Inflação inercial como um processo de longa memória: análise a partir de um modelo Arfima-Figarch

Autores

  • Erik Alencar de Figueiredo Universidade Federal da Paraíba
  • André M. Marques Universidade Federal do Rio Grande do Norte

DOI:

https://doi.org/10.1590/S0101-41612009000200008

Palavras-chave:

inflação inercial, ARFIMA-FIGARCH, memória longa, volatilidade

Resumo

O objetivo principal deste estudo é investigar a dependência de longo prazo da inflação brasileira, descrevendo-a como um processo fracionariamente integrado tanto na média quanto na variância. A metodologia empregada baseia-se na estimação de um modelo ARFIMA-FIGARCH, capaz de detectar a presença de memória longa em altas defasagens de um processo autorregressivo. Os principais resultados alcançados indicam que, para o período pós-Plano Real, a inflação brasileira exibe um comportamento estacionário em seus dois primeiros momentos com lento decaimento hiperbólico. Há indícios de longa memória na média e na variância do processo. Além disso, constatou-se, para esse período, uma recíproca influência entre a volatilidade e a taxa média de inflação.

Downloads

Não há dados estatísticos.

Referências

BACHA, E. L. O Plano Real: uma avaliação. In: MERCADANTE, A. (Org.). O Brasil pós-Real: a política econômica em debate. Campinas: Unicamp-IE, 1998, p. 11-69.

BAILLIE, R. Long memory process and fractional integration in econometrics. Journal of Econometrics, 73, p. 5-59, 1996.

BAILLIE, R.; BOLLERSLEV, T.; MIKKELSEN, H. O. Fractionally Integrated Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 74, p. 3-30, 1996a.

BAILLIE, R., CHUNG, C.-F.; TIESLAU, M. A. Analyzing inflation by the fractionally integrated Arfima-Garch model. Journal of Applied Econometrics, 11, p. 23-40, 1996b.

BAILLIE, R.; HAN, Y.; KWO N, T. Further long memory properties of inflationary shocks. Southern Economic Journal, v. 68, p. 496-510, 2002.

BANERJEE, A.; COCKERELL, L.; RUSSEL, B. An I(2) Analysis of inflation and the markup. Journal of Applied Econometrics, 16, p. 221-240, 2001.

BOGDANSKI, J.; TOMBINI, A. A.; WERLANG, S. R. C. Implementing Inflation Targeting in Brazil. Banco Central do Brasil, 2000. (Working Paper Series n. 1). Disponível em: <http://www.bcb.gov.br>. Acesso em: 09 ago. 2004.

BOLLERSLEV, T. Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 1986.

CAMPÊLO, A. K.; CRIBARI-NETO, F. Inflation inertia and ‘inliers’: the case of Brazil. Revista Brasileira de Economia, v. 57, n.4, p. 713-719, 2003.

CATI, R. C.; GARCIA, M. G. P.; PERRON, P. Unit roots in the presence of abrupt governmental interventions with an application to Brazilian data. Journal of Applied Econometrics, 14, p. 27-56, 1999.

CRIBARI-NETO, F.; CASSIANO, K. Uma análise da dinâmica inflacionária brasileira. Revista Brasileira de Economia, v.59, n. 4, p. 535-566, 2005.

FASOLO, A. M.; PORTUGAL, M. S. Imperfect rationality and inflationary inertia: a new estimation of the Phillips Curve for Brazil. UFRGS/PPGE, 2003. (Texto para Discussão). Disponível em: <http://www.ufrgs.br/ppge>. Acesso em: 10 out. 2004.

FIGUEIREDO; F. M. R.; FERREIRA, T. P. Os preços administrados e a inflação no Brasil. Brasília, 2002. (Trabalhos para Discussão n. 59). Disponível em: <http://www.bcb.gov.br>. Acesso em: 10 mar. 2004.

FRIEDMAN, M. Inflation and Unemployment. Nobel Memorial Lecture, 1976. Disponível em: <http://nobelprize.org/nobel_prizes/economics/laureates/1976/friedman-lecture.html>. Acesso em: 12 maio 2007.

