A influência de estruturas preexistentes na formação de riftes oblíquos: o uso da modelagem física e sua comparação com a fase Pré-sal da Bacia de Santos, Brasil

Autores

DOI:

https://doi.org/10.11606/issn.2316-9095.v21-181314

Palavras-chave:

Modelagem física analógica, Estrutura preexistente, Extensão oblíqua e ortogonal, Bacia de Santos

Resumo

A evolução de riftes oblíquos é analisada neste artigo pela realização de modelos físicos, em escala. O intuito foi analisar a fase rifte da Bacia de Santos, examinando a influência da estrutura preexistente do embasamento. Para refinar as informações obtidas, empregou-se a tecnologia particle image velocimetry. Desenvolveram-se três experimentos em caixas de acrílico, com dimensões internas de 37 cm x 41 cm x 07 cm (largura x comprimento x altura), empregando-se areia e silicone para crosta rúptil e dúctil, respectivamente. A estrutura foi simulada por duas folhas de acetato, na base da caixa de experimentos, constituídas de quatro domínios estruturais. A abertura do rifte ortogonal a oblíqua em relação à estrutura preexistente foi efetuada por duas paredes móveis. Os resultados revelaram que a estruturação de riftes é influenciada tanto pela configuração da estrutura preexistente quanto pela direção da extensão. Os dois modelos cujos domínios estruturais formavam ângulos de obliquidade com a direção da extensão menores que 90º produziram falhas com dimensões curtas a intermediárias, grande número de rampas de revezamento e zonas de acomodação. Já o modelo com os domínios estruturais formando ângulos de obliquidade próximos a 90º gerou falhas contínuas, longas, quase retas e nenhuma zona de acomodação. Nesse modelo, as falhas revelaram a maior magnitude de deformação. Nos dois primeiros modelos, ainda se destacaram um alto estrutural entre duas sub-bacias dispostas en echelon e a mudança de direção das falhas quando estas passavam de um domínio a outro. A configuração definiu uma geometria em S muito parecida com aquela da porção centro-norte da Bacia de Santos.

Downloads

Não há dados estatísticos.

Referências

Adam, J., Urai, J. L., Wieneke, B., Oncken, O., Pfeiffer, K., Kukowski, N., Lohrmann, J., Hoth, S., Van der Zee, W., Schmatz, J. (2005). Shear localisation and strain distribution during tectonic faulting: new insights from granular-flow experiments and high resolution optical image correlation techniques. Journal of Structural Geology, 27(2), 283-301. https://doi.org/10.1016/j.jsg.2004.08.008

Agostini, A., Corti, G., Zeoli, A., Mulugeta, G. (2009). Evolution, pattern and partitioning of deformation during oblique continental rifting: inferences from lithosphericscale centrifuge models. Geochemistry, Geosphysics, Geosystems (GCubed), 10(11), Q11015. https://doi.org/10.1029/2009GC002676

Alves, E. C. (2002). Zonas de fraturas oceânicas e suas relações com a compartimentação tectônica do Sudeste do Brasil. Tese (Doutorado). Rio de Janeiro: Universidade Federal do Rio de Janeiro.

Autin, J., Bellahsen, N., Leroy, S., Husson, L., Beslier, M. O., D’Acremont, E. (2013). The role of structural inheritance in oblique rifting: Insights from analogue models and application to the Gulf of Aden. Tectonophysics, 607, 51-64. https://doi.org/10.1016/j.tecto.2013.05.041

Brune, S., Heine, C., Pérez-Gussinyé, M., Sobolev, V. S. (2014). Rift migration explains continental margin asymmetry and crustal hyperextension. Nature Communications, 5, 4014. https://doi.org/10.1038/ncomms5014

Bubeck, A., Walker, R. J., Imber, J., Holdsworth, R. E., MacLeod, C. J., Holwell, D. A. (2017). Extension parallel to the rift zone during segmented fault growth: Application to the evolution of the NE Atlantic. Solid Earth, 8(6), 1161-1180. https://doi.org/10.5194/se-8-1161-2017

Caldeira, J. N. M. (2018). Caracterização estrutural da seção Pré-Sal na porção central do Alto Externo da Bacia de Santos, através da análise estrutural de dados sísmicos. Dissertação (Mestrado). Rio de Janeiro: Faculdade de Geologia, Universidade do Estado do Rio de Janeiro.

