1/2f(0;1)] 7, (5.15)

and

Dk Ak _ D»ic _* * ok x
E(T,m, )=e™ Eﬂlznlz'liz f(2;4)+ 5/ p?l +5/ 27T12Tf12’ligf (1,3)

+1/2 12ﬁ12'+y*2|1|§f(0;2) :
(5.16)

+1/ 278,78,y 2 F(L:2) +1/ 2l f(O;l)ﬁ’
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where I is a mx unit matrix. The expression for the bias of Aﬁiz is
B(T, 16, ={e™u f(1;2) +1/ 2 (0;1)] -1} 7, - (5.17)

To get the expression for the mean squared error of Aﬁ;z we first write it as
E(TG, ~ T4, )(Th, ~ T8, ) = E(T4, T4, )~ E(T8, ) TG, ~ T, E( T8, )+ T4, T4,
Hence, using (5.15) and (5.16) in the above relation, we get
E(TE, ~ 76, )(Th, ~T6, )

=e™ @izﬁiguz f(2;4)+ g/*zpzl +5/ Zﬁzﬁz'umf (1;3)

+1/ 2%521112 +y ul (0; 2)+%/ 2T, T4,y 2 — 2uT, 1L, Ef(l 2) (5.18)

+ %/ 2l —ﬁ;zﬁz'gf(oil)g"ﬁzﬁiz' :

Equations (5.15), (5.16), and (5.18), upon translation of notation and application
of the relations between associate confluent hypergeometric functions, are identical
to equations (3.12), (4.38), and (4.39) in Nagar and Sahay (1978).

It is worth pointing out that while the frequency of appearance of the function
fliyf) increases as we increase the order of moments, this will cause no undue
difficulty for computational purposes. This is due to the fact that any confluent
hypergeometric function can be expressed in terms of its two associate functions.
Clearly, similar relations exist between associate f{sy) functions.Repeated
application of these relations will reduce the computational burden drastically. In
fact, using these relations, (5.18) may be written as

E(Aﬁiz -, )(Aﬁiz -1, ) =1/ 2m+1)y %l +1/ 412V*72 =( m+l)] W, L,
+ @/8[( m® +m? =2y 2 +(2m? —6m+4)] m,m,  (5.19)

+[—1/4(m2 +m-2mu+2p)y 2 +1/ 2] | Ee‘“f(o;l).
0

Est. econ., Sdo Panlo, 28(2):225-255, abr-jun 1998



Hassan Arvin-Rad 245

It is a well-known result that when the structural equation is just identified, the
PRREF estimator of the corresponding reduced form coefticients is identical to the
URREF estimator. Hence, the PRRF estimator is unbiased in the just identified
case. To examine the dependence of the bias in the PRRF estimator on the degree
of over identification, m-1, we rewrite (5.17) as

jalt'y % |:|_ |:|2
E - =et F,(m/2+1; m/2+2;
(Mo, —T,) E %Ul 1 ( H)

1 . N (5.20)
+ o F(m/2; m/2+1,u)B—1En12

:1_mme‘“lF1(m/ 2;m/2+1; )T,

where the second equality is obtained by using one of the relations between
associate confluent hypergeometric functions.?

It is clear from (5.20) that unless the structural equation for y, is just identified

(m=1), Aﬁiz will be biased. However, the relative bias is bounded. To verify this

let ﬁ;zj and Aﬁ;Z’i be the ith elements of T, and Aﬁ;z , respectively. We then have
from (5.20)

E jalt) . _7* ' _
(nli ;) =M 1e_“1F1(m/2; m/2+1;u); (5.21)
TGy, m
where ‘ ‘ denotes absolute value. Provided: is not affected by the changes in ,

the confluent hypergeometric function ;F(m/2; m/2+1;u) is an increasing

function of m. Thus, as m increases so does the size of the relative bias of the
PRREF estimator. However, since?

lim e* F(m/2;m/2+1;p)=1,
m- oo

2 See SLATER (1960, p. 19).
3 Op. Cit., p. 65.
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we have

E( Aﬁzz,i _ﬁz,i )
Thy,

lim =1.

