ENERGIA X ALIMENTOS: UMA APLICAÇÃO DO MODELO DE THÜNEN*

Ruy Aguiar da Silva Leme**.

INTRODUÇÃO

Uma das grandes questões suscitadas pelo Programa Nacional do Álcool é se o mesmo provocará deslocamento de culturas, principalmente alimentícias, e a consegüente elevação do preco de alimentação. A resposta a esta indagação só pode ser dada de forma completa pelo exame de diversos fatores, tais como qualidade e fertilidade do solo, relevo, clima, estrutura fundiária. Contudo, acreditamos que haja interesse em responder a esta pergunta de uma forma geral, sem levar em conta as peculiaridades mencionadas. Admitindo um solo homogêneo num espaço isótropo, como regra poder-se-ia estabelecer que as culturas energéticas deslocaram as culturas alimentícias? Tal pergunta pode ser respondida com a aplicação de um modelo

1. MODELO DE THÜNEN

O modelo de Thünen, que examinamos em profundidade em trabalho anterior⁽¹⁾. estuda como se distribui a produção agrícola de uma série de bens que abastecem um centro urbano.

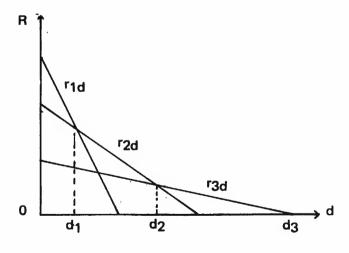
Seja Pio o preço CIF por tonelada do bem i no centro urbano. Seja ci = ai + bid o custo de transporte por tonelada do produto i a uma distância d do centro urbano, sendo ai o custo fixo de transporte, e bid o custo proporcional à distância. O preço FOB por tonelada do bem i num lote situado a uma distância d do centro urbano será igual a:

$$p_i = p_{i0} - c_i = p_{i0} - (a_i + b_i d)$$

da teoria de localização, o de Thünen, como iremos demonstrar.

^{*} O presente trabalho faz parte da Apreciação Tecnológica do PROÁLCOOL elaborada pelo IA-USP, Planalsucar/IAA e Centro Mauá de Tecnologia, sob o patrocínio da STI-MIC.

^{**} Da FEA/USP.

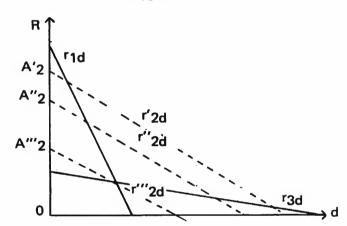

⁽¹⁾ SILVA LEME, R.A. Contribuição à Teoria da Localização Industrial, 1964.

Caso a produção por hectare por ano do bem i seja q; e o custo anual desta produção, ainda por hectare, seja k;, a renda anual por hectare será:

$$\begin{aligned} r_{id} &= \left(p_{io} - a_i - b_{id}\right) q_i - k_i = \\ &= \left(p_{io} - a_i\right) q_i - k_i - b_i q_i d \\ \end{aligned}$$
 Designando por $\left(p_{io} - a_i\right) q_i - k_i = A_i$, temos $r_{id} = A_i - b_i q_i d$

Considerando diversos bens i e propriedades a diversas distâncias d, podemos calcular as rendas rid dos diversos bens i nas diferentes distâncias d. Assim, por exemplo, na figura 1, no eixo das ordenadas, marcamos a renda de três produtos 1, 2 e 3 e, nas abscissas, a distância ao centro, obtendo três retas rid, r2d e r3d. Em cada distância será cultivado o bem que oferece maior renda. Assim, até a distância d1 será cultivado o bem 1, entre d1 e d2 o bem 2 e entre d2 e d3 o bem 3.

FIGURA 1


Como relação à posição relativa das várias culturas pudemos observar que:

a. quanto mais inclinada a reta r_{id} = A_i — b_i q_i d, mais perto do centro será cultivado o bem i. Nestas condições, temos a regra de que as diversas culturas distribuir-se-ão em

torno do centro na ordem decrescente do produto b;q;.

b. a posição relativa de uma cultura depende apenas do valor bi qi, independendo de Aj. Assim, na figura 2 temos três valores diferentes para A2, mantido o mesmo b2 q2. Em dois dos casos de A'2 e A"2 o produto 2 será cultivado entre os produtos 1 e 3. No terceiro caso, A"2, o produto 2 não será cultivado. Assim sendo, na hipótese de o produto 2 ser cultivado, o será entre os produtos 1 e 3.

FIGURA 2

Voltando à expressão do custo de transporte $c_i = a_i + b_i d$ temos que $b_i = \angle c_i$ para $\triangle d = 1$, isto é, b_i é o acréscimo do custo de transporte por unidade de peso correspondente a um acréscimo unitário na distância transportada.