Carlotto, M. A., Silva, R. C. B., Yamato, A. A., Trindade, W. L., Moreira, J. L. P., Fernandes, R. A. R., Ribeiro, O. J. S., Gouveia Jr., W. P., Carminati, J. P., Qicai, D., Junfeng, Z., Silva-Teles Jr., A. C. (2017). Libra: a newborn giant in the Brazilian Presalt Province. In: R. K. Merril; C. A. Sternbach (Eds.). Gialnt Fields of the Decade 2000-2010, 113, 165-176. American Association of Petroleum Geologists. https://doi.org/10.1306/13572006M1133685

Carminatti, M., Wolff, B., Gamboa, L. (2008). New exploratory frontiers in Brazil. 19th World Petroleum Congress, Madri, Espanha.

Carvalho, T. S. (2017). Cinemática e geometria de camadas rúpteis e dúcteis sobre um sistema de falhas normais reativado: observações a partir de modelos físicos de caixa de areia, departamento de geologia. Dissertação (Mestrado). Ouro Preto: Universidade Federal de Ouro Preto. Disponível em: http://www.repositorio.ufop.br/jspui/handle/123456789/9354. Acesso em: 18 out. 2021.

Cobbold, P. R., Meisling, K. E., Mount, V. S. (2001). Reactivation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG Bulletin, 85(11), 1925-1944. https://doi.org/10.1306/8626D0B3-173B-11D7-8645000102C1865D

Corti, G. (2012). Evolution and characteristics of continental rifting: Analog modeling-inspired view and comparison with examples from the East African Rift System. Tectonophysics, 522-523, 1-33. https://doi.org/10.1016/j.tecto.2011.06.010

Corti, G., Cioni, R., Franceschini, Z., Sani, F., Scaillet, S., Molin, P., Isola, I., Mazzarini, F., Brune, S., Keir, D., Erbello, A., Muluneh, A., Illsley-Kemp, F., Glerum, A. (2019). Aborted propagation of the Ethiopian rift caused by linkage with the Kenyan rift. Nature Communications, 10, 1309. https://doi.org/10.1038/s41467-019-09335-2

Corti, G., Wijk, V. J., Cloetingh, S., Morley, K. C. (2007). Tectonic inheritance and continental rift architecture: Numerical and analogue models of the East African Rift system. Tectonophysics, 26(6). https://doi.org/10.1029/2006TC002086

Del Ventisette, C., Bonini, M., Agostini, A., Corti, G., Maestrelli, D., Domenico, M. (2019). Using different grainsize granular mixtures (quartz and K-feldspar sand) in analogue extensional models. Journal of Structural Geology, 129, 103888. https://doi.org/10.1016/j.jsg.2019.103888

Dunbar, J. A., Sawyer, D. S. (1989). How preexisting weaknesses control the style of continental breakup. Journal of Geophysical Research: Solid Earth, 94(B6), 7278-7292. https://doi.org/10.1029/JB094iB06p07278

Eisenstadt, G., Sims, D. (2005). Evaluating sand and clay models: do rheological differences matter? Journal of Structural Geology, 27(8), 1399-1412. https://doi.org/10.1016/j.jsg.2005.04.010

Faulds, J. E., Varga, R. J. (1998). The role of accommodation zones and transfer zones in the regional segmentation of extended terranes. Geological Society of America Special Papers, 323, 1-45. https://doi.org/10.1130/0-8137-2323-X.1

Fossen, H., Khani, H. F., Faleide, J. I., Ksienzyk, A. K., Dunlap, W. J. (2016). Post-Caledonian extension in the West Norway-northern North Sea region: the role of structural inheritance. Geological Society, London, Special Publications, 439(1), 465-486. https://doi.org/10.1144/SP439.6

Fossen, H., Rotevatn, A. (2016). Fault linkage and relay structures in extensional settings-A review: Earth-Science Reviews, 154, 14-28. https://doi.org/10.1016/j.earscirev.2015.11.014

Fossen, H., Schultz, R. A., Rundhovde, E., Rotevatn, A., Buckley, S. J. (2010). Fault linkage and graben stepovers in the Canyonlands (Utah) and the North Sea Viking Graben, with implications for hydrocarbon migration and accumulation. AAPG Bulletin, 94(5), 597-613. https://doi.org/10.1306/10130909088

