

Revista do Instituto de Geociências - USP Geol. USP, Sér. cient., São Paulo, v. 22, n. 4, p. 71-93, Dezembro 2022

Litoestratigrafia e aspectos metalogenéticos do Complexo Máfico-Ultramáfico Estratiforme de Tucunduba, Província Borborema, Ceará – Brasil

Lithostratigraphy and metallogenic features of the Tucunduba Stratiform Mafic-Ultramafic Complex, Borborema Province, Ceará – Brazil

> Dayme Hermesson Alves Cavalcante¹ ⁽⁰⁾, Clóvis Vaz Parente¹ ⁽⁰⁾, Ignez de Pinho Guimarães² ⁽⁰⁾, Lucilene dos Santos¹ ⁽⁰⁾

¹Universidade Federal do Ceará, Departamento de Geologia, Programa de Pós-Graduação em Geologia, Campus do Pici, Av. Humberto Monte, Bloco 912, CEP: 60440-554, Fortaleza, CE, BR

(dayme_hermesson@yahoo.com.br; clovis@ufc.br; lucilene.santos01@gmail.com)

²Universidade Federal de Pernambuco, Departamento de Geologia, Programa de Pós-Graduação em Geociências, Recife, PE, BR (ignezdpg@gmail.com)

Recebido em 25 de fevereiro de 2022; aceito em 13 de dezembro de 2022.

Resumo

O Complexo Máfico-Ultramáfico Estratiforme de Tucunduba (CMUET) compreende uma intrusão acamadada com geometria elipsoidal, com eixo maior apresentando direção N025º e área de aproximadamente 4 km², constituído de metapiroxenitos, metagabros e metagabronoritos intrudidos em rochas granito-migmatíticas de idade paleoproterozoica do Domínio Ceará Central (DCC), Província Borborema (PB), Nordeste do Brasil. Essa associação magmática é cortada por diques alcalinos de idade oligocênica, pertencentes ao Vulcanismo Messejana. As rochas máfico-ultramáficas são representadas por três zonas litológicas: Zona Ultramáfica de composição peridotítica e piroxenítica localizada na porção noroeste do complexo; Zona de Transição caracterizada por mistura de rochas piroxeníticas e gabroicas, com textura e estrutura variadas; e Zona Máfica de composição gabro-norítica, concentrada na porção sudeste, além dos bordos oeste e norte do corpo. As zonas formadoras do CMUET foram afetadas parcialmente por deformação e recristalização metamórfica, resultantes de metamorfismo regional em fácies granulito, evidenciado por textura de poligonização formada por cristais de ortopiroxênio e clinopiroxênio, bem como ocorrência de hercinita, experimentaram retrometamorfismo em fácies anfibolito, com expressiva formação de hornblenda, e alteração hidrotermal em condições de fácies xisto verde a sub-xisto verde, caracterizada pela formação de minerais hidratados (talco, serpentina, actinolita, tremolita e clorita). Texturas e estruturas primárias, como acamamento ígneo, do tipo rítmico, e textura cumulática, são ainda preservadas. Importantes ocorrências de blocos de minério maciço rico em Fe-Ti (± V) são encontradas, principalmente, no domínio das rochas metamáficas. Dados de geoquímica de solos indicam valores anômalos de S, Cu, Co, Ni, Ti e V, sugerindo a existência de alvos potenciais para sulfetos (Cu, Co e Ni) e óxidos (Ti e V).

Palavras-chave: Domínio Ceará Central; Fácies granulito; Óxidos de Fe-Ti-(± V).

Abstract

The Stratiform Mafic-Ultramafic Complex of Tucunduba (*Complexo Máfico-Ultramáfico Estratiforme de Tucunduba* – CMUET) is a layered body showing ellipsoidal geometry, with the major axis N025-trending and an area of ca. 4 km², composed of metapyroxenites, metagabbros, and metagabbronorites intruded into Paleoproterozoic granitic-migmatitic rocks of the Ceará Central Domain, Borborema Province, Northeastern Brazil. This magmatic association is cut by alkaline dykes of oligocene age, related to Messejana Volcanism. The Mafic-Ultramafic rocks are represented by three lithological zones: Ultramafic Zone localized in the Northwest portion of the complex, constituted by peridotitic and pyroxenitic compositions, Transition Zone characterized by mixing of pyroxenitic and gabbroic rocks, with varied texture and structure, and Mafic Zone of gabbro-noritic composition, concentrated in the southeast portion, in addition to the western and northern edges of the body. The forming zones of the CMUET undergone partial deformation and recrystallization, resulting from regional metamorphism in granulite facies, characterized by polygonization texture constituted by orthopyroxene and clinopyroxene crystals and hercynite occurrence, retrometamorphic processes in amphibolite facies evidenced by significant

hornblende formation and hydrothermal alteration under greenschist facies to sub-greenschist conditions characterized by the formation of hydrated minerals (talc, serpentine, actinolite, tremolite, and chlorite). However, primary texture and structure as layering igneous, rhythmic type, and cumulate texture are still preserved. Relevant occurrences of massive ore block rich in Fe-Ti (\pm V) are found, mainly in the domain of metamafic rocks. Data on soil geochemistry indicate anomalous values in S, Cu, Co, Ni, Ti, and V, suggesting the existence of potential target sulfides (Cu, Co, and Ni) and oxides (Ti and V).

Keywords: Ceará Central Domain; Granulite facies; Fe-Ti-(± V) oxides.

INTRODUÇÃO

Complexos máfico-ultramáficos estratificados são produtos de consolidação de magmas mantélicos instalados na crosta continental sob influência de plumas mantélicas (Naslund e McBirney, 1996). A sequência de cristalização dessas intrusões exibe composição que varia do magma parental a seus produtos de fracionamento. Exibem normalmente acamamento ígneo (rítmico e crítico), ciclicidade de pulsos magmáticos e texturas cumuláticas. Ocorrem como corpos intrusivos de dimensões variadas sob a forma de diques, sills e lopólitos em diferentes ambientes, i.e., cratônicos ou plataformais, riftes, e em menor escala, regiões orogênicas (Cawthorn, 1996; Charlier et al., 2015). Hospedam grandes depósitos de cromita, níquel, cobre e platinoides junto às porções ultramáficas menos diferenciadas e depósitos de Fe-Ti-V associados a magnetita e ilmenita nos termos mais diferenciados, i.e., rochas gabroicas e noríticas, (Naldrett, 2004; Eckstrand e Hulbert, 2007).

No Brasil, importantes intrusões máfica-ultramáficas acamadadas de idade entre o Arqueano e o Neoproterozoico são encontradas nas grandes províncias tectônicas. Entretanto, poucas são mineralizadas em Ti-V-Fe, destacando-se o *sill* máfico-ultramáfico do Rio Jacaré e o corpo intrusivo de Campo Alegre de Lourdes do Paleoproterozoico, no Cráton São Francisco, Bahia (eg. Couto, 1989; Brito, 2000). Na Província Borborema (PB), intrusões mineralizadas em Ti-Fe-V ocorrem associadas aos complexos máfico-ultramáficos de Floresta e Bodocó, do Neoproterozoico (~950 Ma); todavia, diferentemente dos complexos acamadados clássicos, essas intrusões são relacionadas ao contexto de subducção, como intrusões de arco, similares a complexos do tipo Alaska (Lages, 2014).

Recentemente, Cavalcante (2016) identificou diversos litotipos máfico-ultramáficos com estruturas acamadadas e texturas cumuláticas preservadas, típicas de intrusões estratificadas. Devido à presença dessas feições estruturais e texturais, o autor agrupou tais rochas sob a denominação de Complexo Máfico-Ultramáfico Estratiforme de Tucunduba (CMUET). O CMUET, localizado no município de Caucaia-CE, foi identificado na década de 1980 por meio do levantamento de recursos naturais da Folha SA.24 Fortaleza (RADAMBRASIL, 1981). Entretanto, não houve detalhamento, caracterização do potencial desse complexo, nem sua classificação como ocorrência máfica--ultramáfica estratiforme.

O CMUET é intrusivo em rochas do embasamento Paleoproterozoico, representadas por paragnaisses, calcissilicáticas, em geral migmatizados, agrupadas na unidade Complexo Canindé do Ceará (Calado et al., 2019).

Neste trabalho é apresentada uma síntese das principais feições geológicas, petrográficas e do estilo das mineralizações do CMUET, visando contribuir para a caracterização de complexos máfico-ultramáficos e sua potencialidade mineral no âmbito da PB, no estado do Ceará.

CONTEXTO GEOLÓGICO REGIONAL

A PB (Almeida et al., 1981) constitui o fragmento de um importante cinturão Brasiliano com tectônica acrescionária dominante, formando um megassistema orogênico neoproterozoico em reconstruções pre-drift (Arthaud et al., 2008; Ganade de Araújo, 2014; Caxito et al., 2020; Santos et al., 2022). Sua estruturação resulta da amalgamação dos crátons Amazônico, Oeste Africano-São Luís (Médio Coreaú-Dahomeyides-Gourma Tuareg Shield Oeste), São Francisco-Congo (Rio Preto-Riacho do Pontal-Sergipano-Yaoundé-África Central) e Saariano (Brito Neves e Cordani, 1991; Caxito et al., 2020). Van Schmus et al. (1995, 2008, 2011) dividiram a PB em três subprovíncias: Meridional, Central e Setentrional, limitadas pelos lineamentos de Patos e Pernambuco. A subprovíncia Setentrional é subdividida pelas zonas de cisalhamento Sobral-Pedro II e Senador Pompeu em três domínios: Médio Coreaú, Ceará Central e Rio Grande do Norte (Figura 1A). Arthaud (2007) e Arthaud et al. (2014) propuseram um novo domínio para a subprovíncia Setentrional, o qual denominaram de Orós-Jaguaribe, limitado pelo lineamento Senador Pompeu e pela Zona de Cisalhamento Porto Alegre. A individualização do Domínio Orós-Jaguaribe é corroborada por dados magnetotelúricos de Padilha et al. (2017).