GRANGER, C. W. Investigating causal relations by econometric models and by cross-spectral methods. Econometrica, v. 37, n. 3, p. 424-438, 1969.

GRANGER, C. W. Long memory relationships and the aggregation of dynamic models. Journal

of Econometrics, 14, p. 227-238, 1980.

GRANGER, C. W. Some properties of time series data and their use in econometric model

Specification. Journal of Econometrics, 16, p. 121-130, 1981.

GRANGER, C. W; JOYEUX, R. An introduction to long memory time series models and fractional

differencing. Journal of Time Series Analysis, 1, p. 5-39, 1980.

GRANGER, C. W. What we learning about the Long-Run?, Economic Journal, v. 103, n. 417, p. 307-317, 1993.

GRANGER, C. W; HUANG, B.-N.; YANG, C. W. A bivariate causality between stock prices

and exchange rates: evidence from recent Asia flu. San Diego: University of California, 1998. (Discussion Paper, n. 98-09). Disponível em: <http://www.econ.ucsd.edu/papers/files/ucsd9809.pdf>. Acesso em: 21 jun. 2004.

HASLETT, J., RAFTERY A. Space-time modelling with long-memory dependence: assessing Ireland’s wind power resource (with Discussion). Applied Statistics, 38, p. 1-50, 1989.

HOSKING, J. R. M. Fractional differencing. Biometrika, 68, p. 165-176, 1981.

KWI ATKOW SKI, D.; PHILLIPS, P. C. B.; SCHMIDT, P.; SHIN, Y. Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54, 1992.

LAURINI, M.; VIEIRA, H. A dynamic econometric model for inflationary inertia in Brazil. IBMEC, 2005. (No prelo).

LOPES, F. L. Inflação inercial, hiperinflação e desinflação: notas e conjecturas. Revista de Economia Política, v. 5, n. 2, p. 135-151, 1985.

MAIA, A.; CRIBARI NETO, F. Dinâmica inflacionária brasileira: resultados de auto-regressão quantílica. Revista Brasileira de Economia, v. 60, n. 2, p. 153-165, 2006.

MODIANO, E. A dinâmica de salários e preços na economia brasileira: 1966-1981.

Pesquisa e Planejamento Econômico, v. 15, n. 1, p. 39-68, 1983.

MONTAÑÉS, A.; OLLIQUI, I.; CALVO, E. Selection of the break in the Perrontype tests. Journal of Econometrics, 129, p. 41-64, 2005.

PHILLIPS, P. C. B.; PERRON, P. Testing for a unit root in time series regression, Biometrika, v. 75, n. 2, 1988.

REISEN, V. A. Estimation of the fractional difference parameter in the ARFIMA (p,d,q) model using the smoothed periodogram. Journal Time Series Analysis, v. 15, n.1, 1994.

RESENDE, A. L. A moeda indexada: uma proposta para eliminar a inflação inercial. Revista de Economia Política, v. 5, n.2, p. 130-134, 1985.

SCHWERT, G. Tests for unit roots: a Monte Carlo investigation. Journal of Business and Economic Statistics, v. 7, 1989.

SIMS, C. A. Bayesian skepticism on unit root econometrics. Journal of Economic Dynamics and Control, v. 12, 1988.

SOWELL, F. The fractional unit root distribution. Econometrica, v. 58, n. 2, p. 495-505 1990.

SOWELL, F. Modeling long-run behavior with the fractional ARIMA model. Journal of Monetary Economics, 2, p. 277-302, 1992.

TEJADA, C.; PORTUGAL, M. Credibilidade e inércia inflacionária no Brasil: 1986-1998. Estudos Econômicos, v. 31, n. 3, p. 459-494, jul.-set. 2001.

ZIVOT, E.; ANDREWS, D. Further evidence on the great crash, the oil-price shock, and the unit-root hypothesis. Journal of Business & Economic Statistics, v. 10, n. 3, p. 251-270, 1992.

Downloads

Publicado

2009-06-30

Edição

Seção

Não definida