Angiospermas de sedimentos do Cretáceo inicial da Índia

Autores

DOI:

https://doi.org/10.11606/issn.2316-9095.v20-171976

Palavras-chave:

Angiospermas, Evolução, Cretáceo inicial, Índia

Resumo

Este estudo constitui o primeiro relato de assembleia de macrofósseis de angiospermas a partir dos sedimentos cretáceos iniciais da Índia. Os restos fósseis de angiospermas são preservados na forma de frutas, espigas, pétalas, folhas e eixos, que exemplificam a ocorrência explícita na bacia de Krishna Godavari. Essa assembleia fornece pistas sobre a evolução e a ecologia das durante os primeiros tempos do Cretáceo na Índia. As formas enigmáticas descritas são bem comparáveis aos frutos de Trapa, folhas de palmeira, espiga de Potamogeton. O material fóssil também inclui folhas em forma de fita com um pequeno eixo, restos fósseis sugerem afinidade com o grupo das monocotiledôneas, dão crédito aos recentes estudos filogenéticos, morfológicos e moleculares para estabelecer a divergência do grupo em relação às dicotiledôneas, no início do Cretáceo. Os fósseis descritos aqui sugerem uma afinidade por um paleoambiente aquático que parece ser ideal para algumas angiospermas primitivas.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Baksi, S. K. (1968). Fossil plants from Raghavapuram Mudstone, west Godavari District, A. P. Palaeobotanist, 16, 206-215. Available from: <http://14.139.63.228:8080/pbrep/bitstream/123456789/492/1/PbV16No3_206.pdf>. Accessed on: Sept. 2020.

Banerji, J. (2000). Occurrence of angiosperm remains in an Early Cretaceous intertrappean bed, Rajmahal Basin, India. Cretaceous Research, 21(6), 781-784. https://doi.org/10.1006/cres.2000.0225

Bashforth, A. R., Zodrow, E. L. (2007). Partial reconstruction and palaeoecology of Sphenophyllum costae (Middle Pennsylvanian, Nova Scotia, Canada). Bulletin of Geosciences, 82(4), 365-382. https://doi.org/10.3140/bull.geosci.2007.04.365

Bell, C. D., Soltis, D. E., Soltis, P. S. (2005). The age of the angiosperms: a molecular timescale without a clock. Evolution, 59(6), 1245-1258. https://doi.org/10.1554/05-005

Bell, C. D., Soltis, D. E., Soltis, P. S. (2010). The age and diversification of the angiosperms re-revisited. American Journal of Botany, 97(8), 1296-1303. https://doi.org/10.3732/ajb.0900346

Berry, E. W. (1924). The middle and upper Eocene floras of southeastern North America. U.S. Geological Survey Professional Paper, 92. 206 p. https://doi.org/10.3133/pp92

Bhalla, S. N. (1969). Foraminifera from the type Raghavapuram Shale, east coast Gondwanas, India. Micropalaentology, 15(1), 61-84. https://doi.org/10.2307/1484860

Biswas, S. K. (1992). Tectonic framework and evolution of graben basins of India. Indian Journal of Petroleum Geology, 1, 276-292.

Biswas, S. K., Bhasin, A. L., Ram, J. (1993). Classification of Indian Sedimentary basins in the framework of plate tectonics. II Seminar on Petroliferous Basins of India. Dehra Dun. 46 p.

Blume, C. L. (1843). Rumphia 2. C. G. Leiden: Sulpke. Bose, M. N., Sah, S. C. D. (1952). On Sahnioxylon rajmahalense, a new name for Homoxylon rajmahalense Sahni, and S. andrewsii, a new species of Sahnioxylon from Amrapara in the Rajmahal Hills, Bihar. Palaeobotanist, 3, 1-8.