M- co

. el
From (5.20) it is also easy to see that rlT!nl E(Tu; ) =0. Hence, the mean of the
PRREF estimator shrinks to zero as the degree of overidentification increases.
We now turn our attention to the moments of the PRRF estimator of coefficients

of the original reduced form equation (2.2). From (B.12) and (B.13) in appendix
B we get

-1y =, d (T - TG )+ 1, d (T, - 1), (5.22)
Hence

E(Ty -m) =1, 'E(T, -1 ), (5.23)

since ﬁ; = X'y, is an unbiased estimator of Tt,. Rewrite (5.23) in partitioned

form as
Oy, — 1y, O T, -, O 0 0 0
E 11_ 11|:|:|11‘]71EEE11 Eilljzln\]ilHE N
12 ~ M [ Ou, — T g (T, — T, )0
(5.24)

- - |11‘]1_11‘]12~]2_21E(ﬁ12 - Ty, )D

=0 o :

O |ludxE(m, -T,) O

where we have used the result that T[Il is an unbiased estimator of T[il. From the

above relation we get
E(Ty, — 1, ) = =355 J,E(T, - 1,), (5.25)
which allows us to write (5.23) as
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-1

43730 .
E(T&-Tﬁ)=g 1|1 12%15(“12-”12)- (5.26)

Since from (5.24) we get E(T1, -0, ) =l I E( Aﬁiz —Ti, ) , by substituting for

LTy 5] 1 5 and T, from their definitions given in section 3 and appendix B,

and using (5.17) and (5.20) we derive

E(T1, _Tﬁz)zlu‘]z_élE(%[Iz -T,)

= (wyy — 05 [ Wy )2 (X5P, X, ) P E(TE, - T, )

(5.27)
= (a6 ] 00, )2 (X4P, X, ) e [ £(1;2) +1/ 27 (0;1) -1} 7,
= (Y- oo/ )y e [ F(1:2) +1/ 2 (0:1)] -1} m,
=(Y-wp/ wy )V_lﬁ%ge_ulFl(m/2§ m/2+1,p)1,,
and
E(ﬁn -Thy)= _3111312 E(ﬁlz _T[lz)
= =@y~ 005 1 6y ) 2(Xg Xy ) (X X, )(X5P X, ) ™2
(528)

-{e’“[u f(1,2)+1/ 2f(o;1)]—1}ﬁ;2

= —(y- w0y )y {e [ f(1:2) +17 26 (0;1)] -3 (X X, ) X(X, ),

=-(v-wlzlwzz)v’lél%Eef“lFl(mlz; m/2+1;1) (X; X)X X,)T,.
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. Zox . . . _* . .
So, while Ty, is an unbiased estimator of Tr,, as is evident from the above

equation ﬁll is in general a biased estimator for Tt .

Relations (5.27) and (5.28) show that when the structural equation for y, is just
identified, or when y =@, / ®,,, the PRRF estimators Ty, and 71, are unbiased.

The latter condition also guarantees the unbiasedness of the two stage least squares
estimator of y.* In addition, when X and X, are orthogonal the PRRF estimator

1, will be unbiased.

To derive the exact mean squared error of the PRRF estimator T, we see from

(5.22) that

(P =)(Fy -1 ) =9y -7 ) +1( -7
o =76 )+ - )| 97 5.29)
=312 7 )7 -7 )+ (% -7 (T -7 )
gl (TG =T5 )(T — T ) +12(T, - T, (T, -5, ) |37,

hence

E(fy - )(Fy - ) = 92 E%ﬁ“"@@l‘"@l)’, (T =70 (T, ~ T, )5
= T —Thp (T — T4 ) (T — T4, N(Th, — T4, )0