O Domínio Ceará Central (DCC) é limitado por grandes zonas de cisalhamento desenvolvidas no Brasiliano (Lineamento Sobral-Pedro II, a norte-noroeste, e Senador Pompeu, a sul-sudeste) ambas apresentam cinemática dextral. Reúne vários terrenos formados entre o Arqueano e o Neoproterozoico. O registro arqueano é dado por

Figura 1. (A) Mapa esquemático geológico-tectônico da Subprovíncia Setentrional, Província Borborema, apresentando o padrão tectônico dos principais domínios e as zonas de cisalhamento maiores, modificado de Arthaud (2007); (B) Mapa geológico simplificado da região de ocorrência do CMUET, modificado de Cavalcante et al. (2003) e Pinéo et al. (2020).

um embasamento gnáissico de composição tonalítica a granodiorítica do Neoarqueano (2,8 - 2,7 Ga), conhecido como Complexo Cruzeta (Cavalcante et al., 1983; Fetter, 1999; Fetter et al., 2000). O Paleoproterozoico é marcado por:

- sequências metavulcano-sedimentares tipo greenstone belt (Greenstone Belt de Tróia-Pedra Branca, Serra das Pipocas) com idade de formação Riaciana (2,25 – 2,10 Ga) (Fetter, 1999; Silva et al., 2002; Costa et al., 2015; Ganade de Araújo et al., 2017; Sousa et al., 2019);
- ortognaisses migmatizados de composição granodiorítica, quartzo-diorítica e tonalítica, conhecidos como Unidade Madalena-Algodões-Choro, de idade paleoproterozoica (2,2 – 2,0 Ga) (Fetter et al., 2000; Martins et al., 2009);
- rochas metassedimentares migmatizadas, com anfibolitos, ortognaisses graníticos, formações manganesíferas e grafitosasas ou não, agrupadas na unidade Complexo Canindé do Ceará, com idade de deposição e do metamorfismo ao final da deposição entre 2.137 e 2.046 Ga (Calado et al., 2019; Pinéo et al., 2020);
- intrusões máfica-ultramáficas acamadadas mineralizadas em PGE (Ni-Cu) de 2,03 Ga (Costa et al., 2015).

O Neoproterozoico é registrado por sequências metassedimentares agrupadas sob a denominação de Grupo Ceará e por extenso magmatismo granítico desenvolvido em contexto de arco, cuja principal referência é o Arco Magmático de Santa Quitéria (Complexos Tamboril-Santa Quitéria), além de numerosos corpos graníticos sin-tardi a pós- Brasiliano (Arthaud et al., 2008).

O Grupo Ceará é formado por sequência de rochas metassedimentares, como paragnaisses aluminosos, contendo camadas espessas de quartzitos, mármores, sheets de metavulcânicas bimodais e metabásicas anfibolitizadas (Cavalcante et al., 2003; Arthaud et al., 2014). O conjunto é metamorfizado em fácies anfibolito acompanhado de anatexia, atingindo localmente fácies granulito; ainda, próximo às bordas do Arco Magmático Santa Quitéria são encontrados boudins de rochas metamáficas eclogitizadas (Garcia e Arthaud, 2004; Garcia et al., 2006; Santos et al., 2009). Datações U-Pb em zircões detríticos de gnaisses metapelíticos e em zircões das metavulcânicas básicas realizadas por Arthaud et al. (2014) fornecem idade, respectivamente, de 800 Ma e 749 ± 5 Ma. Nas metavulcânicas félsicas foi encontrada idade de 772 ± 31 Ma (Fetter, 1999). Esses dados indicam que parte da sedimentação aconteceu à época das metavulcânicas, associadas ao rifteamento do embasamento Arqueano-Paleoproterozoico, com subsequente abertura e fechamento oceânico (Arthaud, 2007; Arthaud et al., 2014).

O Arco Magmático de Santa Quitéria (SQMA) reúne um conjunto de rochas graníticas com composição, deformação e idade variadas, que indicam vários estágios de evolução:

- o mais antigo teria se desenvolvido entre 880 e 800 Ma, sendo marcado por metatexitos com paleossoma de composição tonalítica a granodiorítica de idade U-Pb (870 – 800 Ma) e [εNd(t) + 4,98], representativo de magmatismo de arco juvenil (Ganade de Araújo et al., 2014);
- o segundo entre 660 e 630 Ma envolve um magmatismo híbrido com componentes crustais e mantélicos composto por ortognaisses e migmatitos dioríticos a granodioríticos, de alto Ca e baixo K, considerados como pré-colisionais;
- o terceiro desenvolvido entre 620 600 Ma é formado pelos granitos sin-colisional ou anatéticos ricos em Al, com a mesma idade do metamorfismo Brasiliano (ca. 620 e 600 Ma) (Arthaud et al., 2014);
- o quarto estágio, com idade entre 590 e 560 Ma seria representado por granitos tardi- orogênicos associados à fase *syn-strike-slip* (Santos et al., 2008).

Granitos mais jovens (< 550 Ma) corresponderiam aos granitos pós-orogênicos (Archanjo et al., 2009; Castro et al., 2012), megaenclaves de cálcio-silicáticas, mármores e anfibolitos são características comuns neste complexo (Fetter et al., 2003; Castro, 2004; Arthaud, 2007; Ganade de Araújo et al., 2014; Parente et al., 2015). Recentemente, Pitombeira et al. (2021) identificaram um outro complexo ígneo anatético, Complexo Pacatuba-Maranguape, com associações litológicas, metamorfismo e idade similares às rochas, formadas a partir de 660 Ma, do Arco Magmático Santa Quitéria.

O CMUET, objeto do presente estudo, constitui corpo contínuo e alongado na direção NE-SW, intrudido em rochas metassedimentares migmatizadas do Complexo Canindé do Ceará. Na porção S-SE é recortado por rochas vulcânicas alcalinas de idade oligocênica, pertencentes ao Vulcanismo Messejana (Figura 1B).

MATERIAIS E MÉTODOS

O estudo do CMUET envolveu a cartografia geológica convencional, em escala de detalhe (1:10.000), com a realização de perfis perpendiculares e longitudinais à intrusão, e petrografia de 45 lâminas delgadas e 7 polidas. As abreviações minerais são a partir de Whitney e Evans (2010).

Realizou-se análise dos dados de geoquímica de solos, para indicação e delimitação de potenciais mineralizações presentes no CMUET. Contou-se com dados para 90 amostras de solo, disponibilizadas pela empresa Mineração Santa Elina Ind. e Com S.A., localizadas sobre a porção central do CMUET, porção de maior concentração de rochas máfica-ultramáficas e solos residuais (Figura 2). As análises para determinação da concentração de elementos maiores e menores foram realizadas pelo método *Inductively Coupled Plasma-Atomic Emission Spectrometry* (ICP-AES), no laboratório da ALS Chemex, para 35 elementos. A amostragem ocorreu em uma área de 2,5 km², ao longo de 3 linhas de coletas, com espaçamento entre linhas de 420 m e espaçamento da coleta de 50 m, a malha realizada perpassa todas as zonas do CMUET. Do total de elementos analisados, foram selecionados e trabalhados os resultados mapas de isoteores e perfis geoquímicos dos componentes selecionados, no *software* SURFER 14 (interpolação por krigagem).

COMPLEXO MÁFICO-ULTRAMÁFICO ESTRATIFORME DE TUCUNDUBA

Aspectos geológicos

O CMUET (Figura 2) é composto por um conjunto de rochas metamáficas e metaultramáficas que ocorrem como blocos e matacões (Figura 3A), raramente *in situ*. Exibe forma aproximadamente elipsoidal, com eixo principal orientado N025° (direção das camadas NE-SW), tem 5 km de comprimento por 1 km de largura média em superfície.

A intrusão apresenta repetições consistentes de tipos litológicos que a definem como um corpo estratificado. Tais feições são representadas por blocos com acamamento ígneo bem definido, marcado por mudanças gradativas ou bruscas na granulação e composição mineralógica. O estudo detalhado dessa associação litológica permitiu agrupar os diferentes litotipos do complexo em três zonas distintas:

- Zona Ultramáfica (ZU);
- Zona de Transição (ZT);
- Zona Máfica (ZM).

A ZM é composta por metahornblenda gabronorito, metahornblenda gabro e metagabronorito, que contornam de maneira descontínua o CMUET. Associados a essas rochas são encontrados blocos de ilmenita magnetititos, indicando a presença de estratos mineralizados em óxidos de Fe-Ti.

Próximo ao contato da intrusão com as encaixantes, as rochas metamáficas apresentam granulação fina e são marcadas por processos de alteração pós-magmático:

- metassomático, como anfibolitização e cloritização;
- intempérico por oxidação.

Essas rochas encontradas nas bordas laterais das porções oeste e leste são interpretadas como possíveis margens

Figura 2. Mapa geológico do Complexo Máfico-Ultramáfico Estratiforme de Tucunduba (CMUET).

resfriadas (*chilled margin*) (Latypov et al., 2007), a exemplo do que ocorre nas intrusões máfico-ultramáficas de Giles, Austrália, ou no *Sill* do Rio Jacaré, Brasil (Balhaus e Glikson, 1995; Brito, 2000).

A passagem da ZM para a ZT acontece pelo aumento da granulação e pela diminuição do plagioclásio modal nos litotipos.

Na ZT estão agrupadas as rochas posicionadas entre a ZU e a ZM, caracterizadas por uma associação indivisa de metapiroxenitos, metagabros e metagabronoritos. A sua maior exposição está na porção centro-leste da intrusão, onde as rochas exibem texturas e estruturas variadas, sem o predomínio de um litotipo. Assim, são observados:

- mistura de rochas de granulação fina com rochas de granulação grossa;
- contatos interdigitados entre os diferentes tipos litológicos, particularmente entre metapiroxenitos e metagabros e/ou metagabronoritos (Figuras 3B e 3C).

Essas rochas com texturas e estruturas multivariadas são denominadas por Brito (2000) de *varitexturadas*, que representam um conjunto de feições exóticas indicativas de mistura de magmas.

Figura 3. (A) Principal modo de ocorrência das rochas metamáficas e metaultramáficas do CMUET; (B) Metapiroxenito de granulação fina associado a metapiroxenito de granulação grossa; (C) Contato interdigitado com concentração local de metagabronorito em metapiroxenito; (D) Acamamento ígneo do tipo rítmico marcado por mudança textural e litológica.