Bremer, K. (2000). Early Cretaceous lineages of monocot flowering plants. Proceedings of the National Academy of Sciences, 97(9), 4707-4711. https://doi.org/10.1073/pnas.080421597

Brongniart, A. (1822). Sur Ia classification et la distribution des vegetaux fossilesen general, et sur ceux des terrains de sediment superieur en particulier. Mémoires du Muséum National d’Histoire Naturelle, 8, 203-348.

Brongniart, A. (1828). Histoire des végétaux fossiles ou recherches botaniques et géologiqués sur les végétaux renfermés dans les diverses couches du globe, Paris: imprimerie de fain.

Brown, R. W. (1956). Palm-like plants from the Dolores Formation (Triassic), southwestern Colorado. United States Geological Survey Professional Paper H, 274, 205-209. https://doi.org/10.3133/pp274H

Chen, L. Y., Chen, J. M., Gituru, R. W., Wang, Q. F. (2012). Generic phylogeny, historical biogeography and character evolution of the cosmopolitan aquatic plant family Hydrocharitaceae. BMC Evolutionary Biology, 12, 1-12. https://doi.org/10.1186/1471-2148-12-30

Chinnappa, C. H., Rajanikanth, A., Rao, Y. V. (2014). Flora diversity and implications in palaeoenvironments of Vemavaram Formation (Krishna Depression), Krishna-Godavari Basin, Andhra Pradesh, India. Palaeobotanist, 63, 63-78.

Cook, C. D., Lüönd, R. (1982). A revision of the genus Hydrilla (Hydrocharitaceae). Aquatic Botany, 13, 485-504. https://doi.org/10.1016/0304-3770(82)90074-2

Crane, P. R., Friis, E. M., Pedersen, K. R. (2000). The origin and early diversification of angiosperms. In: H. Gee (Ed.), Shaking the Tree: Readings from Nature in the History of Life, p. 233-250. Chicago: University Chicago Press.

Crepet, W. L. (2000). Progress in understanding angiosperm history, success, and relationships: Darwin’s abominably “perplexing phenomenon”. Proceedings of the National Academy of Sciences, 97(24), 12939-12941. https://doi.org/10.1073/pnas.97.24.12939

Cronquist, A. (1981). An integrated system of classification of flowering plants. New York: Columbia University Press.

Domin, K. (1915). Beiträge zur Flora und Pflanzgeographie australiens. Bibliotheca Botanica, 85, 1-551. https://doi.org/10.5962/bhl.title.58219

Doyle, J. A. (2006). Seed ferns and the origin of angiosperms. Journal of the Torrey Botanical Society, 133(1), 169-209. https://doi.org/10.3159/1095-5674(2006)133[169:SFATOO]2.0.CO;2

Doyle, J. A. (2012). Molecular and fossil evidence on the origin of angiosperms. Annual Review of Earth and Planetary Sciences, 40, 301-326. https://doi.org/10.1146/annurev-earth-042711-105313

Feistmantel, O. (1879). The fossil flora of Upper Gondwanas, Outliers on the Madras Coast. Memoirs of the Geological Survey of India, 2, 191-224.

Friedman, W. E. (2009). The meaning of Darwin’s “abominable mystery”. American Journal of Botany, 96(1), 5-21. https://doi.org/10.3732/ajb.0800150

Friis, E. M., Crane, P. R., Pedersen, K. R. (2011). Early flowers and angiosperm evolution. New York: Cambridge University Press.

Goeppert, H. R. (1852). Beitrage zur Tertiarflora Schlesiens. Palaeontographica, 2, 257-285.

Golovneva, L. B. (1991). The new genus Palaeotrapa (Trapaccae?) and new species of Quereuxia from the Rarytkin series (Koryak Upland, the Maastrichtian-Danian). Botaniceskii Zumal, 76, 601-609.