T[21) (:ﬁil_ﬁil)(i[*zz _ﬁ;z yQ
_T[21) (Th, =T, (T, — T, )'O

e

+ I1l|21

*1_ﬁ;1)(
L, =T, (T

&
:lH :|u

(5.30)

“ T (T =Ty ) (T = T (T, = TG, ) O
_T[zz)(nn Ty ) (T =T, Ty, — T, )0

O

*

i
+|11|21E§
e

4 See, for example, SAWA (1972). This, of course, assumes the first four moments of the 2SLS
estimator exists

:m :uz

— T, )(T T[21 Ty ) (T =T (T — T, ) % -

- T[zz )T T[21 T ) (T — Ty (T, — T, )' [

:lH :lH
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It can be seen from (3.17), (3.18), (3.21), and (3.22) that
E(ﬁil_ﬁil)(ﬁil_ﬁil)lzlv E(ﬁl—ﬁll)(ﬁiz—ﬁlz)'w,
E(ﬁl _ﬁl)(ﬁ;1 _ﬁ*Zl )’ =0, E(ﬁil _ﬁil )(ﬁ*zz _ﬁ;z )' =0,
E(ﬁiz_ﬁzz)(ﬁ*zl_ﬁ;ﬂlzo E(ﬁ;1_ﬁ;1)(ﬁ;1_ﬁ;1)':|v
E(ﬁ;1 _ﬁ*Zl )(ﬁ*zz _ﬁ;z )’ =0, E(ﬁ;2 _ﬁ*zz )(ﬁ;2 _ﬁ*zz )' =1.
Substituting these results in to (5.30) yields
o.,0d 0 0
E(T, - m-m) =302 s v A .
(T =) =) Elhlg) E(T, -1, )(Th, — Ty )'E
+ 1yl o . . 0 = . B
H ZlEb E(Ty, — T, (T, — Ty, )'[0 (5,31)
1 0 [I , 0 o
A B) E( T[22 T[22 )( T[12 T[12 ) [I 21 H) %‘] v
D
J 13'1 +|21 )I ODJ -1
O GEJ
where
G= I121E( ﬁzz _ﬁiz )(ﬁzz _ﬁzz )' + |11I 21E( ﬁiz _ﬁzz X ﬁ*22 _ﬁ*zz )'
- . . , (5.32)
+ I11|21E(ﬁ22 — T, )(ﬁlz - Ty, )' + I21I

The expression for the first term on the right side of the above relation is given in
(5.19). Using the method of fractional calculus we obtain the following expression
for the second term in (5.32)
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E(R, T8, )(Fop ~ T ) :e'“%vm +(1—u)ﬁ12ﬁ;2'§f(1;z)
-1 Zﬁzﬁzgf(o;1)+uﬁ2ﬁ;2'f(2;3)@ (5.33)

=y 1 —m/ 2077y —1/ 2@; | +(1-m-m/ 20,7y @

&+ (0;1).

The expression (5.33) is symmetric since T(, =Y Ti,, . Therefore
B(Th, =T, )(Thy ~Th, ) = E(T, =T, )(Th ~ 7o)

Consequently (5.32) may be written as

G= |121E( %512 _ﬁiz )(Aﬁ;z _ﬁiz )+ 25 E( Aﬁ;z _ﬁiz )(ﬁ*zz _ﬁ*zz )+ |221| . (5:34)
Finally, since 14, =(T14, TG, ), it follows from (5.31) that

E(T, — T )(Top — Ty, ) = J2G I

=(X3R X2 )2 G( X3P, X,) ™2,

E(74 — 70 )(T0y — 70 ) :(|121"'|221)J112 +J%¥G I
=(X Xl)_l( XX ) E(Tr, = 10, (T — 10, )T (X5 X0 )(Xg Xl)_l (5.35)

+wy( X3 X,) ™

E(Ty; -5, )(To, - T8, ) = I¥GIZ
= _( XJ'. Xl )_1( X:I'_XZ )E( :‘\-[12 - T[12 )(ﬁ12 - T[12 )'.

