Conectividades dinâmicas e transbordamento de volatilidade entre os mercados agrícolas brasileiros após a pandemia da Covid-19
DOI:
https://doi.org/10.1590/1980-53575446dclgPalavras-chave:
Mercados de commodities agrícolas, Conectividade dinâmica, Transbordamento de volatilidade, Pandemia da Covid-19, BrasilResumo
As volatilidades dos preços agrícolas aumentaram a partir do período 2006-2008 e, desde então, crises internacionais têm intensificado estes choques, como a pandemia da Covid-19. Diversos estudos têm buscado compreender as dinâmicas destes choques globalmente, porém, poucos analisaram os impactos em mercados emergentes. Neste sentido, este artigo propõe avaliar os impactos da pandemia da Covid-19 nas volatilidades dos preços agrícolas no Brasil, como foco nas conectividades dinâmicas e transbordamento de volatilidades entre os mercados agropecuários. Também são considerados o mercado de petróleo Brent e a taxa de câmbio US$/R$. Para isso, aplica-se o modelo TVP VAR, considerando as especificações propostas por Antonakakis et al. (2020). Os resultados apontam para um aumento nas conectividades e transmissão de volatilidade após o início da pandemia. Os efeitos se perpetuam até o posterior conflito entre Rússia e Ucrânia, se dissipando a partir do segundo semestre de 2022. Em geral, a taxa de câmbio e a soja apresentaram-se como os maiores transmissores de volatilidade, tanto no período pré, quanto pós-pandemia. O petróleo foi significativamente transmissor de volatilidade em um curto período após o início da pandemia e do conflito entre Rússia Ucrânia. O conflito também aumentou os efeitos de transmissão do trigo, enquanto a pandemia levou o arroz a ser um transmissor líquido de volatilidade. Tais apontamentos corroboram que os mercados agrícolas no Brasil também são afetados pelos efeitos de crise. No entanto, evidenciam que a taxa de câmbio possui uma relevância ainda maior que os preços do petróleo na explicação dos choques de volatilidade no país, destacando a importância de se considerar seus efeitos em mercados emergentes.
Downloads
Referências
Acemoglu D., Johnson S., Robinson J. A. and Thaicharoen Y. 2003. “Institutional causes, macroeconomic symptoms: volatility, crises and growth”. Journal of Monetary Economics 50 (1): 49-123. https://doi.org/10.1016/S0304-3932(02)00208-8.
Antonakakis, N., Chatziantoniou, I. and Gabauer, D. 2020. “Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions”. Journal of Risk and Financial Management 13 (4): 84. https://doi.org/10.3390/jrfm13040084.
Babar, M., Ahmad, H. and Yousaf, I. 2023. “Returns and volatility spillover between agricultural commodities and emerging stock markets: new evidence from COVID-19 and Russian-Ukrainian war”. International Journal of Emerging Markets, In Press, Accepted Manuscript. https://doi.org/10.1108/IJOEM-02-2022-0226.
Balcilar, M., Gabauer, D. and Umar, Z. 2021. “Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach”. Resources Policy 73: 102219. https://doi.org/10.1016/j.resourpol.2021.102219.
Beckman, J. and Countryman, A. 2021. “The importance of agriculture in the economy: impacts from Covid-19”. American Journal of Agricultural Economics 103 (5): 1595-1611. https://doi.org/10.1111/ajae.12212.
Borgdards, O., Czudaj, R. L. and Van Hoang, T. H. 2021. “Price overreactions in the commodity futures market: An intraday analysis of the Covid-19 pandemic impact”. Resources Policy 71: 101966. https://doi.org/10.1016/j.resourpol.2020.101966.
Cabrera, B. L. and Schulz, F. 2016. “Volatility linkages between energy and agricultural commodity prices”. Energy Economics 54: 190-203. https://doi.org/10.1016/j.eneco.2015.11.018.
Capitani, D. H. D. and Gaio, L. E. 2023. “Volatility Transmissionin Agricultural Markets: Evidence from the Russia-Ukraine Conflict”. International Journal of Food and Agricultural Economics 11 (2): 65-82.
CEPEA – Center for Advanced Studies on Applied Economics. 2023. “Spot prices indicators”. Piracicaba: ESALQ/USP. Accessed August 20, 2022, http://www.cepea.org.br.
CONAB – National Supply Company. “Monitor of the Brazilian harvest”. Brasilia. Accessed May 27, 2024, http://www.conab.gov.br/info-agro/safras.
De Vijlder, W. 2020. “The COVID-19 Pandemic: Economic Consequences Pervasive Uncertainty, Delayed Recovery”. Paris, France: BNP Paribas, Economic Research Department.
Diebold, F. X. and Yilmaz, K. 2012. “Better to give than to receive: predictive directional measurement of volatility spillovers”. International Journal of Forecasting 28 (1): 57-66. https://doi.org/10.1016/j.ijforecast.2011.02.006.
Dmytrów, K., Landmesser, J. and Bieszk-Stolorz, B. 2021. “The Connections between COVID-19 and the Energy Commodities Prices: Evidence through the Dynamic Time Warping Method”. Energies, 14 (13): 4024. https://doi.org/10.3390/en14134024.