Graham, A. (2011). The age and diversification of terrestrial New World ecosystems through Cretaceous and Cenozoic time. American Journal of Botany, 98(3), 336-351. https://doi.org/10.3732/ajb.1000353

Graham, S. A. (2013). Fossil records in the Lythraceae. Botanical Review, 79, 48-145. https://doi.org/10.1007/s12229-012-9116-1

Grimaldi, D., Engel, M. S. (2005). Evolution of the Insects. New York: Cambridge University Press.

Harley, M. M. (2006). A summary of fossil records for Arecaceae. Botanical Journal of the Linnean Society, 151(1), 39-67. https://doi.org/10.1111/j.1095-8339.2006.00522.x

Hickey, L. J., Doyle, J. A. (1977). Early Cretaceous fossil evidence for angiosperm evolution. Botanical Review, 43, 3-104. https://doi.org/10.1007/BF02860849

Hill, R. S. (1994). History of the Australian vegetation: Cretaceous to Recent. New York: Cambridge University Press.

Hughes, N. F. (1994). The enigma of angiosperm origins. New York: Cambridge University Press.

Janssen, T., Bremer, K. (2004). The age of major monocot groups inferred from 800+rbcL sequences. Botanical Journal of the Linnean Society, 146(4), 385-398. https://doi.org/10.1111/j.1095-8339.2004.00345.x

Kovar-Eder, J., Wójcicki, J. J., Zetter, R. (2005). Trapaceae from the late Miocene of Austria and the European context. Acta Palaeobotanica, 45(2), 165-186.

Knowlton, F. H. (1930). The flora of the Denver and associated formations of Colorado. U.S. In: E. W. Berry (Ed.), Geological Survey Professional Paper, v. 155, p. 1-139. Washington, D.C.: Government Printing Office.

Krassilov, V. A. (1982). Early Cretaceous flora of Mongolia. Palaeontographica Abteilung B, 181(1), 1-43.

Kumar, A. (1986). A sequence of dinocysts from the subsurface sediments (Valangian-Hauterivian) of the Krishna-Godavari basin, India. Journal of the Palaeontological Society of India, 31, 26-38.

Kumar, S. P. (1983). Geology and hydrocarbon prospects of Krishna-Godavari and Cauvery basins. Petroleum Asia Journal, 8, 57-65.

Lakshminarayana, G., Murti, K. S. (1990). Stratigraphy of the Gondwana formations in the Chintalapudi Sub Basin, Godavari Valley Andhra Pradesh. Journal of the Geological Society of India, 36, 13-26.

Lal, N. K., Siawal, A., Kaul, A. K. (2009). Evolution of east coast of India—A plate tectonic reconstruction. Journal of the Geological Society of India, 73, 249-260. https://doi.org/10.1007/S12594-009-0081-1

Lignier, O. (1895). Végétaux de Normandie [Part] 2, Contributions á la flare Liasique Ste.-Honorine-la-Guillaume (Orne). Memoires de la Société linnéenne de Normandie, 2 (18), 124-151.

Linnaeus, C. (1753). Species Plantarum. Stockholm: Laurentius Salvius.

Mahabale, T. S. (1962). Evolutionary trends in Palmae with special reference to fossil palms. Palaeobotanist, 14(1-3), 214-222.

Miki, S. (1959). Evolution of Trapa from ancestral Lythrum through Hemitrapa. Proceedings of the Imperial Academy of Japan, 35(6), 289-294. https://doi.org/10.2183/pjab1945.35.289

Muller, J. (1968). Palynology of the Pedawan and Plateau Sandstone Formations (Cretaceous–Eocene) in Sarawak. Malaysia Micropaleontology, 14(1), 1-37. https://doi.org/10.2307/1484763

Nagalingum, N. S. (2007). Marsileaceaephyllum a new genus for marsileaceous macrofossils: leaf remains from the Early Cretaceous (Albian) of southern Gondwana. Plant Systematics and Evolution, 264, 41-55. https://doi.org/10.1007/s00606-006-0497-7

Paradkar, S. A., Patki, S. P. (1987). Trapa mohgaoensis, a new petrified dicotyledonous fruit from Deccan Intertrappean beds of Mohgaonkalan, M. P., India. Geophytology, 17(1), 21-27.