Adicionalmente, ao longo da ZT ocorrem blocos magnetíticos maciços e disseminados, de dimensão centimétrica. Os corpos magnetíticos maciços são constituídos por magnetita \pm ilmenita, que perfazem de 80 a 90% da composição modal, com ocorrência subordinada de anfibólio, enquanto o disseminado é representado por magnetita metapiroxenito, com 4 a 20% de óxidos. Essas ocorrências se dispõem em aglomerados de blocos orientados, segundo a direção NE-SW, aparentemente formando estratos mineralizados em concordância com as rochas hospedeiras.

A ZU é composta por metaperidotitos talcificados e serpentinizados, metahornblenda piroxenito, metaclinopiroxenito, actinolita piroxenito e actinolitito. Na porção norte do complexo, são comuns blocos métricos com acamamento ígneo centimétrico, do tipo rítmico, intermitente, marcado por alternância de camadas de metapiroxenito (granulação média a grossa e cor cinza-claro) e bandas de actinolitito (granulação fina e cor verde) em contato brusco (Figura 3D). Nessa unidade ocorrem blocos centimétricos de serpentinitos que definem uma camada estratigráfica. Têm granulação fina a grossa e são formados por cristais de piroxênio, em matriz de aspecto sedoso rica em talco e serpentina. Nas demais porções da ZU predominam rochas piroxeníticas de aspecto maciço, sem acamamento rítmico e frequentemente anfibolitizadas.

Petrografia

As rochas estudadas têm índice de cor variando de mesocrática a melanocrática. Ao microscópio, apresentam texturas cumuláticas, *annealing* (compactação-recristalização), recristalização em estado sólido e desestabilização metamórfica caracterizada pela substituição de piroxênio por anfibólio. Os litotipos da ZU, em particular o talco serpentinito, apresentam microfraturas preenchidas por oxi-hidróxido de ferro, além de intensa alteração hidrotermal, com minerais ferro-magnesianos alterados para serpentina e talco. A associação mineral compreende serpentina (54%), talco (40%), antofilita (3%), ortopiroxênio (2%) e espinélio (1%). A serpentina tem aspecto fibrolamelar, ocorrendo associada, em contatos serrilhados, a cristais lamelares de talco (Figura 4A).

Opx: ortopiroxênio; Cpx: clinopiroxênio; Tlc: talco; Srp: serpentina; Hbl: hornblenda; Act: actinolita.

Figura 4. Fotomicrografias representativas dos litotipos da ZU: (A) agregados lamelares de talco e fibrolamelar de serpentina em serpentinito (luz polarizada); (B) cristais cumulus de piroxênios microfraturados, em textura adcumulática, com substituição parcial para hornblenda marrom em metahornblenda piroxenito (luz natural); (C) agregados fibrorradiais de actinolita em actinolitito (luz natural); (D) porfiroclastos de clinopiroxênio, com matriz cominuída de composição similar, em metaclinopiroxenito (luz natural).

Os ortopiroxênios são incolores e apresentam substituição parcial ou total para serpentina e talco. Antofilita mostra alteração ao longo de suas fraturas e clivagem para hidróxido de ferro. Espinélio ocorre como cristais anédricos com cores esverdeadas. O metahornblenda piroxenito exibe granulação variando de fina a grossa e textura cumulática com cristais cumulus de piroxênio e intercumulus constituídos por plagioclásio. Apresenta ortopiroxênio (~43%) em cristais com dimensões de 0,2-3,5 mm, cor avermelhada, prismático, bordas retas a sinuosas. Os clinopiroxênios (~37%) são incolores a amarelo pálido, apresentam maclas simples e, por vezes, estão zonados, com até 3 mm de comprimento, pertencem à série diopsídio-hedenbergita e são denominados, de um modo geral, como augita diopsídica. O plagioclásio (0 - 3%) é intercumulus e preenche os interstícios dos cristais de piroxênio (cumulus), caracterizando textura cumulática do tipo adcumulática (Figura 4B), segundo Wager et al. (1960). Os anfibólios ocorrem de duas formas:

- hornblenda metamórfica de cor marrom amarelada, bordas serrilhadas, resultante da quebra dos piroxênios ao longo dos planos de clivagem destes, por vezes esse anfibólio é substituído por clorita;
- cristais fibrosos de actinolita que, em geral, substitui parcial ou completamente o clinopiroxênio em processo metamórfico tardio, por meio de alterações hidrotermais deutéricas.

O actinolita piroxenito está parcial ou intensamente uralitizado, é constituído por fases prismáticas de augita diopsídica (37 - 38%) e ortopiroxênio (30 - 32%) alterados para hornblenda (5 - 8%), clorita (1%) ou cristais aciculares de actinolita que compõem até 70% da composição modal do sistema, sendo denominado, neste caso, como actinolitito (Figura 4C). Os cristais de plagioclásio (0 - 1%) são raros, ocorrendo como fase intercumulus ou em vênulas (resultante de remobilização induzida pelo metamorfismo). O metaclinopiroxenito tem até 95% de augita diopsídica, apresentando substituição parcial para hornblenda (0 - 5%) e inclusão de opacos (até 1%). Esse sistema é afetado localmente por evento cataclástico, caracterizado por fragmentos de rochas e de porfiroclastos angulosos a subangulosos de clinopiroxênio, com extinção ondulante, imersos em matriz de granulação fina fortemente cominuída (Figura 4D). Alguns dos fragmentos de rochas exibem clinopiroxênios parcialmente anfibolitizados e outros recristalizados a agregados granoblásticos granulares a poligonais.

A análise permite estabelecer a seguinte sequência de cristalização na ZU:

- serpentinito: 1. ortopiroxênio + espinélio → 2. antofilita
 → 3. serpentina + talco (fases metamórficas);
- metahornblenda piroxenito: 1. ortopiroxênio + augita diopsídica → 2. plagioclásio (fases ígneas) → 3. hornblenda → 4. actinolita + clorita (fases metamórficas);

- actinolita piroxenito e/ou actinolitito: 1. ortopiroxênio + augita diopsídica → 2. plagioclásio 1 (fases ígneas) → 3. hornblenda + plagioclásio 2 → 4. actinolita + clorita (fases metamórficas);
- metaclinopiroxenito: 1. augita diopsídica (fase ígnea)
 → 3. hornblenda (fase metamórfica).

As associações ígneas e metamórficas do CMUET são apresentadas na Tabela 1.

Na ZT, os metaclinopiroxenitos apresentam granulação média a grossa e textura granoblástica granular (Figura 5A). São compostos por cumulus de augita diopsídica (70 – 80%) e até 7% de ortopiroxênio com contatos retos a sinuosos, além de hornblenda (3 – 15%) e actinolita (0 – 15%) resultantes da alteração dos piroxênios. A clorita (0 – 3%) ocorre substituindo a hornblenda e o plagioclásio (0 – 1%), quando presente, é intercumulus ou produto de substituição dos piroxênios. O metahornblenda piroxenito apresenta cumulus de ortopiroxênio (20 – 25%) e augita diopsídica (40 – 43%), como cristais prismáticos de até 2,7 mm, que mostram contatos retos a sinuosos, parcialmente uralitizados, localmente com textura granoblástica poligonal (Figura 5B). O anfibólio ocorre como:

- oikocristais de hornblenda de cor marrom, contatos lobulados e aspecto ameboide, como fase intercumulus, incorporando cristais de piroxênios, provavelmente primários (Figura 5C);
- hornblenda secundária (15 30%) gerada a partir da substituição dos piroxênios de forma dispersa ou ao longo dos planos de clivagem (Figura 5D);
- actinolita (até 6%) de cor verde e hábito acicular.

Ilmenita-magnetita (3 - 7%) e plagioclásio (7 - 8%) ocupam os interstícios dos cumulus de piroxênios.

As relações texturais permitem estabelecer a seguinte sequência de cristalização para rochas metapiroxeníticas da ZT:

- metaclinopiroxenito: 1. ortopiroxênio + augita diopsídica → 2. plagioclásio 1 (fases ígneas) → 3. hornblenda + plagioclásio 2 → 4. actinolita (fases metamórficas);
- metahornblenda piroxenito: 1. ortopiroxênio + augita diopsídica → 2. plagioclásio + hornblenda 1 + ilmenita-magnetita (fases ígneas) → 3. hornblenda 2 → 4. actinolita + clorita (fases metamórficas).

Os metagabros e metagabronoritos presentes na ZT e na ZM apresentam granulação de fina a grossa e predomínio de cristais prismáticos. Preservam feições ígneas primárias como textura mesocumulática, marcada pela presença de augita diopsídica (20 - 60%) e ortopiroxênio (6 - 25%) cumulus e de ilmenita-magnetita (1 - 5%) e plagioclásio (15 - 40%) intercumulus (Figuras 6A e 6B). O plagioclásio ocorre parcialmente saussuritizado, com maclas deformadas e, por vezes, preenche microfraturas (processo de remobilização).

Rochas Máfica-Ultramáficas do Complexo Tucunduba									
Zonas	Rochas	Fases minerais primárias	Fases minerais metamórficas	Mineral minério	Protólito inferido				
Zona Ultramáfica	Serpentinito	92.03	Opx, Spl, Ath, Srp, Tlc		Peridotito				
	Metahornblenda piroxenito	Opx, Cpx, Pl	Hbl, Act, Chl		Piroxenito				
	Act Piroxenito/ Actinolitito	Opx, Cpx, Pl	Hbl, Pl, Act, Chl		Piroxenito				
	Meta-clinopiroxenitoo	Срх	Hbl		Clinopiro-xenito				
Zona de Transição	Metaclinopiro-xenito	Cpx, Opx, Pl	Hbl, Pl, Act		Clinopiro-xenito				
	Metahornblenda piroxenito	Opx, Cpx, Pl	Hbl, Act, Chl		Piroxenito				
	Metapiroxenito(*)	Opx, Cpx, Ilm, Mag	Hbl, Act, Chl	llm+Mag	Piroxenito				
	Metagabro/ Metagabro-norito	Opx, Cpx, Pl, Hbl, Ilm, Mag	Hbl, Pl, Act, Chl llm+Mag		Gabro/Gabro-norito				
	Ilmenita Magnetitito(**)	Cpx, llm, Mag, Ccp	Hc, Hbl, Tr	llm+Mag±Ccp					
Zona Máfica	Metagabro/ Metagabro-norito	Opx, Cpx, Pl, Hbl, Ilm, Mag	Hbl, Pl, Act, Chl	llm+Mag	Gabro/Gabro-norito				
	llmenita magnetitito	Cpx, llm, Mag, Ccp	Hc, Hbl, Tr	Ilm+Mag±Ccp					

Tabela 1	. Características	petrográficas	das rochas	máfica-u	ltramáficas o	do Compl	exo Tucunduba
----------	-------------------	---------------	------------	----------	---------------	----------	---------------

*Ocorrência de mineralização disseminada; **ocorrência de mineralização maciça.

