Fabricação de forma livre para uma canoa de concreto

Autores

  • Andrei Jipa ETH Zürich. Department of Architecture. Institute of Technology in Architecture. Digital Building Technologies
  • Mathias Bernhard ETH Zürich. Department of Architecture. Institute of Technology in Architecture. Digital Building Technologies
  • Nicolas Ruffray ETH Zürich. Department of Civil, Environmental and Geomatic Engineering. Institute for Building Materials. Physical Chemistry of Building Materials
  • Timothy Wangler ETH Zürich. Department of Civil, Environmental and Geomatic Engineering. Institute for Building Materials. Physical Chemistry of Building Materials
  • Robert Flatt ETH Zürich. Department of Civil, Environmental and Geomatic Engineering. Institute for Building Materials. Physical Chemistry of Building Materials
  • Benjamin Dillenburger ETH Zürich. Department of Architecture. Institute of Technology in Architecture. Digital Building Technologies

DOI:

https://doi.org/10.11606/gtp.v14i1.148264

Palavras-chave:

Concreto, Impressora 3D, Moldes, Canoa, Design, Otimização da Topologia

Resumo

A busca por geometrias complexas na arquitetura contemporânea está impulsionando a inovação em direção a uma liberdade de fabricação sem restrições para componentes de construção. O concreto é um material de construção com excelentes qualidades estruturais e arquitetônicas, com capacidade teórica de ser moldado em qualquer forma. No entanto, na prática, o concreto é geralmente limitado pela indústria de fabricação de formas planas sólidas. A meta desta pesquisa é superar as limitações de fabricação de moldes e, indiretamente, de concreto. Para atingir essa meta, o objetivo desta pesquisa é duplo: a) possibilitar a fabricação de componentes de concreto em escala de construção através de cofragens plásticas impressas em 3D e b) desenvolver métodos de projeto e otimização computacionais adequados para esse método de fabricação. O método de projeto e construção resultante tira proveito da capacidade de carga do concreto e depende da liberdade de fabricação herdada da cofragem impressa em 3D, possibilitando topologias complexas e detalhes precisos para estruturas de concreto. O método de pesquisa para demonstrar esse processo de fabricação se concentrou nas etapas de projeto para fabricação do skelETHon - uma canoa funcional de concreto com quatro metros de comprimento - que foi projetada, construída e disputada em uma regata no rio Reno (Figura 1). A principal conquista da pesquisa foi a fabricação da canoa, um componente de concreto otimizado, semelhante a uma treliça, com elementos de até 15 mm de diâmetro. Tais características geométricas delgadas são difíceis de produzir em concreto com outros sistemas de moldes conhecidos.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Andrei Jipa, ETH Zürich. Department of Architecture. Institute of Technology in Architecture. Digital Building Technologies

    Doctoral Student

  • Mathias Bernhard, ETH Zürich. Department of Architecture. Institute of Technology in Architecture. Digital Building Technologies

    Senior Researcher

  • Nicolas Ruffray, ETH Zürich. Department of Civil, Environmental and Geomatic Engineering. Institute for Building Materials. Physical Chemistry of Building Materials

    Doctoral Student

  • Timothy Wangler, ETH Zürich. Department of Civil, Environmental and Geomatic Engineering. Institute for Building Materials. Physical Chemistry of Building Materials

    Postdoctoral Researcher

  • Robert Flatt, ETH Zürich. Department of Civil, Environmental and Geomatic Engineering. Institute for Building Materials. Physical Chemistry of Building Materials

    Professor, Doctor

  • Benjamin Dillenburger, ETH Zürich. Department of Architecture. Institute of Technology in Architecture. Digital Building Technologies

    Professor, Doctor

Referências

Aghaei-Meibodi, M., Bernhard, M., Jipa, A., & Dillenburger, B. (2017, 6-8 April 2017). The Smart Takes from the Strong. Paper presented at the Fabricate 2017: Rethinking Design and Construction, University of Stuttgart, Germany.

Crow, J. M. (2008). The concrete conundrum. Chemistry World, 5(3), 62-66.