Prasad, B., Pundir, B. S. (1999). Biostratigraphy of the exposed Gondwana and Cretaceous rocks of Krishna-Godavari basin, India. Journal of Paleontological Society of India, 44, 91-117. Available from: <http://palaeontologicalsociety.in/vol44/v7.pdf>. Accessed on: Nov. 21, 2020.

Rao, G. N. (2001). Sedimentation, stratigraphy and petroleum potential of Krishna-Godavari Basin, east coast of India. AAPG Bulletin, 85(9), 1623-1643. https://doi.org/10.1306/8626CCDF-173B-11D7-8645000102C1865D

Rajanikanth, A., Chinnappa, C. (2016). Early Cretaceous flora of India–A review. The Palaeobotanist, 65, 209-245

Read, R. W., Hickey, L. J. (1972). A revised classification of fossil palm and palm-like leaves. Taxon, 21(1), 129-137. https://doi.org/10.2307/1219237

Rich, F. J., Johnson, D. M., Durkin, T. V. (2001). Occurrence and paleoecology of Marsilea from the Eocene Wasatch Formation, Johnson County, Wyoming. Palaios, 16(6), 608-613. https://doi.org/10.2307/3515633

Richard, L. C. M. (1814). Sur les Hydrocharidees. Mem. Inst. de France, 12(2), 1-4.

Rydin, C., Friis, E. M. (2010). A new Early Cretaceous relative of Gnetales: Siphonospermum simplex gen. et sp. nov. from the Yixian Formation of Northeast China. BMC Evolutionary Biology, 10, 1-6. https://doi.org/10.1186/1471-2148-10-183

Sahni, B. (1932). Homoxylon rajmahalense gen. et sp. nov., a fossil angiospermous wood, devoid of vessels, from the Rajmahal hills, Bihar. Memoirs of Geological Survey of India, 20, 1-19.

Saporta, G. (1865). Etudes sur Ia vegetation du sud-est de la France a l’epoque tertiaire. Annales des Sciences Naturelles, 5(4), 5-264.

Sastri, V. V., Raju, A. T. R., Singh, R. N., Venkatachala, B. S. (1974). Evolution of the Mesozoic sedimentary basins on the east-coast of India. APEA Journal, 14(1), 29-41. https://doi.org/10.1071/AJ73004

Sastri, V. V., Venkatachala, B. S., Narayanan, V. (1981). The evolution of the east coast of India. Palaeogeography, Palaeoclimatology, Palaeoecology, 36(1-2), 23-54. https://doi.org/10.1016/0031-0182(81)90047-X

Schneider, H., Schuettpelz, E., Pryer, K. M., Cranfill, R., Magallón, S., Lupia, R. (2004). Ferns diversified in the shade of angiosperms. Nature, 428, 553-557. https://doi.org/10.1038/nature02361

Sharma, B. D. (1997). An early angiosperm fructification resembling Lesqueria Crane & Dilcher from the Rajmahal hills, India. Phytomorphology, 47, 305-310.

Singh, R. R., Patnaik, R. (2012). A fossil palm leaf impression from∼ 11.2 Ma old, Siwalik deposits of Kangra Valley, Himachal Pradesh. Journal of the Geological Society of India, 79, 85-88. https://doi.org/10.1007/s12594-012-0008-0

Skog, J. E., Dilcher, D. L. (1992). A new species of Marsilea from the Dakota Formation in central Kansas. American Journal of Botany, 79(9), 982-988. https://doi.org/10.1002/j.1537-2197.1992.tb13687.x

Soltis, P. S., Soltis, D. E. (2004). The origin and diversification of angiosperms. American Journal of Botany, 91(10), 1614-1626. https://doi.org/10.3732/ajb.91.10.1614