Nestas condições, b_i q_i é o acréscimo do custo de transporte, da produção de um hectare de terra, para um acréscimo unitário na distância transportada.

2. APLICAÇÃO DO MODELO AO PROÁLCOOL

Como vimos, para se estabelecer a posição relativa das diversas culturas em torno do centro urbano é necessário e suficiente levantar os valores de b_i e q_i.

Os valores de bi podem ser calculados a partir dos dados da tabela 1.

TABELA 1

CUSTO DE TRANSPORTE EM CR\$/TON — (Preços 1980)				
DISTÂNCIA (km)	TRANSP. CARGA SECA(a)	TRANSP. COMBUSTÍVEL LÍQUIDO(b)		
50	863,71	213,56		
100	945,36	372,11		
200	1.108,52	673,76		
300	1.430,50	964,64		
400	1,593,66	1.248,92		
600	1,919,99	1.804,56		
800	2.246,33	2.348,29		
1000	2.562,71	2,883,52		
1500	3.388,52	4.195,44		
2000	4.204,68	5.481.37		

Fontes: (a) CONET/NTC. Tabela de tarifas de transporte rodoviário de carga — Veículo MBB L 1113/48 — capacidade de carga líquida 12,000 kg, junho 1980.

a tational

(b) MME/CNP/DIPRE. Tabela de Entrega a Longa Distância, Produtos Claros, maio 1980.

As regressões dos custos de transporte sobre a distância d fornecem:

a. para combustíveis líquidos:

$$c_i = 143,44 + 2,869 d$$

b. para carga seca:

$$c_i = 841,41 + 1,683 d.$$

De onde se obtém:

b_i = 2,869 para combustíveis líquidos

 $b_i = 1,683$ para carga seca⁽²⁾

Os valores de q; para os alimentos estão resumidos na tabela 2, na qual figuram as produtividades em toneladas por hectare por ano.

TABELA 2

PRODUTO :	PRODUTIVIDADE q _i t/ha	
Arroz	1,305	
Feijão	0,476	
Milho	1,221	
Trigo	0,956	

Para o álcool, o valor de q; dependerá da matéria-prima adotada. Na tabela 3 temos a produtividade agrícola em t/ha, a produtividade industrial em 1/t, a produtividade global em 1/ha e em t/ha, para diferentes matérias-primas.

TABELA 3

MATÉRIA-PRIMA	PRODUT. AGRÍCOLA	PRODUT. INDUSTRIAL	PROD GLOB	
MATERIATIONA	t/ha/ano	f/t	1/ha	t/ha
1. Cana	64	65,0	4.160	3,28
2. Mandioca	17,5	180,0	3.150	3,28 2,4 8
3. Sorgo	90	80,0	7.200	5,68
4. Madeira	15	125,0	1.815	1,43

⁽²⁾ A rigor, os valores de bi deveriam ter sido estimados com erros nas duas variáveis "ci" e "d" Contudo, como o erro de "d" é muito inferior ao de "ci", basta considerar o erro nesta última variável.

Os produtos b_i q_i são fornecidos na tabela 4.

TABELA 4

PRODUTOS	VALORES DE
Arroz	2,196
Feijão	0,801
Milho	2,055
Trigo	1,608
Cana	9,410
Álcool	7,115
Sorgo	16,296
Sorgo Madeira	4,103

Comparando os bi qi do álcool com os dos alimentos, verificamos que para qualquer matéria-prima empregada o bi qi do primeiro é superior ao destes últimos, o que indica terem as culturas produtoras de álcool se localizado mais próximas ao centro urbano, expulsando para fora as culturas alimentícias.

CONCLUSÃO

Admitindo que a produtividade por hectare e o custo de produção por hectare sejam constantes para cada cultura nos lotes que cercam o centro urbano, e que o custo de transporte cresça linearmente com a distância ao centro urbano, então as culturas energéticas — cana, mandioca, sorgo e madeira —, matérias-primas para produção do álcool, tendem a expulsar para longe do centro as culturas alimentares — arroz, feijão, milho e trigo.

Sendo bi o acréscimo no custo de transporte por unidade, correspondente a um acréscimo unitário da distância a transportar e qi a produtividade da cultura i em tonelada por hectare, então as culturas alimentares têm seu bi qi compreendidos entre 0,801 e 2,196, os quais são muito menores do que os bi qi das culturas energéticas, compreendidos entre 4,103 e 9,410. Como as culturas de maior bi qi tendem a se localizar mais próximas ao centro, então:

a. as culturas energéticas serão mais atraídas pelos centros;

b. constatada a grande diferença entre os bi qi das culturas energéticas e das culturas alimentares, a conclusão deve permanecer válida, mesmo considerando a grande variabilidade dos qi, que dependem do nível tecnológico.

Finalmente, o produto b_i q_i é maior para as culturas energéticas, pelo fato de os dois fatores b_i e q_i serem maiores para estas culturas.