Ortopiroxênio e augita diopsídica têm dimensões entre 0,15 e 4,6 mm, cujos cristais menores são resultado de recristalização e os maiores são frequentemente substituídos por anfibólio, mas ainda preservam suas características no núcleo dos grãos uralitizados. O anfibólio ocorre como:

- oikocristal de hornblenda (primária) com aspecto ameboide, ocupando os interstícios dos piroxênios cumulus;
- hornblenda marrom amarelada, de contatos serrilhados, formada a partir da substituição dos piroxênios, que por sua vez, se mostra alterada para clorita;
- actinolita gerada a partir da alteração tardia dos piroxênios, de cor esverdeada e forma acicular.

A sequência de cristalização para rochas metagabroicas da ZT e da ZM pode ser assim definida: metagabro e metagabronorito: 1. ortopiroxênio + augita diopsídica \rightarrow 2. plagioclásio + hornblenda 1 + ilmenita-magnetita (fases ígneas) \rightarrow 3. hornblenda 2 + plagioclásio 2 \rightarrow 4. actinolita + clorita (fases metamórficas).

Ilmenita magnetititos presentes na ZT e na ZM apresentam granulação fina a média e textura em mosaico equigranular de ilmenita + magnetita. A ilmenita (14 – 32%) contém inclusões de calcopirita (0 – 1%) e mostra contato reto a sinuoso com magnetita (43 – 72%), a qual se encontra parcialmente

alterada para martita. Augita diopsídica (0-4%) apresenta substituição parcial para agregados radiais de tremolita (5 – 8%) e hornblenda (4 – 12%). Espinélio verde (3 – 7%), classificado como hercinita, é substituído por hornblenda e ocorre com contatos serrilhados. A sequência de cristalização pode ser assim definida: 1. augita diopsídica + calcopirita \rightarrow 2. ilmenita + magnetita (fases ígneas) \rightarrow 3. hercinita \rightarrow 4. hornblenda \rightarrow 5. tremolita (fases metamórficas).

Metamorfismo

Em termos metamórficos, as zonas formadoras do CMUET foram afetadas parcialmente por deformação e recristalização metamórfica resultantes de metamorfismo regional com preservação de feições ígneas. Relações texturais e minerais, como textura granoblástica granular a poligonal na qual cristais de piroxênios apresentam contatos retos em ângulos diedros de 120°, caracterizam feição de poligonização (Figura 7A) nos metapiroxenitos, metagabros e metagabronoritos bem como a ocorrência de espinéliohercinita nos ilmenita magnetititos e serpentinitos (Figura 7B), sugerem metamorfismo progressivo, com condições metamórficas variando da fácies de transição anfibolito superior-granulito a fácies granulito (Evans e Frost, 1975;

Opx: ortopiroxênio; Cpx: clinopiroxênio; Hbl: hornblenda; Pl: plagioclásio. **Figura 5.** Fotomicrografias representativas de rochas metaultramáficas da ZT: (A) textura granoblástica granular em metaclinopiroxenito microfraturado (luz natural); (B) textura granoblástica poligonal em metahornblenda piroxenito (luz natural); (C) grãos de ortopiroxênio e clinopiroxênio inclusos em oikocristal de hornblenda (luz natural); (D) textura

intercumulus de plagioclásio e substituição de clinopiroxênio por hornblenda (luz natural).

Srikantappa et al., 1985; Brito, 2000). Os serpentinitos apresentam a paragênese ortopiroxênio \pm espinélio, cuja associação evidência um processo de hidratação precoce, sugerindo reação de quebra de uma clorita precursora (Chl \rightarrow Fo + En + Spl + H₂O) com estabilidade máxima da clorita em temperaturas entre 760 e 850°C (Jenkins e Chernosky, 1986). Dados experimentais mostram a coexistência do par

hercinita-magnetita em temperaturas superiores a 860°C (Turnock e Eugster, 1962). Adicionalmente, Schollenbruch et al. (2010) demonstram a estabilidade de hercinita acima de 1.000°C. Rochas ultramáficas do cinturão Rio de Las Tunas, na Zona Central dos Andes, apresentam hercinita como marcadora da fácies granulito (Gargiulo et al., 2013). Assim, a ocorrência de hercinita e o ortopiroxênio em textura

Opx: ortopiroxênio; Cpx: clinopiroxênio; Pl: plagioclásio; Hbl: hornblenda.

Figura 6. Fotomicrografias representativas de rochas metamáficas da ZT e ZM: (A e B) Textura mesocumulática com plagioclásio intercumulus e cristais cumulus de clinopiroxênio e ortopiroxênio comuns a metagabros e metagabronoritos (luz natural e polarizada, respectivamente).

de poligonização são importantes evidências do metamorfismo de alta temperatura experimentado pelas rochas do CMUET. As associações metamórficas de baixo a médio grau no CMUET oriundas do metamorfismo progressivo foram totalmente obliteradas.

Em condições retrometamórficas, ocorre expressiva formação de hornblenda, que substitui os cristais de ortopiroxênio e augita diopsídica nos metapiroxenitos e hercinitas nos ilmenita magnetititos (Figuras 7C e 7D); esse estágio ainda é evidenciado por textura simplectítica na qual óxidos de Fe-Ti estão exsolvidos em piroxênios (Figura 7E), além de coronas de reação formadas por hornblenda ao redor de ilmenita-magnetita (Figura 7F). Essas coroas de anfibólio possivelmente são resultantes de reações entre os óxidos e o plagioclásio (ver reação al em Whitney e McLelland, 1983). Texturas simplectítica e coronítica em rochas metamáfica-metaultramáficas são recorrentes em terrenos de fácies anfibolito-granulito (Whitney e McLelland, 1973; Lamoen, 1979; Helmy et al., 2008). Nos serpentinitos, a antofilita se forma a partir da substituição completa de fases de alto grau metamórfico, provavelmente ortopiroxênio, marcando condições de fácies anfibolito (Srikantappa et al., 1985; Bucher-Nurminen, 1988). O processo retrogressivo nos metagabronoritos e metagabros é caracterizado pela reação de quebra dos piroxênios para hornblenda e geração local de plagioclásio (Hbl ± Pl). A associação Hbl + Pl, oriunda de retrometamorfismo, em rochas metamáficas de alto grau metamórfico é típica de fácies anfibolito e pode ter suas condições P-T estimadas pelo geotermômetro hornblenda-plagioclásio de Holland e Blundy (1994). Dados experimentais desses autores fornecem a esse sistema temperaturas superiores a 400°C.

Em estágio de alteração tardia ocorre formação de minerais hidratados, constituídos no serpentinito por talco + serpentina e nos demais litotipos (metapiroxenitos, metagabros, metagabronorito e magnetititos) por actinolita ± tremolita ± clorita, além do processo de martitização junto ao ilmenita magnetitito, que caracteriza condições de fácies xisto verde a sub-xisto verde, sublinhando significativa ação hidrotermal no CMUET.

POTENCIAL METALOGENÉTICO

Considerações gerais

Complexos máfico-ultramáficos evoluídos, em que os termos peridotíticos são pouco frequentes, são conhecidos pelo seu potencial em mineralizações de Cu (\pm Ni) e/ou em óxidos de Fe-Ti (\pm V), tornando-se prospectos atrativos à exploração mineral (Brito et al., 2002; Largo Resources, 2009; Garcia, 2017). No CMUET, o mapeamento e a caracterização petrográfica de detalhe e o uso de dados de geoquímica de solos possibilitaram, além da cartografia geológica, a identificação de áreas-alvo relacionadas às ocorrências dessas mineralizações, sobretudo as de óxidos de Fe-Ti (\pm V).

Cpx: clinopiroxênio; Opx: ortopiroxênio; Pl: Plagioclásio; Hc: hercinita; Mag: magnetita; Ilm: ilmenita.

Figura 7. (A) poligonização formada por cristais de ortopiroxênio e clinopiroxênio, apresentando junção tríplice em ângulo de 120°; (B) cristais de hercinita, evidenciando metamorfismo em fácies granulito (luz natural); (C e D) substituição de clinopiroxênio e hercinita por hornblenda marrom, respectivamente, sublinhando retrometamorfismo em fácies anfibolito; (E) intercrescimento simplectítico de óxidos de Fe-Ti sobre piroxênios (luz natural); (F) coronas de reação de hornblenda em óxidos de Fe-Ti.

As principais ocorrências de óxidos de Fe-Ti $(\pm V)$ aparecem em forma de blocos junto às rochas da ZM e da ZT em dois estilos:

- maciço, formado por ilmenita magnetititos;
- disseminado, presente em magnetita piroxenitos.

Os minerais de minério predominantes são a magnetita e a ilmenita, com ocorrência subordinada de calcopirita. Os minerais de ganga são representados por hornblenda, espinélio, clinopiroxênio e tremolita.