Elleby, C., Domínguez, I. P. and Adenauer, M. 2020. “Impacts of the COVID‑19 Pandemic on the Global Agricultural Markets”. Environmental and Resource Economics 76: 1067–1079. https://doi.org/10.1007/s10640-020-00473-6.
Fang, Y., and Shao, Z. 2022. “The Russia-Ukraine conflict and volatility risk of commodity markets”. Finance Research Letters 50: 103264. https://doi.org/10.1016/j.frl.2022.103264.
FAO. 2022. “Impact of the Ukraine-Russia conflict on global food security and related matters under the mandate of the Food and Agriculture Organization of the United Nations (FAO)”. Rome: CL169/3. Accessed August 06, 2022, https://www.fao.org/3/ni734en/ni734en.pdf.
Farid, S., Naeem, M. A., Paltrinieri, A. and Nepal, R. 2022. “Impact of COVID-19 on the quantile connectedness between energy, metals and agriculture commodities”. Energy Economics 109: 105962. https://doi.org/10.1016/j.eneco.2022.105962.
Frenk, D., and Tuberville, W. 2011. “Commodity Index Traders and the Boom/Bust Cycle in Commodities Prices”, Washington, DC: Better Markets (Oct., 2011). https://doi.org/10.2139/ssrn.1945570.
Gaio. L. E. and Capitani, D. H. D. 2023. “Multifractal cross-correlation analysis between crude oil and agricultural futures markets: evidence from Russia Ukraine conflict”. Journal of Agribusiness in Developing and Emerging Economies, In Press, Accepted Manuscript. https://doi.org/10.1108/JADEE-11 2022-0252.
Huchet-Bourdon, M. 2011. “Agricultural Commodity Price Volatility: An Overview”. OECD Food, Agriculture and Fisheries Papers No. 52, Paris: OECD Publishing. http://dx.doi.org/10.1787/5kg0t00nrthc-en.
Hung, N. T. 2021. “Oil prices and agricultural commodity markets: Evidence from pre and during COVID-19 outbreak”. Resources Policy 73: 102236. https://doi.org/10.1016/j.resourpol.2021.102236.
IBGE. Brazilian Statistics Institute. 2022. “Consumer Price Index”. Accessed August 27, 2022. http://www.ibge.gov.br.
Irwin, S. H. and Good, D. L. 2009. “Market instability in a new era of corn, soybean and wheat prices”. Choices 24 (1): 6–11.
Jeong, S. and Gopinath, M. 2022. “International market information and agricultural price dynamics”. Journal of Agribusiness in Developing and Emerging Economies 14 (2): 376-392. https://doi.org/10.1108/JADEE-06-2022-0126.
Just, M. and Echaust, K. 2022. “Dynamic spillover transmission in agricultural commodity markets: What has changed after the COVID-19 threat?”. Economics Letters 217: 110671. https://doi.org/10.1016/j.econlet.2022.110671.
Kamdem, J. S., Essomba, R. B. and Berinyuy, J. N. 2020. “Deep learning models for forecasting and analyzing the implications of COVID-19 spread on some commodities markets volatilities”. Chaos, Solitons and Fractals, 140: 110215. https://doi.org/10.1016/j.chaos.2020.110215.
Koop, G. and Korobilis, D. 2014. “A new index of financial conditions”. European Economic Review 71, no. 1 (October): 101–116. https://doi.org/10.1016/j.euroecorev.2014.07.002.
Kristoufek, L., Janda, K. and Zilberman, D. 2014. “Price transmission between biofuels, fuels, and food commodities”. Biofuels, Bioproducts & Biorefining 8: 362-373. https://doi.org/10.1002/bbb.1464.
Kumar, A., Mishra, A. K., Saroj, S. and Rashid, S. 2022. “Government transfers, COVID-19 shock, and food insecurity: Evidence from rural households in India”. Agribusiness 38: 636-659. https://doi.org/10.1002/agr.21746.
Lahiani, A., Nguyen, D. K. and Vo, T. 2013. “Understanding Return and Volatility”. The Journal of Applied Business Research 29 (6): 1781-1790. https://doi.org/10.19030/jabr.v29i6.8214.
Mishra, A. K., Arunachalam, V., Olson, D. and Patnaik, D. 2023. “Dynamic connectedness in commodity futures markets during Covid-19 in India: New evidence from a TVP-VAR extended joint connectedness approach”. Resources Policy 82 (1): 103490. https://doi.org/10.1016/j.resourpol.2023.103490.
Palazzi, R. B., Assaf, A. and Klotze, M. C. 2024. “Dynamic connectedness between energy markets and the Brazilian cash market: An empirical analysis pre- and post-COVID-19”. Journal of Futures Markets 44: 27-56. https://doi.org/10.1002/fut.22463.
Quintino, D., Ogino, C., Haq, I. U., Ferreira, P. and Oliveira, M. 2023. “An Analysis of Dynamic Correlations among Oil, Natural Gas and Ethanol Markets: New Evidence from the Pre- and Post-COVID-19 Crisis”. Energies 16 (5): 2349. https://doi.org/10.3390/en1605234.