Examination of the above expressions shows that the results obtained by Nagar
and Sahay (1978) are valid only for the special case of transformed reduced form
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equation (3.2), and can not be used in a straightforward manner to find expressions
for the exact moments of the PRRF estimators of coefficients of the original reduced
form equation (2.2). This is in contrast to the case of estimators of coefficients of
structural equations where expressions for exact moments of estimators of
coefficients of the original structural equation are obtained quite easily from the
corresponding expressions for the transformed structural equation.

0. THE EXACT BIAS AND MEAN SQUARED PREDICTION ERROR
OF PRRF-BASED FORECASTS

The PRREF forecast of Yy , the outside the sample value of y, , is given by
Yir =X,
where X; is the 1 x K row vector of outside the sample values of the exogenous
variables, and Tt is the PRRF estimator of .
Since
Yir = XTh + Vg,
we have
Yir = Var =X (T —T4) =V,
and the prediction bias is
E(Vir = Var ) = X5 E(T, - 10y)

. co B (X X)) XX O
=( Xy XZf)B( ! l)l( ' Z)BE(TIH—T[Q)

(6.1)
= [ =g (X3 X)X X, )+ X5 ] E(T1y, -1y, )

= (y-wp 0y )y e u f(22)+1/21(0;1)] - 3

a0 _X:I'.f(xill.xl)il( XX, )+ X0 ] Ty,
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where X; =(X; Xp¢ ) s partitioned conformably with (X; X,), and use is

made of the results given in (5.26), (5.27). Equation (6.1) is in general nonzero.
However, when the structural equation is just identified the PRRF and URRF
estimators are identical which in turn implies identical forecasts. Since it is a well-
known result that the URRF forecasts are unbiased, equation (6.1) will be zero.
Park (1982) has shown that for the special case where the values of the exogenous
variables in the forecast period are equal to their sample means, the PRRF-based
and URRE-based forecasts are equal. This also implies a zero value for (6.1).

For the mean squared prediction error (MSPE) we notice that

(Yar = Yar )2 =X (o =0 ) (T =14 ) X = 2y (T =75 ) % + v
which leads to

MSPE = E( $1¢ — Yar )* =X E(Tu -1 )(T5 — 75 ) X + @y

Considering the first term on the right side, it is easily verified using the result in

(5.35) that

E(fy-m)(Ty-m) = D[ =T )Ty =Ty ) (T = Ty (T, — T, )'0
PR & -, (T — Ty ) (T, — T, )(Th, — T, ) O
O (XX, 04X

| EE( T, =T, )T, — TG, )’

OO

o, ( X!X,)t o0
D11( 1 l) D‘

tOxax(xix)™ 1]+ : o

Thus, we have

E(Yir — Yas Y =[ =X (XX )_1XiX2 + X1 ] [ (T, =10, )(T0, — 10, )]

(6.2)
[ =X X ( XXy )_1X1f +Xop | e[ 1+ x5 (XX )_1X1f 1.
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The MSPE of ylf =X} ﬁl, the forecast obtained using the unrestricted reduced

form estimator Tt , is the well known result

E(Var — Yar ) =y [1+ X (X' X )_1Xf 1.

which can be easily shown to be equivalent to

E(Vir — Vi ) =1 —X¢ ( X1 X4 )_1X1X2 +Xo¢ ] [E(Th, — T4, ) (TG, — T, )']
(6.3)
=X Xy (X1 Xy )% + %0 T+ [ 14+ x5, (X1 X, )% 1.

Subtracting (6.3) from (6.2) yields

E(Vir — Yar )’ - E( Yir = Yar ) =1 =X (X1 X )_1X1X2 + X1 ]
O E(Th, =T, )(Thy — Ty ) = E(Th, =T, )T, — T4, )]

O =X5Xp( X1 Xy ) Hxyp + %o ]

It is clear from the above equation that if the PRRF estimator of Tr, has smaller

MSE than its URRF estimator, the PRRF-based forecast will have smaller MSPE
than the URREF-based forecast.
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