Ocorrências de Fe + Ti

Tipos maciço e disseminado

A mineralização maciça constitui a principal ocorrência de minerais minérios, cuja concentração de óxidos (magnetita e ilmenita) é superior a 60% do volume total da rocha, chegando a compor 90% da associação mineral. Ocorre como blocos centimétricos, ao longo de faixas métricas em extensão, relativamente contínuas, em meio às rochas piroxeníticas e gabroicas da ZT e da ZM. Na ZM, a mineralização maciça tem maior grau de oxidação, adquirindo aspecto mosqueado. Apresenta mineralogia, textura e estrutura similar à ocorrência da ZT, exceto pelas diferenças nas proporções modais de cada fase mineral. O tipo maciço da ZM é mais rico em magnetita (com até 90%) e contém menor quantidade de ilmenita (até 10%), em relação ao da ZT, que tem até 40% de ilmenita. Macroscopicamente, as ocorrências mostram cor preta acinzentada, textura fina, com macrocristais de anfibólio de cor verde-amarelada a esbranquiçada e forma arredondada, em meio a uma matriz de óxidos de Fe-Ti (Figura 8A). Em termos petrográficos, é definido como ilmenita magnetitito, de granulação fina a média, textura em mosaico, com os óxidos exibindo contatos retos a sinuosos e hábito prismático a granular. A associação mineral é formada por magnetita (50–86%), ilmenita (14–40%), hematita (até 1%) e sulfetos (até 1%).

Ao microscópio, a magnetita tem cor rosa-clara, aspecto turvo, com porções esbranquiçadas, características típicas do processo de martitização. Apresenta dimensões variando de 0.25 - 3 mm, contatos retos e microfraturas. Por vezes, os grãos de magnetita estão com núcleo preservado (Figura 8B), tendo bordos serrilhados e martitizados. Os cristais de ilmenita têm cor castanha, exibem maclas polissintéticas em diferentes direções e encurvadas, resultado de deformação mecânica. Apresentam dimensões que variam de 0,2-3,7mm e com frequência contêm finas exsoluções lamelares de hematita. Os sulfetos são representados por calcopiritas (Figura 9A), que ocorrem como cristais inclusos em ilmenita, exibindo dimensões entre 0.05 - 0.07 mm e bordas de reação por oxidação. Os minerais de minério dominantes exibem, em geral, contatos retos a curvos entre si, conferindo textura poligonal com ângulos diedros de 120° (Figura 9B).

A ganga é composta, principalmente, por hornblenda de cor marrom-avermelhada, sugerindo elevados teores de titânio, exibindo, por vezes, exsoluções de ilmenita vermiforme, e tremolita (Figura 9C) que substituem o clinopiroxênio. Os espinélios são representados por:

Mag: magnetita; Ilm: ilmenita; Mr: martita.

Figura 8. Amostra de mão e fotomicrografia do magnetitito maciço: (A) Bloco de ilmenita magnetitito oxidado, composto por hornblenda (porções esverdeadas), tremolita (porções brancas acinzentadas) com matriz de cor cinza escuro constituída de magnetita e ilmenita; (B) Núcleo de magnetita preservado do processo de martitização (luz natural).

Mag: magnetita; Ilm: ilmenita; Mr: martita; Ccp: calcopirita; Tr: tremolita; Cpx: clinopiroxênio.

Figura 9. Fotomicrografias representativas das mineralizações maciça e disseminada: (A) calcopirita disseminada, inclusa em ilmenita, no ilmenita magnetitito (luz natural); (B) geometria em mosaico com cristais de magnetita martitizada e ilmenita em junção tríplice, caracterizando textura poligonal (luz natural); (C) tremolita com aspecto esqueletal em ilmenita magnetitito (luz natural); (D) aspecto da ocorrência disseminada, constituída por magnetita-ilmenita intercumulus e cristais cumulos de clinopiroxênio (luz natural).

- hercinita, de cor verde, isotrópica, com contatos serrilhados e substituída por hornblenda;
- ulvoespinélio com padrões de microintercrescimento em três formas distintas (aspecto vermiforme, formato de finos bastões e grãos arredondados).

A ocorrência disseminada apresenta concentração de ilmenita + magnetita inferior a 30% do volume da rocha, sendo encontrada principalmente em metapiroxenitos. O metapiroxenito, rico em óxidos de Fe-Ti, mostra textura granoblástica e associação mineral composta por augita diopsídica (22 - 55%), ortopiroxênio (10 - 20%), actinolita (20 - 40%), hornblenda (até 5%), clorita (até 1%) e magnetita + ilmenita (4 - 20%). Os cristais cumulus de ortopiroxênio e clinopiroxênio têm contatos retos a sinuosos e dimensões entre 0,15 - 2,7 mm. Magnetita e ilmenita apresentam contatos sinuosos e ocorrem como cristais intercumulus, ocupando os espaços entre os cumulus de piroxênios (Figura 9D).

Geoquímica de solos

A partir do tratamento dos dados pedogeoquímicos, elaboraram-se mapas de isoteores e perfis geoquímicos sobre a área de amostragem (Figura 3), orientados na direção SW-NE e SE-NW, para concentração de seis elementos: V, Ti, Cu, S, Co e Ni. Esses elementos foram selecionados por indicarem associação típica com rochas ultramáficas (S, Co, Ni e Cu) e máficas (Ti e V), além de serem economicamente importantes e atuarem como componentes indicadores para detecção de corpos mineralizados. As análises químicas realizadas resultaram em teores máximos (Apêndice 1) relevantes em Ni (685 ppm), Cu (347 ppm), Co (135 ppm), Ti (0,39%), V (354 ppm) e S (0,06%), sugerindo potencial para mineralizações sulfetadas.

O tratamento dos dados possibilitou a delimitação e a visualização dos picos de anomalias gerados pelas ocorrências de potenciais mineralizações associadas (Figuras 10 e 11).

V: vanádio; Ti: titânio; Cu: cobre; S: enxofre; Co: cobalto; Ni: níquel. Figura 10. Mapas de isoteores com traços de perfis SW-NE e SE-NW para: vanádio; titânio; cobre; enxofre; cobalto; níquel.

Perfis Geoquímicos de Elementos Selecionados

Figura 11. Perfis geoquímicos traçados sobre os mapas de isoteores com orientação SW-NE e SE-NW para os elementos: vanádio, titânio, cobre, enxofre, cobalto e níquel.

Os resultados obtidos a partir do tratamento dos dados geoquímicos de solos, somados às informações geológicas adquiridas sobre o CMUET, permitiram definir alguns alvos potenciais:

- mineralização sulfetada, evidenciada pelas anomalias positivas e superpostas de Ni, Co e ±Cu. Dados de campo mostram que essa possível zona mineralizada em sulfeto estaria associada à ZU, principalmente nas seções em que ocorrem blocos de serpentinito. Contudo, não foram observadas ocorrências de sulfetos em superfície, o que não implica em inexistência de potencialidade desse complexo máfico-ultramáfico, uma vez que sulfetos magmáticos podem ser segregados em profundidade e/ou estar alterados pela intensa oxidação presente no CMUET. Desse modo, ressalta-se a necessidade de levantamentos geofísicos terrestres sistemáticos, para delimitação de possíveis anomalias associadas, e posteriores furos de sondagens, para verificação do real potencial em subsuperfície;
- mineralização de óxidos de Fe-Ti (± V), associada a essas ocorrências, por vezes, mostra calcopirita disseminada. Neste caso, as informações geoquímicas fornecem zonas de valores positivos em V e Ti que se superpõem com as informações obtidas de campo e laboratoriais. Assim, as anomalias associadas à ZT e à ZM apresentam maior intensidade nos pontos em que ocorrem blocos de minério maciço e disseminado de magnetita-ilmenita.

DISCUSSÃO E CONCLUSÕES

As rochas do CMUET foram deformadas e metamorfizadas sob condições que alcançaram possivelmente as de fácies granulito (condições metamórficas sublinhadas por textura de poligonização e ocorrência de hercinita), experimentaram retrometamorfismo em fácies anfibolito e alteração hidrotermal em condições de fácies xisto verde a sub-xisto verde. Entretanto, a preservação de texturas e estruturas primárias, como acamamento ígneo, do tipo rítmico, com variações texturais e composicionais bem como textura cumulática, permite associar as rochas estudadas a um complexo máfico-ultramáfico estratiforme. O corpo estratificado ocorre em blocos e pode ser subdividido em ZU, ZT e ZM, variando de termos mais primitivos, com composição peridotítica e piroxenítica, a componentes mais diferenciados, de composição gabroica. Mineralizações de óxidos de Fe-Ti são comumente associadas ou hospedadas em intrusões máfica-ultramáficas (Lister, 1966; Force, 1991), com grau mais elevado de diferenciação, de modo que a associação magnetita e ilmenita presente no CMUET corrobora essa afirmação.

Dados de geoquímica de solos evidenciam a existência de alvos potenciais para sulfetos com valores anômalos de S, Cu, Co e Ni e para óxidos com anomalias em Fe, Ti e V. Em superfície, a mineralização é caracterizada por blocos de minério maciço e disseminado de óxido de Fe + Ti (\pm V). A presença do vanádio é postulada com base na geoquímica de solos, necessitando de maior suporte químico-analítico. Por outro lado, a ocorrência restrita de sulfetos, apenas raras calcopiritas associadas ao ilmenita magnetitito, não inviabiliza a existência de possíveis mineralizações em sulfetos, uma vez que eles podem estar retidos em subsuperfície ou podem ter sido lixiviados por processos intempéricos.

Os dados petrográficos evidenciam variação significante na granulação do minério magnetítico maciço (3 mm) para o disseminado no piroxenito (1 mm). Esse fato pode ser explicado pelo processo de sinterização (*annealing*), caracterizado por um ajuste dos limites de grãos, e pelo crescimento de cristais resultante da diminuição da energia nos bordos desses minerais. Como consequência, os cristais com limites irregulares tendem a apresentar contatos retos e formas poligonais, enquanto os cristais pequenos tendem a desaparecer em prol dos cristais poligonais maiores (Passchier e Trouw, 2005). A presença do minério maciço, composto por magnetita e ilmenita exibindo textura poligonal com ângulos de 120°, reforça esses argumentos. As mesmas relações de granulação associadas a processos de sinterização são descritas no complexo máfico-ultramáfico acamadado de Bushveld (Reynolds, 1985) e no *Sill* do Rio Jacaré (Brito, 2000).

A organização dos tipos litológicos do CMUET em zonas bem definidas, evidencia a existência de diferentes pulsos magmáticos, típicos de uma câmara magmática aberta, comuns aos complexos máfico-ultramáficos estratiformes. Estudos posteriores de geoquímica mineral, de termobarometria e isotópicos são essenciais para a determinação da proveniência dos pulsos magmáticos geradores, das condições P-T experimentadas, da idade e da história evolutiva do complexo, além de contribuir para o entendimento de episódios orogênicos no DCC.