Srivastava, G., Mehrotra, R. C., Bauer, H. (2012). Palm leaves from the Late Oligocene sediments of Makum Coalfield, Assam, India. Journal of Earth System Science, 121, 747-754. https://doi.org/10.1007/s12040-012-0179-5

Srivastava, R., Krassilov, V. A. (2012). Revision of Early Cretaceous angiosperm remains from the Rajmahal Basin, India, with notes on the palaeoecology of the Pentoxylon plant. Cretaceous Research, 33(1), 66-71. https://doi.org/10.1016/j.cretres.2011.08.003

Srivastava, R., Srivastava, G. (2014). Fossil fruits of Cocos L. (Arecaceae) from Mastritchtian- Danian sediments of central India and its phytogeographical significance. Acta Palaeobotanica, 54(1), 67-75. https://doi.org/10.2478/acpa-2014-0003

Sun, G., Dilcher, D. L., Zheng, S., Zhou, Z. (1998). In search of the first flower: a Jurassic angiosperm, Archaefructus, from northeast China. Science, 282(5394), 1692-1695. https://doi.org/10.1126/science.282.5394.1692

Sun, G., Zheng, S. L., Dilcher, D. L., Wang, Y. D., Mei, S. W. (2001). Early angiosperms and their associated plants from western Liaoning, China. Shanghai: Shanghai Scientific and Technological Education Publishing House.

Surange, K. R. (1966). Indian fossil pteridophytes (No. 4). Monograph. New Delhi: CSIR.

Taylor, E. L., Taylor, T. N., Krings, M. (2009). Paleobotany: the biology and evolution of fossil plants. New York: Academic Press.

Van der Ham, R. W. J. M., Van Konijnenburg-van Cittert, J. H. A., Indeherberge, L. (2007). Seagrass foliage from the Maastrichtian type area (Maastrichtian, Danian, NE Belgium, SE Netherlands). Review of Palaeobotany and Palynology, 144(3-4), 301-321. https://doi.org/10.1016/j.revpalbo.2006.07.008

Van der Hammen, T., Garcia de Mutis, C. (1965). The Paleocene pollen flora of Colombia. Leidse Geologische Mededelingen, 35(1), 105-114.

Van Hoeken-Klinkenberg, P. M. J. (1964). A palynological investigation of some Upper Cretaceous sediments in Nigeria. Pollen et Spores, 6, 209-231.

Vassiljev, V. N. (1967). New Genus of Trapaceae. Paleontologicheskii Zhurnal, 2, 107-112.

Venkatachala, B. S., Sinha, R. N. (1986). Stratigraphy, age and palaeoecology of Upper Gondwana equivalents of the Krishna-Godavari Basin, India. Palaeobotanist, 35(1), 22-31.

Willdenow, C. L. (1802). Species plantarum. Berlin: Berolini.

Wójcicki, J. J., Velitzelos, D. (2007). Trapa kvacekii (Trapaceae), a remarkable new fossil species from the late Miocene of Greece. Acta Palaeobotanica, 47(2), 419-424.

Wójcicki, J. J., Zastawniak, E. (2002). Late Miocene Trapa L. (Trapaceae) of Sosnica (SW Poland) revisited. Acta Palaeobotanica, 42(1), 29-38.

Yabe, H., Endô, S. (1935). Potamogeton remains from the Lower Cretaceous? Lycoptera Beds of Jehol. Proceedings of the Imperial Academy of Tokyo, 11(7), 274-276. http://doi.org/10.2183/pjab1912.11.274

Downloads

Publicado

2020-12-17

Edição

Seção

Artigos

Como Citar

Chopparapu, C., Annamraju, R., Kavali, P. S., & Duarte, S. G. (2020). Angiospermas de sedimentos do Cretáceo inicial da Índia. Geologia USP. Série Científica, 20(4), 123-136. https://doi.org/10.11606/issn.2316-9095.v20-171976