Fontana, M., Flatt, R., Marchon, D., & Lex, R. (2014). Switzerland Patent No. EP 2 902 183 A1. E. P. Office.

Hack, N., Lauer, W., Langenberg, S., Gramazio, F., & Kohler, M. (2013). Overcoming Repetition: Robotic fabrication processes at a large scale. International Journal of Architectural Computing, 11(3), 285-299.

Hack, N., & Lauer, W. V. (2014). Mesh‐Mould: Robotically Fabricated Spatial Meshes as Reinforced Concrete Formwork. Architectural Design, 84(3), 44-53.

Jipa, A., Bernhard, M., Dillenburger, B., & Aghaei-Meibodi, M. (2016). 3D-Printed Stay-in-Place Formwork for Topologically Optimized Concrete Slabs. Paper presented at the 2016 TxA Emerging Design + Technology, San Antonio, Texas, USA.

Nervi, P. L. (1956). Structures FW Dodge Corp.

Oesterle, S., Vansteenkiste, A., & Mirjan, A. (2012). Zero waste free-form formwork. Paper presented at the Proceedings of the Second International Conference on Flexible Formwork, ICFF. CICM and University of Bath, Dept. of Architecture and Civil Engineering.

Peters, B. (2014, 23-25 October, 2014). Additive Formwork: 3D Printed Flexible Formwork. Paper presented at the ACADIA 14: Design Agency, Los Angeles.

Popescu, M., Reiter, L., Liew, A., Van Mele, T., Flatt, R. J., & Block, P. (2018). Building in Concrete with an Ultra-lightweight Knitted Stay-in-place Formwork: Prototype of a Concrete Shell Bridge. Structures, 14, 322-332. doi:https://doi.org/10.1016/j.istruc.2018.03.001

Post, B., Lloyd, P. D., Lindahl, J., Lind, R. F., Love, L. J., & Kunc, V. (2016). The Economics of Big Area Addtiive Manufacturing: Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States). Manufacturing Demonstration Facility (MDF).

Robert, H. (2007). Think formwork–reduce cost. Structure magazine, 14.

Ruffray, N., Bernhard, M., Jipa, A., Aghaei-Meibodi, M., Taisne, N. M. d., Stutz, F., Wangler, T., Flatt, R. J., Dillenburger, B. (2017). Complex architectural elements from HPFRC and 3D printed sandstone. Paper presented at the RILEM Symposium on Ultra-High Performance Fibre-Reinforced Concrete, Montpellier, France.

Rust, R., Jenny, D., Gramazio, F., & Kohler, M. (2016). Spatial Wire Cutting: Cooperative robotic cutting of non-ruled surface geometries for bespoke building components. Paper presented at the Living Systems and Micro-Utopias: Towards Continuous Designing, Proceedings of the 21st International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2016) Melbourne

Shahab, A., Lloret, E., Fischer, P., Gramazio, F., Kohler, M., & Flatt, R. (2013). Smart dynamic casting or how to exploit the liquid to solid transition in cementitious materials. Paper presented at the Proceedings CD od the 1st international conference on rheology and processing of construction materials and of the 7th international conference on self-compacting concrete, Paris, France.

Søndergaard, A., & Dombernowsky, P. (2011). Unikabeton prototype. Paper presented at the Fabricate: Making Digital Architecture.

Veenendaal, D., West, M., & Block, P. (2011). History and overview of fabric formwork: using fabrics for concrete casting. Structural Concrete, 12(3), 164-177.

Downloads

Publicado

2019-09-06

Dados de financiamento

Como Citar

JIPA, Andrei; BERNHARD, Mathias; RUFFRAY, Nicolas; WANGLER, Timothy; FLATT, Robert; DILLENBURGER, Benjamin. Fabricação de forma livre para uma canoa de concreto. Gestão & Tecnologia de Projetos, São Carlos, v. 14, n. 1, p. 25–44, 2019. DOI: 10.11606/gtp.v14i1.148264. Disponível em: https://www.revistas.usp.br/gestaodeprojetos/article/view/148264.. Acesso em: 19 abr. 2024.