Rajput, H., Changotra, R., Gautam, S., Gollakota, A. R. K. and Arora, A. S. 2021. “A shock like no other: coronavirus rattles commodity markets”. Environment, Development and Sustainability 23: 6564-6574. https://doi.org/10.1007/s10668-020-00934-4.
Saghaian, S., Nemati, M., Walters, C. and Chen, B. 2018. “Asymmetric Price Volatility Transmission between U.S. Biofuel, Corn, and Oil Markets”. Journal of Agricultural and Resource Economics 43 (1): 46-60. http://www.jstor.org/stable/44840974.
Serra, T. 2011. “Volatility spillover between food and energy market: a semiparametric approach”. Energy Economics 33 (6): 1155-1164. https://doi.org/10.1016/j.eneco.2011.04.003.
Serra, T. and Zilberman, D. 2013. “Biofuel-related price transmission literature: A review”. Energy Economics 37: 141-151. https://doi.org/10.1016/j.eneco.2013.02.014.
Shahrestani, P. and Rafei, M. 2020. “The impact of oil price shocks on Tehran Stock Exchange returns: Application of the Markov switching vector autoregressive models”. Resources Policy 65: 101579. https://doi.org/10.1016/j.resourpol.2020.101579.
Siami-Namini, S., Hudson, D., Trindade, A. D. and Lyford, C. 2019. “Commodity price volatility and U.S. monetary policy: Commodity price overshooting revisited”. Agribusiness 35: 200-218. https://doi.org/10.1002/agr.21564.
Thanh, P. T., Duy, D. T. and Duong P. B. 2021. “Disruptions to agricultural activities, income loss and food insecurity during the COVID-19 pandemic: evidence from farm households in a developing country”. Journal of Agribusiness in Developing and Emerging Economies 12 (3): 551-547. https://doi.org/10.1108/JADEE-09-2021-0243.
Trujillo-Barreras, A., Mallory, M. and Garcia, P. 2012. “Volatility Spillovers in U.S. Crude Oil, Ethanol, and Corn Futures Markets”. Journal of Agricultural and Resource Economics, 37 (2): 247-262. https://doi.org/10.22004/ag.econ.134275.
Tyner, W. E. 2010. “The integration of energy and agricultural markets”. Agricultural Economics 41: 193-201. https://doi.org/10.1111/j.1574-0862.2010.00500.x.
UNCTAD. 2022. “Impact of Covid-19 pandemic on trade and development: lessons learned”. Geneve. Accessed September 05, 2022, https://unctad.org/system/files/official-document/osg2022d1_en.pdf.
Vacha, L., Karrel, J., Kristoufek, L. and Zilberman, D. 2013. “Time-frequency dynamics of biofuel-fuel-food system”. Energy Economics 40: 233-241. https://doi.org/10.1016/j.eneco.2013.06.015.
Wang, J., Shao, W. and Kim, J. 2020. “Analysis of the impact of COVID-19 on the correlations between crude oil and agricultural futures”. Chaos, Solitons and Fractals 136: 109896. https://doi.org/10.1016/j.chaos.2020.10989.
Wang, Y., Bouri, E., Fareed, Z. and Dai, Y. 2022. “Geopolitical risk and the systemic risk in the commodity markets under the war in Ukraine”. Financial Research Letters 49: 103066. https://doi.org/10.1016/j.frl.2022.103066.
World Bank. 2020. “Commodity markets outlook”. Washington, DC: Special Focus (April). Accessed September 03, 2022, https://thedocs.worldbank.org/en/doc/c5de1ea3b3276cf54e7a1dff4e95362b-0350012021/original/CMO-April-2021.pdf.
Wright, B. D. 2011. “The economics of grain price volatility”. Applied Economic Perspectives and Policy 33 (1): 32–58. https://doi.org/10.1093/aepp/ppq033.
Yildrim, D. Ç., Erdogan, F. and Tari, E. N. 2022. “Time-varying volatility spillovers between real exchange rate and real commodity prices for emerging market economies”. Resources Policy 76: 102586. https://doi.org/10.1016/j.resourpol.2022.102586.
Zhang, Z., Lohr, L., Escalante, C. L. and Wetzstein, M. E. 2010. “Food versus fuel: What do prices tell us?”. Energy Policy 38 (1): 445–451. https://doi.org/10.1016/j.enpol.2009.09.034.
Zheng, T., Ye, S. and Hong, Y. 2023. Fast estimation of a large TVP-VAR model with score-driven volatilities. Journal of Economic Dynamics and Control 157: 104762. https://doi.org/10.1016/j.jedc.2023.104762.
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2024 Daniel Henrique Dario Capitani, Luiz Eduardo Gaio
Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.
A submissão de artigo autoriza sua publicação e implica o compromisso de que o mesmo material não esteja sendo submetido a outro periódico.
A revista não paga direitos autorais aos autores dos artigos publicados.
Dados de financiamento
-
Fundação de Amparo à Pesquisa do Estado de São Paulo
Números do Financiamento 2023/13145-9