AGRADECIMENTOS

Os autores agradecem a Universidade Federal do Ceará (UFC) e a Fundação Núcleo de Tecnologia Industrial do Ceará (NUTEC), pelo apoio e suporte laboratorial; a empresa Mineração Santa Elina Ind. e Com. S.A., por fornecer os dados de geoquímica de solos; ao professor Ariston Araújo Cajaty e ao geólogo Pedro Sérgio Goes, pelo auxílio na logística de campo; e aos revisores que contribuíram para a construção da versão final deste manuscrito.

REFERÊNCIAS

Almeida, F. F. M., Hasui, Y., Brito Neves, B. B., Fuck, R. A. (1981). Brazilian Structural Provinces: an introduction. *Earth Sciences Reviews*, 17(1-2), 1-29. https://doi. org/10.1016/0012-8252(81)90003-9

Archanjo, C. J., Launeau, P., Hollanda, M. H. B. M., Macedo, J. W. P., Liu, D. (2009). Scattering of magnetic fabrics in the Cambrian alkaline granite of Meruoca (Ceara State, northeastern Brazil). *International Journal of Earth Science*, 98, 1793-1807. https://doi.org/10.1007/s00531-008-0342-z

Arthaud, M. H. (2007). Evolução Neoproterozóica do Grupo Ceará - Domínio Central, NE Brasil: da sedimentação à colisão continental brasiliana. Tese (Doutorado). Brasília: Instituto de Geociências - UnB. Disponível em: https://repositorio.unb. br/handle/10482/6606. Acesso em: 12 dez. 2022. Arthaud, M. H., Caby, R., Fuck, R. A., Dantas, E. L., Parente, C. V. (2008). Geology of the northern Borborema Province, NE Brazil and its correlation with Nigeria, NW Africa. In: Pankhurst, R. J., Trouw, R. A. J., Brito Neves, B. B., De Wit, M. J. (eds.), *West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region* (p. 49-67). Londres: Geological Society. (Geological Society Special Publication, 294). https://doi.org/10.1144/SP294.4

Arthaud, M. H., Fuck, R. A., Dantas, E. L., Santos, T. J. S., Caby, R., Armstrong, R. (2014). The Neoproterozoic Ceara Group, Ceara Central domain, NE Brazil: Depositional age and provenance of detrital material. New insights from UePb and SmeNd geochronology. *Journal of South American Earth Sciences*, 58, 223-237. https://doi.org/10.1016/j. jsames.2014.09.007

Balhaus, C., Glikson, A. Y. (1995). The petrology of layered mafic-ultramafic intrusions of the Giles Complex, western Musgrave Block, Western Australi.a *Journal of Australian Geology & Geophysics*, 16, 69-89. Disponível em: https://ecat.ga.gov.au/geonetwork/srv/api/records/fae9173a-716a-71e4-e044-00144fdd4fa6. Acesso em: 5 jun. 2021.

Brito Neves, B. B., Cordani, U. G. (1991). Tectonic evolution of South America during the late Proterozoic. *Precambrian Research*, 53(1-2), 23-40. https://doi. org/10.1016/0301-9268(91)90004-T

Brito, R. S. C. (2000). *Geologia e Petrologia do Sill Máfico Ultramáfico do Rio Jacaré - Bahia e estudo das mineralizações de Fe-Ti-V e platinóides associadas*. Tese (Doutorado). Brasília: Instituto de Geociências - UnB.

Brito, R. S. C., Nilson, A. A., Laflame, J. (2002). PGM and complex Ni-Fe-Cu-Co arsenide-sulfide paragenesis associated with Fe-Ti-V oxides of the Gulçari magnetitite pod, Rio Jacaré sill, Bahia, Brazil. In: *IX International Platinum Symposium*. Billings-Montana. Diponível em: https://nicholas.duke.edu/ people/faculty/boudreau/9thPtSymposium/Brito_Abstract. pdf. Acesso em: 15 fev. 2022.

Bucher-Nurminen, K. (1988). Metamorphism of ultramafic rocks in the Central Scandinavian Caledonides. *Progress in studies of the lithosphere in Norway*, 3, 86-95. Disponível em: https://www.freidok.uni-freiburg.de/fedora/objects/freidok:5825/ datastreams/FILE1/content. Acesso em: 15 fev. 2022.

Calado, B. O., Costa, F. G., Gomes, I. P., Rodrigues, J. B. (2019). Evidence for ca. 2046 Ma high-grade metamorphism in Paleoproterozoic metasedimentary rocks of the northern Borborema Province, NE Brazil: constraints from U-Pb (LA-ICP-MS) zircon ages. *Journal of the Geological*

Survey of Brazil, 2(3), 137-150. https://doi.org/10.29396/jgsb.2019.v2.n3.1

Castro, N. A. (2004). Evolução geológica proterozoica da região entre Madalena e Taperuaba, Domínio Tectônico Ceará Central (Província Borborema). Tese (Doutorado). São Paulo: Instituto de Geociências - USP. https://doi. org/10.11606/T.44.2005.tde-31032015-112038

Castro, N. A., Ganade de Araújo, C. E., Basei, M. A. S., Osako, L. O., Nutman, A. P., Liu, D. (2012). Ordovician A-type granitoid magmatism on the Ceará Central Domain, Borborema Province, NE-Brazil. *Journal of South American Earth Sciences*, 36, 18-31. https://doi.org/10.1016/j. jsames.2011.11.007

Cavalcante, D. H. A. (2016). *Complexo Máfico-Ultramáfico Estratiforme de Tucunduba (CMUET)*. Monografia (Graduação). Fortaleza: Departamento de Geologia - UFC.

Cavalcante, J. C., Ferreira, C. A., Armesto, R. G. G., Medeiros, M. F., Ramalho, R., Braun, O. P. G., Baptista, M. B., Cunha, H. C. S., Derze, G. R. (1983). *Mapa Geológico do Ceará*. Escala 1:500.000. Fortaleza: Ministério de Minas e Energia/CPRM.

Cavalcante, J. C., Vasconcelos, A. M., Medeiros, M. F., Paiva, I. P., Gomes, F. E. M., Cavalcante, S. N., Cavalcante, J. E., Melo, A. C. R., Duarte Neto, V. C., Bevenides, H. C. (2003). *Mapa Geológico do Ceará*. Escala 1:500.000. Fortaleza: Ministério de Minas e Energia/CPRM.

Cawthorn, R. G. (1996). *Layered Intrusions:* Developments in petrology. Amsterdã: Elsevier.

Caxito, F. A., Santos, L. C. M. L., Ganade, C. E., Bendaoud, A., Fettous, E., Bouyo, M. H. (2020). Toward an integrated model of geological evolution for NE Brazil–NW Africa: The Borborema Province and its connections to the Trans-Saharan (Benino-Nigerian and Tuareg shields) and Central African orogens. *Brazilian Journal of Geology*, 50(2), e20190122. https://doi. org/10.1590/2317-4889202020190122

Charlier, B., Namour, O., Latypov R., Tegner, C. (2015). *Layered Intrusions*. Dordrecht-Heidelberg-New York-London: Springer. https://doi.org/10.1007/978-94-017-9652-1

Costa, F. G., Palheta, E. S. M., Calado, B. O., Naleto, J. L. C., Pinéo, T. R. G., Lopes, A. P., Martins, M. D., Sousa, F. R. F. R. (2015). Metalogenia das Províncias Minerais do Brasil: Área Troia-Pedra Branca. Informe de Recursos Minerais. *Série Províncias Minerais do Brasil*, (2). CPRM.

Disponível em: https://rigeo.cprm.gov.br/xmlui/handle/ doc/16411. Acesso em: 10 fev. 2022.

Couto, L. F. (1989). Estudos petrológicos do complexo máficoultramáfico de Campo Alegre de Lourdes (Ba) e gênese do depósito de Fe-Ti(V) associado. Dissertação (Mestrado). Brasília: Instituto de Geociências - UnB.

Eckstrand, O. R., Hulbert, L. J. (2007). Magmatic nickelcopper-platinum group element deposits. In: Godfellow, W. D. (ed.). *Mineral deposits of Canada:* A synthesis of major deposit types district metallogeny the evolution of geological provinces and exploration methods (p. 205-222). Ottawa: Geological Association of Canada, Mineral Deposits Division (Special Publication, 5).

Evans, B. W., Frost, B. R. (1975). Chrome-spinel in progressive metamorphisma preliminary analysis. *Geochimica et Cosmochimica Acta*, 39(6-7), 959-972. https://doi. org/10.1016/0016-7037(75)90041-1

Fetter, A. H. (1999). U-Pb and Sm-Nd Geochronological constraints on the crustal framework and geological history of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of Gondwana. Tese (Doutorado). Lawrence: Department of Geology, University of Kansas.