Gamal, N., Yousef, M., Moustafa, A. R., Bosworth, W. (2021). Spatiotemporal evolution of transfer structures and linked fault systems in an extensional setting: Southwest Gebel Akheider, Cairo-Suez District, Egypt. Marine and Petroleum Geology, 133, 105260. https://doi.org/10.1016/j.marpetgeo.2021.105260

Gamboa, L. A. P., Machado, M. A. P., Silveira, D. P., Freitas, J. T. R., Silva, S. R. P. (2008). Evaporitos estratificados no Atlântico Sul. In: W. U. Mohriak, P. Szatmari, S. Anjos (Eds.). Sal: Geologia e Tectônica. Exemplos nas Bacias Brasileiras, p. 91-163. São Paulo: Beca Edições.

Gerya, T. (2012). Origin and models of oceanic transform faults. Tectonophysics, 522-523, 34-54. https://doi.org/10.1016/j.tecto.2011.07.006

Gibbs, A. D. (1984). Structural evolution of extensional basin margins. Journal of the Geological Society, 141(4), 609-620. https://doi.org/10.1144/gsjgs.141.4.0609

Gomes, P. O., Kilsdonk, B., Grow T., Minken J., Barragn R. (2012). Tectonic evolution of the Outer High of Santos Basin, southern Sao Paulo Plateau, Brazil, and implications for hydrocarbon exploration. In: D. Gao (Ed.). Tectonics and sedimentation: implications for petroleum systems. AAPG Memoir, 100, 125-142. http://dx.doi.org/10.1306/13351550M1003530

Gomes, P. O., Kilsdonk, B., Minken, J., Grow, T., Barragn, R. (2008). The outer high of the Santos Basin, Southern Sao Paulo Plateau, Brazil: pre-salt exploration outbreak, paleogeographic setting, and evolution of the syn-rift structures. AAPG International Conference and Exhibition, Search and Discover, 26-29, Cape Town, Africa do Sul.

Guiraud, M., Buta-Neto, A., Quesne, D. (2010). Segmentation and differential post-rift uplift at the Angola margin as recorded by the transform-rifted Benguela and oblique-toorthogonal-rifted Kwanza basins. Marine and Petroleum Geology, 27(5), 1040-1068. https://doi.org/10.1016/j.marpetgeo.2010.01.017

Heine, C., Zoethout, J., Müller, R. D. (2013). Kinematics of the South Atlantic rift. Solid Earth, 4(2), 215-253. http://dx.doi.org/10.5194/se-4-215-2013

Heilbron, M., Mohriak, W. U., Valeriano, C. M., Milani, E. J., Almeida, J., Tupinambá, M. (2000). From collision to extension: the roots of the southeastern continental margin of Brazil. In: W. U. Mohriak, M. Talwani (Eds.). Atlantic rifts and continental margins, AGU Geophysical Monograph, 115, 1-32.

Heilbron, M., Valeriano, C. M., Tassinari, C. C. G., Almeida, J., Tupinambá, M., Siga, O., Trouw, R. (2008). Correlation of Neoproterozoic terranes between the Ribeira Belt, SE Brazil and its African counterpart: comparative tectonic evolution and open questions: Geological Society, London, Special Publications, 294(1), 211-237. https://doi.org/10.1144/SP294.12

Hubbert, M. K. (1937). Theory of scale models as applied to the study of geologic structures. Geological Society of America Bulletin, 48(10), 459-1520. https://doi.org/10.1130/GSAB-48-1459

Krantz, R. W. (1991). Measurements of friction coefficients and cohesion for faulting and fault reactivation in laboratory models using sand and sand mixtures. Tectonophysics, 188(1-2), 203-207. https://doi.org/10.1016/0040-1951(91)90323-K

Kumar, N., Gamboa, L. A. P. (1979). Evolution of the Sao Paulo Plateau (southeastern Brazilian margin) and implications for the early history of the South Atlantic. Geological Society of America Bulletin, 90(3), 281-293. https://doi.org/10.1130/0016-7606(1979)90<281:EOTSPP>2.0.CO;2

La Rosa, A., Pagli, C., Keir, D., Sani, F., Corti, G., Wang, H., Possee, D. (2019). Observing Oblique Slip During Rift Linkage in Northern Afar. Geophysical Research Letters, 46(19), 10782-10790. https://doi.org/10.1029/2019GL084801

Larsen, P. (1988). Relay structures in a lower Permian basement-involved extension system, East Greenland. Journal of Structural Geology, 10(1), 3-8. https://doi.org/10.1016/0191-8141(88)90122-8

Macedo, J. M. (1990). Evolução tectônica da Bacia de Santos e áreas continentais adjacentes. In: G. P. Raja Gabaglia, E. J. Milani (Eds.) Origem e evolução de bacias sedimentares. Rio de Janeiro: Petrobras, 361-376.

Maestrelli, D., Montanari, D., Corti, G., Del Ventisette, C., Moratti, G., Bonini, M. (2020). Exploring the interactions between rift propagation and inherited crustal fabrics through experimental modeling. Tectonics, 39(12), e2020TC006211. https://doi.org/10.1029/2020TC006211

Magnavita, L. P., Dehler, N. M., Gomes, L. C., Sant’Anna, M. V., Souza, A. E. C. M., Menezes, J. R. C. (2010). Arcabouço tectônico e cinemática do pré-sal do Sudeste brasileiro. Petrobras, Relatório Reservado, 55.

Mandl, G. (1987). Tectonic deformation by rotation parallel faults: the bookshelf mechanism. Tectonophysics, 141(4), 277-316. https://doi.org/10.1016/0040-1951(87)90205-8

McClay, K. R., Dooley T., Whitehouse, P., Fullarton, L., Charntraprasert, S. (2004). 3D analogue models of rift systems: templates for 3D seismic interpretation. Geological Society, London, Memoirs, 29(1), 101-115. https://doi.org/10.1144/GSL.MEM.2004.029.01.11

McClay, K. R., Dooley, T., Whitehouse, P., Mills, M.(2002). 4-D evolution of rift systems: Insights from scaled physical models. American Association of Petroleum Geologists Bulletin, 86(6), 935-959. https://doi.org/10.1306/61EEDBF2-173E-11D7-8645000102C1865D

McClay, K. R., Ellis, P. G. (1987). Analogue models of extensional fault geometries. In: M. P. Coward, J. F. Dewey, P. L. Hancock (Eds.). Continental Extensional Tectonics. Geological Society London, Special Publication, 28, 109-125. https://doi.org/10.1144/GSL.SP.1987.028.01.09

McClay, K. R., Nichols, G. J., Khalil, S., Darwish, M., Bosworth, W. (1998). Extensional tectonics and sedimentation, eastern Gulf of Suez. Egypt. In: B. H. Purser, D. W. J. Bosence (Eds.), Sedimentation and tectonics of rift basins, Red Sea-Gulf of Aden, 223-238. London: Chapman and Hall. https://doi.org/10.1007/978-94-011-4930-3_14

Meisling, K. E., Cobbold, P. R., Mount, V. S. (2001). Segmentation of an obliquely rifted margin, Campos and Santos basins, southeastern Brazil. AAPG Bulletin, 85(11), 1903-1924. https://doi.org/10.1306/8626D0A9-173B-11D7-8645000102C1865D

Minzoni, M., Cantelli, A., Thornton, J. (2019). Seismic-scale geometries and sequence-stratigraphic architecture of early Cretaceous Syn-Post Rift Lacustrine Carbonate Systems, Pre-Salt Section, South Atlantic Margins. In: B. Hart, N. C. Rosen, D. West, A. D’Agostino, C. Messina, M. Hoffman, R. Wild (Eds.). Sequence stratigraphy: the future defined. https://doi.org/10.5724/gcs.17.193

Mohriak, W. U. (2003). Bacias sedimentares da margem continental brasileira. In: L. A. Bizzi, C. Schobbenhaus, R. M. Vidotti, J. H. Gonçalves (eds.). Geologia, tectônica e recursos minerais do Brasil, 87-165. Brasil: Serviço Geológico do Brasil – CPRM.

Mohriak, W. U., Rosendahl, B. R., Turner, J. P., Valente, S. C. (2002). Crustal architecture of South Atlantic volcanic margins, In: M. A. Menzies, S. L. Klemperer, C. J. Ebinger, J. Baker (Eds.), Volcanic Rifted Margins. Special Paper Geological Society of America, 362, 159-202. https://doi.org/10.1130/0-8137-2362-0.159

Moreira, J. L. P., Madeira, C. V., Gil, J. A., Machado, M. A. P. (2007). Bacia de Santos. Boletim de Geociências da Petrobras, 15(2), 531-549.