Fetter, A. H., Santos, T. J., Van Schmus, W. R., Hackspacher, P. C., Brito Neves, B. B., Arthaud, M. H., Nogueira Neto, J. A., Wernick, E. (2003). Evidence for Neoproterozoic continental arc magmatism in the Santa Quitéria Batholith of Ceará State, NW Borborema Province, NE Brazil: implications for the assembly of west Gondwana. *Gondwana Research*, 6(2), 265-273. https://doi.org/10.1016/S1342-937X(05)70975-8

Fetter, A. H., Van Schmus, W. R., Santos, T. J. S., Arthaud, M. H., Nogueira Neto, J. A. (2000). U-Pb and Sm-Nd geochronological constrains on the crustal evolution and basement architecture of Ceará State, NW Borborema Province, NE Brazil: implications for the existence of the paleoproterozoic supercontinent Atlantica. *Revista Brasileira de Geociências*, 30(1), 102-106. https://doi.org/10.25249/0375-7536.2000301102106

Force, E. R. (1991). *Geology of titanium mineral deposits*. Boulder: Geological Society of America. https://doi. org/10.1130/SPE259-p1

Ganade de Araújo, C. E. (2014). Evolução tectônica da margem ativa Neoproterozoica do Orógeno Gondwana Oeste na Província Borborema (NE-Brasil). Tese (Doutorado). São Paulo: Instituto de Geociências - USP. https://doi. org/10.11606/T.44.2014.tde-25092014-144415 Ganade de Araújo, C. E., Basei, M. A. S., Grandjean, F. C., Armstrong, R., Brito, R. S. (2017). Contrasting Archaean (2.85–2.68 Ga) TTGs from the Tróia Massif (NE-Brazil) and their geodynamic implications for flat to steep subduction transition. *Precambrian Research*, 297, 1-18. https://doi. org/10.1016/j.precamres.2017.05.007

Ganade de Araújo, C. E., Cordani, U. G., Weinberg, R. F., Basei, M. A. S., Armstrong, R., Sato, K. (2014). Tracing Neoproterozoic subduction in the Borborema Province (NE-Brazil): Clues from U-Pb geochronology and Sr-Nd-Hf-O isotopes on granitoids and migmatites. *Lithos*, 202-203, 167-189. https://doi.org/10.1016/j.lithos.2014.05.015

Garcia, M. G. M., Arthaud, M. H. (2004). Caracterização de trajetória P-T em nappes brasilianas: região de Boa Viagem/ Madalena e Ceará Central (NE Brasil). *Revista de Geologia*, 17(2), 173-191. Disponível em: https://www.researchgate.net/ publication/242134303_Caracterizacao_de_trajetorias_PT_ em_nappes_brasilianas_regiao_de_Boa_ViagemMadalena_-Ceara_Central_NE_Brasil. Acesso em: 10 fev. 2022.

Garcia, M. G. M., Arthaud, M. H., Nogueira Neto, J. A., Santos, T. J. S. (2006). Retrocclogitos nas nappes brasilianas do Domínio Ceará Central, Província Borborema: dados texturais e termobarométricos preliminares. In: Congresso Brasileiro de Geologia, 43., 2006. *Anais...* Aracaju: SBG.

Garcia, P. M. P. (2017). *A Província Cuprífera do Nordeste Meridional: evolução dos processos e modelos metalogenéticos*. Tese (Doutorado). Instituto de Geociências - UFBA. Disponível em: http://repositorio.ufba.br/ri/handle/ ri/25826. Acesso em: 16 nov. 2022.

Gargiulo, M. F., Bjerg, E. A., Mogessie, A. (2013). Spinel group minerals in metamorphosed ultramafic rocks from Río de Las Tunas belt, Central Andes, Argentina. *Geologica Acta*, 11(2), 133-148. https://doi.org/10.1344/105.000001836

Helmy, H. M., Yoshikawa, M., Shibata, T., Arai, S., Tamura, A. (2008). Corona structure from arc mafic-ultramafic cumulates: The role and chemical characteristics of late-magmatic hydrous liquids. *Journal of Mineralogical and Petrological Sciences*, 103(5), 333-344. https://doi. org/10.2465/jmps.070906

Holland, T. J. B., Blundy, J. (1994). Non-ideal interactions in calcic amphiboles and their bearing on amphibole plagioclase thermometry. *Contributions to Mineralogy and Petrology*, 116, 433-447. https://doi.org/10.1007/BF00310910

Jenkins, D. M., Chernosky, J. V. (1986). Phase equilibria and crystallochemical properties of Mg-chlorite. *American*

Mineralogist, 71(7-8), 924-936. Disponível em: http://www. minsocam.org/ammin/AM71/AM71_924.pdf?ref=Guzels. TV. Acesso em: 10 fev. 2022.

Lages, G. A. (2014). Os complexos máfico-ultramáficos mineralizados (Fe-Ti±V±Cu±Cr) de Floresta e Bodocó na porção ocidental da Província Borborema e suas implicações geodinâmicas para a evolução da parte oeste da zona transversal. Dissertação (Mestrado). Brasília: Instituto de Geociências - UnB. https://doi. org/10.26512/2014.11.D.17725

Lamoen, H. van (1979). Coronas in olivine gabbros and iron ores from Susimaki and Riuttamaa, Finland. *Contributions to Mineralogy and Petrology*, 68, 259-268. https://doi. org/10.1007/BF00371546

Largo Resources (2009). Disponível em: www.largoresources. com. Acesso em: 5 jun. 2021.

Latypov, R., Chistyakova, S., Alapieti, T. (2007). Revisiting problem of chilled margins associated with marginal reversals in mafic–ultramafic intrusive bodies. *Lithos*, 99(3-4), 178-206. https://doi.org/10.1016/j.lithos.2007.05.008

Lister, G. F. (1966). The compositon and origin of selected irom-titanium deposits. *Economic Geology*, 61(2), 275-310. https://doi.org/10.2113/gsecongeo.61.2.275

Martins, G., Oliveira, E. P., Lafon, J. M. (2009). The Algodões amphibolite-tonalite gneiss sequence, Borborema Province, NE Brazil: Geochemical and geochronological evidence for Palaeoproterozoic accretion of oceanic plateau/back-arc basalts and adakitic plutons. *Gondwana Research*, 15(1), 71-85. https://doi.org/10.1016/j.gr.2008.06.002

Naldrett, A. J. (2004). *Magmatic sulfide deposits: geology, geochemistry and exploration*. Heidelberg: Springer. https://doi.org/10.1007/978-3-662-08444-1

Naslund, H. R., McBirney, A. R. (1996). Mechanisms of formation of igneous layering. *Developments in Petrology*, 15, 1-43. https://doi.org/10.1016/S0167-2894(96)80003-0

Padilha, A. L., Vitorello, Í., Pádua, M. B., Fuck, R. A. (2017). Cryptic signatures of Neoproterozoic accretionary events in northeast Brazil imaged by magnetotellurics: Implications for the assembly of West Gondwana. *Tectonophysics*, 699, 164-177. https://doi.org/10.1016/j.tecto.2017.01.022

Parente, C. V., Veríssimo, C. U. V., Botelho, N. F., Santos, T. J. S., Oliveira, C. G., Lira Júnior, J. A., Martins, D. T. (2015). Fe-Cu skarns deposits in the Santa Quiteria magmatic arc, Borborema Province, Brazil. *Brazilian* Journal of Geology, 45(3), 359-382. https://doi. org/10.1590/2317-488920150030264

Passchier, C. W., Trouw, R. A. J. (2005). *Microtectonics*. Berlim: Springer. https://doi.org/10.1007/3-540-29359-0

Pinéo, T. R. G., Palheta, E. S. M., Costa, F. G., Vasconcelos, A. M., Gomes, I. P., Gomes, F. E. M., Bessa, M. D. M. R., Lima, A. F., Holanda, J. L. R., Freire, D. P. C. (2020). *Mapa Geológico do Estado do Ceará*. Escala 1:500.000. Fortaleza: Ministério de Minas e Energia/CPRM.

Pitombeira, J. P., Amaral, W. S., Santos, T. J. S., Dantas, E. L. (2021). A new record of continental arc magmatism in the Ceara Central Domain, Borborema Province (NE Brazil): evidence from the Pacatuba-Maranguape Complex. *Precambrian Research*, 359, 106192. https://doi.org/10.1016/j. precamres.2021.106192

RADAMBRASIL (1981). *Folha SA.24 Fortal*eza. Rio de Janeiro: Ministério de Minas e Energia/Programa de Integração Nacional.

Reynolds, I. M. (1985). The nature and origen of titaniferous magnetite-rich layers in the Upper Zone of the Bushveld complex. *Economic Geology*, 80(4), 1089-1108. https://doi. org/10.2113/gsecongeo.80.4.1089

Santos, L. C. M., Lira., Oliveira, R. G., Lages, G. A., Dantas, E. L., Caxito, F., Cawood, P. A., Fuck, R. A., Lima, H. M., Santos, G. L., Araújo Neto, J. F. (2022). Evidence for Neoproterozoic terrane accretion in the central Borborema Province, West Gondwana deduced by isotopic and geophysical data compilation. *International Geology Review*, 64(11), 1574-1593. https://doi.org/10.1080/0020 6814.2021.1944332

Santos, T. J. S., Fetter, A. H., Hackspacher, P. C., Van Schmus, W. R., Nogueira Neto, J. A. (2008). Neoproterozoic tectonic and magmatic episodes in the NW segment of the Borborema Province, NE Brazil, during the assembly of the western Gondwana. *Journal of South American Earth Sciences*, 25(3), 271-284. https://doi.org/10.1016/j. jsames.2007.05.006

Santos, T. J. S., Garcia, M. G. M., Amaral, W. S., Caby, R., Wernick, E., Arthaud, M. H., Dantas, E. L., Santosh, M. (2009). Relics of eclogite facies assemblages in the Ceará Central Domain, NW Borborema Province, NE Brazil: implications for the assembly of West Gondwana. *Gondwana Research*, 15(3-4), 454-470. https://doi.org/10.1016/j. gr.2009.01.003 Schollenbruch, K., Woodland, A. B., Frost, D. J. (2010). The stability of hercynite at high pressures and temperatures. *Physics and Chemistry of Minerals*, 37, 137-143. https://doi.org/10.1007/s00269-009-0317-z

Silva, L. C., Armstrong, R., Pimentel, M. M., Scandolara, J., Ramgrab, G., Wildner, W., Angelim, L. A. A., Vasconcelos, A. M., Rizzoto, G., Quadros, M. L. E. S., Sander, A., Rosa, A. L. Z. (2002). Reavaliação da evolução geológica em terrenos Pré-Cambrianos brasileiros com base em novos dados U-Pb SHRIMP, Parte III: Província Borborema, Mantiqueira Meridional e Rio Negro-Juruena. *Revista Brasileira de Geociências*, 32(4), 529-544. https://doi. org/10.25249/0375-7536.2002324529544

Sousa, H. P., Parente, C. V., Maginni, C., Ximenes, D. R. B., Dantas, E. L., Caby, R., Rosa, C. A. (2019). History of volcanism and sedimentation synchronous with plutonism during Rhyacian in Serra das Pipocas Greenstone Belt, Borborema Province, NE Brazil. *Journal of South American Earth Sciences*, 95, 102220. https://doi.org/10.1016/j. jsames.2019.102220