Morgan, J. P., Taramón, J. M., Araujo, M., Hasenclever, J., Perez-Gussinye, M. (2020). Causes and consequences of asymmetric lateral plume flow during South Atlantic rifting. Proceedings of the National Academy of Sciences of the United States of America, 117(45), 27877-27883. https://doi.org/10.1073/pnas.2012246117

Morley, C. K. (1995). Developments in the structural geology of rifts over the last decade and their impact on hydrocarbon exploration. In: J. J. Lambiase (Ed.). Hydrocarbon habitat in rift basins, 80(1), 1-32. Geological Society of London, Special Publication. https://doi.org/10.1144/GSL.SP.1995.080.01.01

Morley, C. K., Nelson, R. A., Patton, T. L., Munn, S. G. (1990). Transfer zones in the East African rift system and their relevance to hydrocarbon exploration in rifts. AAPG Bulletin, 74(8), 1234-1253. https://doi.org/10.1306/0C9B2475-1710-11D7-8645000102C1865D

Moulin, M., Aslanian, D., Unternehr, P. (2010). A new starting point of the south and equatorial Atlantic Ocean. Earth Sciences Reviews, 98(1-2), 1-37. https://doi.org/10.1016/j.earscirev.2009.08.001

Nixon, C. W., Vaagan, S., Sanderson, D. J., Gawthorpe, R. L. (2019). Spatial distribution of damage and strain within a normal fault relay at Kilve, U.K. Journal of Structural Geology, 118, 194-209. https://doi.org/10.1016/j.jsg.2018.10.016

Peacock, D. C. P., Knipe, R. J., Sanderson, D. J. (2000). Glossary of normal faults. Journal of Structural Geology, 22(3), 291-305. https://doi.org/10.1016/S0191-8141(00)80102-9

Peacock, D. C. P., Sanderson, D. J. (1991). Displacements, segment linkage and relay ramps in normal fault zones. Journal of Structural Geology, 13(6), 721-733. https://doi.org/10.1016/0191-8141(91)90033-F

Pereira, C. E. L. (2021). Modelagem física analógica de rifteamento oblíquo: a influência de estruturas preexistentes na formação do pré-sal da Bacia de Santos, Brasil. Dissertação (Mestrado). Ouro Preto: Universidade Federal de Ouro Preto. Disponível em: http://www.repositorio.ufop.br/jspui/handle/123456789/13205. Acesso em: 19 out. 2021.

Pereira, M. J., Macedo, J. M. (1990). A Bacia de Santos: perspectivas de uma nova província petrolífera na plataforma continental sudeste brasileira. Boletim Geociências da Petrobras, 4, 3-11.

Pinto, L., Muñoz, C., Nalpas, T., Charrier, R. (2010). Role of sedimentation during basin inversion in analogue modelling. Journal of Structural Geology, 32(4), 554-565. https://doi.org/10.1016/j.jsg.2010.03.001

Quirk, G. D., Hertle, M., Jeppesen, J., Raven, M., Mohriak, U. W., Kann, D. J, Norgaard, M., Howe, M. J., Hsu, D., Coffey, B., Mendes, M. P. (2013). Rifting, subsidence and continental break-up above a mantle plume in the central South Atlantic. Geological Society of London, Special Publications, 369(1), 185-214. https://doi.org/10.1144/SP369.20

Rigoti, C. A. (2015). Evolução tectônica da Bacia de Santos com ênfase na geometria crustal: interpretação integrada de dados de sísmica de reflexão e refração, gravimetria e magnetometria. Dissertação (Mestrado). Rio de Janeiro: Universidade do Estado do Rio de Janeiro.