Srikantappa, C., Raith, M., Ackermand, D. (1985). Highgrade regional metamorphism of ultramafic and mafic rocks from the Archaean Sargur terrane, Karnataka, South India. *Precambrian Research*, 30(3), 189-219. https://doi. org/10.1016/0301-9268(85)90020-8

Turnock, A. C., Eugster, H. P. (1962). Fe-Al Oxides: Phase Relationships below 1,000°C. *Journal of Petrology*, 3(3), 533-565. https://doi.org/10.1093/petrology/3.3.533

Van Schmus, W. R., Brito Neves, B. B., Hackspacher, P. C., Babinsky, M. (1995). U-Pb and Sm-Nd geochronologic studies of the eastern Borborema Province, NE Brazil: initial conclusions. *Journal of South American Earth Sciences*, 8(3-4), 267-288. https://doi.org/10.1016/0895-9811(95)00013-6

Van Schmus, W. R., Kozuch, M., Brito Neves, B. B. (2011). Precambrian history of the Zona transversal of the Borborema Province, NE Brazil: insights from Sm–Nd and U–Pb geochronology. *Journal of South American Earth Sciences*, 31(2-3), 227-252. https://doi.org/10.1016/j. jsames.2011.02.010

Van Schmus, W. R., Oliveira, E. P., Silva Filho, A. F., Toteu, S. F., Penaye, J., Guimarães, I. P. (2008). Proterozoic links between the Borborema Province, NE Brazil, and the Central African Fold Belt. In: Pankhurst, R. J., Trouw, R. A. J., Brito Neves, B. B., De Wit, M. J. (eds). *West Gondwana: Pre-Cenozoic Correlations Across the South Atlantic Region* (p. 69-99). Londres: Geological Society. (Geological Society Special Publications, 294). https://doi.org/10.1144/SP294

Wager, L. R., Brown, G. M., Wadsworth, W. J. (1960). Types of igneous cumulates. *Journal of Petrology*, 1(1), 73-85. https://doi.org/10.1093/petrology/1.1.73

Whitney, D. L., Evans, B. W. (2010). Abbreviations for names of rock-forming minerals. *American Mineralogist*, 95(1), 185-187. https://doi.org/10.2138/am.2010.3371

Whitney, P., McLelland, J. M. (1973). Origin of Coronas in Metagabbros of the Adirondack Mts., N. Y. *Contributions to Mineralogy and Petrology*, 39, 81-98. https://doi.org/10.1007/ BF00374247

Whitney, P., McLelland, J. M. (1983). Origin of biotitehornblende-garnet coronas between oxides and plagioclase in olivine metagabbros, Adirondack region, New York. *Contributions to Mineralogy and Petrology*, 82, 34-41. https://doi.org/10.1007/BF00371173

Amostras	Coordenadas		Ti (%)	V (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	S (%)
SMG-PS-001	526141	9571889	0,06	32	8	14	9	< 0,01
SMG-PS-002	526099	9571916	0,07	54	18	25	16	0,01
SMG-PS-003	526057	9571938	0,06	38	10	14	10	0,01
SMG-PS-004	526018	9571961	0,07	68	38	72	24	0,01
SMG-PS-005	525973	9571986	0,09	102	70	130	43	0,01
SMG-PS-006	525926	9572013	0,07	95	37	84	38	0,01
SMG-PS-007	525881	9572039	0,14	149	75	145	38	0,03
SMG-PS-008	525839	9572062	0,17	164	102	184	46	0,03
SMG-PS-009	525799	9572086	0,17	254	173	241	50	0,04
SMG-PS-010	525758	9572115	0,23	176	347	467	71	0,04
SMG-PS-011	525711	9572141	0,25	179	326	622	93	0,04
SMG-PS-012	525663	9572161	0,22	199	318	515	83	0,04
SMG-PS-013	525612	9572196	0,18	162	182	517	61	0,03
SMG-PS-014	525557	9572227	0,24	199	140	265	64	0,04
SMG-PS-015	525510	9572251	0,17	195	141	261	73	0,05
SMG-PS-016	525462	9572277	0,23	268	241	451	98	0,05
SMG-PS-017	525412	9572311	0,19	197	192	410	80	0,05
SMG-PS-018	525365	9572338	0,19	202	197	497	89	0,06
SMG-PS-019	525319	9572366	0,12	133	136	436	82	0,05
SMG-PS-020	525262	9572394	0,1	127	69	382	66	0,05
SMG-PS-021	525214	9572428	0,06	79	36	114	30	0,03
SMG-PS-022	525169	9572455	0,11	121	153	268	56	0,04
SMG-PS-023	525124	9572483	0,11	188	103	237	61	0,05
SMG-PS-024	525075	9572510	0,11	139	92	212	65	0,04
SMG-PS-025	525026	9572534	0,09	146	73	192	58	0,04
SMG-PS-026	524985	9572556	0,09	160	81	231	98	0,03
SMG-PS-027	524945	9572580	0,06	96	39	118	63	0,03
SMG-PS-028	524910	9572600	0,03	63	21	59	54	0,03
SMG-PS-029	524876	9572619	0,02	28	5	14	8	0,02
SMG-PS-030	524840	9572641	0,02	32	7	20	10	0,02
SMG-PS-031	525944	9571529	0,02	13	2	3	3	0,02
SMG-PS-032	525892	9571565	0,05	31	8	11	8	0,03
SMG-PS-033	525844	9571587	0,07	42	15	22	10	0,03
SMG-PS-034	525800	9571620	0,05	69	38	53	29	0,03
SMG-PS-035	525757	9571649	0,12	145	104	160	32	0,03
SMG-PS-036	525712	9571672	0,11	120	137	177	37	0,04
SMG-PS-037	525669	9571693	0,15	136	101	143	38	0,03
SMG-PS-038	525627	9571713	0,16	163	119	124	44	0,04
SMG-PS-039	525578	9571740	0,18	134	146	196	50	0,05
SMG-PS-040	525531	9571770	0,15	97	117	236	46	0,05
SMG-PS-041	525488	9571793	0,18	182	205	415	74	0,03
SMG-PS-042	525452	9571820	0,2	207	235	436	70	0,04
SMG-PS-043	525400	9571852	0,24	261	234	443	96	0,04
SMG-PS-044	525346	9571877	0,23	258	197	377	93	0,03

Apêndice 1. Análises de solos	do Complexo	Máfico-Ultramáfico	Estratiforme de	Tucunduba.

Continua...

Amostras	Coord	enadas	Ti (%)	V (ppm)	Cu (ppm)	Ni (ppm)	Co (ppm)	S (%)
SMG-PS-045	525303	9571902	0,22	319	156	323	114	0,04
SMG-PS-046	525248	9571926	0,22	267	170	387	100	0,03
SMG-PS-047	525201	9571962	0,17	256	161	462	124	0,03
SMG-PS-048	525156	9571990	0,23	219	178	424	94	0,03
SMG-PS-049	525115	9572016	0,18	224	141	438	105	0,03
SMG-PS-050	525070	9572036	0,17	211	269	685	118	0,04
SMG-PS-051	525015	9572068	0,21	239	137	391	94	0,02
SMG-PS-052	524968	9572092	0,15	223	136	454	128	0,02
SMG-PS-053	524918	9572120	0,39	132	93	520	63	0,02
SMG-PS-054	524870	9572144	0,16	190	130	303	83	0,03
SMG-PS-055	524830	9572165	0,32	79	24	70	20	0,03
SMG-PS-056	524790	9572186	0,21	73	30	54	22	0,02
SMG-PS-057	524762	9572205	0,16	72	29	54	24	0,03
SMG-PS-058	524723	9572231	0,08	46	9	23	12	0,02
SMG-PS-059	524680	9572257	0,06	53	23	41	17	0,02
SMG-PS-060	524645	9572283	0,09	68	29	64	26	0,02
SMG-PS-061	525731	9571162	0,03	16	2	3	3	0,02
SMG-PS-062	525690	9571189	0,02	16	3	5	3	0,02
SMG-PS-063	525655	9571204	0,04	31	11	13	8	0,03
SMG-PS-064	525605	9571233	0,11	60	16	24	14	0,02
SMG-PS-065	525571	9571258	0,09	140	48	119	39	0,03
SMG-PS-066	525520	9571291	0,15	215	74	165	48	0,03
SMG-PS-067	525479	9571317	0,27	354	141	255	83	0,03
SMG-PS-068	525437	9571343	0,25	203	203	348	74	0,04
SMG-PS-069	525391	9571364	0,3	258	192	410	83	0,03
SMG-PS-070	525349	9571382	0,2	204	195	397	76	0,04
SMG-PS-071	525322	9571405	0,22	213	147	289	66	0,03
SMG-PS-072	525271	9571426	0,19	194	106	187	60	0,04
SMG-PS-073	525227	9571456	0,22	178	178	348	65	0,04
SMG-PS-074	525190	9571483	0,15	156	101	199	57	0,04
SMG-PS-075	525156	9571504	0,12	169	104	239	76	0,01
SMG-PS-076	525117	9571521	0,15	160	133	296	73	0,02
SMG-PS-077	525071	9571543	0,1	145	202	309	49	0,02
SMG-PS-078	525021	9571560	0,14	216	122	243	77	0,02
SMG-PS-079	524973	9571592	0,08	125	71	134	45	0,01
SMG-PS-080	524933	9571614	0,03	52	29	53	18	0,01
SMG-PS-081	524892	9571638	0,09	97	71	164	54	0,02
SMG-PS-082	524842	9571664	0,16	180	188	445	99	0,03
SMG-PS-083	524806	9571685	0,13	184	326	624	123	0,03
SMG-PS-084	524766	9571716	0,17	166	141	439	96	0,02
SMG-PS-085	524729	9571737	0,18	244	194	552	135	0,02
SMG-PS-086	524676	9571769	0,1	138	107	210	59	0,02
SMG-PS-087	524624	9571801	0,07	110	58	122	46	0,01
SMG-PS-088	524572	9571839	0,06	22	14	13	12	0,01
SMG-PS-089	524520	9571876	0,02	40	13	38	39	< 0,01
SMG-PS-090	524469	9571914	0,12	73	41	110	42	< 0,01

Apêndice 1. Continuação.