Ring, U. (1994). The influence of preexisting structure on the evolution of the Cenozoic Malawi rift (East African rift system). Tectonics, 13(2), 313-326. https://doi.org/10.1029/93TC03188

Ros, E., Pérez-Gussinyé, M., Araújo, M., Romeiro, T., Andrés-Martínez, M., Morgan, J. P. (2017). Lower crustal strength controls on melting and serpentinization at magmapoor margins: potential implications for the South Atlantic. Geochemistry, Geophysics, Geosystems, 18(12), 4538-4557. https://doi.org/10.1002/2017GC007212

Rosendahl, B. R. (1987). Architecture of continental rifts with special reference to East Africa. Annual Review of Earth and Planetary Sciences, 15, 445-503. https://doi.org/10.1146/annurev.ea.15.050187.002305

Sandwell, D. T., Smith, W. H. F. (2009). Global marine gravity from retracked Geosat and ERS-1 altimetry: Ridge segmentation versus spreading rate. Journal of Geophysical Research: Solid Earth, 114(B1), 1-18. https://doi.org/10.1029/2008JB006008

Schellart, W. P. (2000). Shear test results for cohesion and friction coefficients for different granular materials: scaling implications for their usage in analogue modelling. Tectonophysics, 324(1-2), 1-16. https://doi.org/10.1016/S0040-1951(00)00111-6

Schlische, R. W., Withjack, M. O., Eisenstadt, G. (2002). An experimental study of the secondary deformation produced by oblique-slip normal faulting. AAPG Bulletin, 86(5), 885-906. https://doi.org/10.1306/61EEDBCA-173E-11D7-8645000102C1865D

Schmitt, R. S., Trouw, R., Van Schmus, W. R., Armstrong, R., Stanton, N. S. G. (2016). The tectonic significance of the Cabo Frio Tectonic Domain in the SE Brazilian margin: a Paleoproterozoic through Cretaceous saga of a reworked continental margin. Brazilian Journal of Geology, 46(Suppl.1), 37-66. https://doi.org/10.1590/2317-4889201620150025

Scholz, C. A., Shillington, D. J., Wright, L. J. M., Accardo, N., Gaherty, J. B., Chindandali, P. (2020). Intrarift fault fabric, segmentation, and basin evolution of the Lake Malawi (Nyasa) Rift, East Africa. Geosphere, 16(5), 1293-1311. https://doi.org/10.1130/GES02228.1

Stanton, N., Kusznir, N., Gordon, A., Schmit, R. (2019). How inheritance and magmatism influence rifted margins - A case study of the Campos Basin (Brazil). 6th International Congress of the Brazilian Geophysical Society, 1-4. https://doi.org/10.22564/16cisbgf2019.190

Szatmari, P., Milani, E. J. (2016). Tectonic control of the oil-rich large igneous-carbonate-salt province of the South Atlantic rift. Marine and Petroleum Geology, 77, 567-596. https://doi.org/10.1016/j.marpetgeo.2016.06.004

Taylor, B., Weiss, J. R., Goodliffe, A. M., Sachpazi, M., Laigle, M., Hirn, A. (2011). The structures, stratigraphy and evolution of the Gulf of Corinth rift, Greece. Geophysical Journal International, 185(3), 1189-1219. https://doi.org/10.1111/j.1365-246X.2011.05014.x

Tommasi, A., Vauchez, A. (2001). Continental rifting parallel to ancient collisional belts: an effect of the mechanical anisotropy of the lithospheric mantle. Earth and Planetary Science Letters, 185(1-2), 199-210. https://doi.org/10.1016/S0012-821X(00)00350-2

Torsvik, T. H., Rousse, S., Labails, C., Smethurst, M. A. (2009). A new scheme for the opening of the South Atlantic Ocean and the dissection of an Aptian salt basin. Geophysical Journal International, 177(3), 1315-1333. https://doi.org/10.1111/j.1365-246X.2009.04137.x

Trudgill, B., Cartwright, J. (1994). Relay-ramp forms and normal-fault linkages, Canyonlands National Park, Utah. Geological Society of America Bulletin, 106(9), 1143-1157. https://doi.org/10.1130/0016-7606(1994)106<1143:RRFANF>2.3.CO;2

Van Gent, H. W., Holland, M., Urai, J. L., Loosveld, R. (2010). Evolution of fault zones in carbonates with mechanical stratigraphy: insights from scale models using layered cohesive powder. Journal of Structural Geology, 32(9), 1375-1391. https://doi.org/10.1016/j.jsg.2009.05.006

Vendeville, B., Cobbold, P. R., Davy, P., Brun, J. P., Choukroune, P. (1987). Physical models of extensional tectonics at various scales. In: M. P. Coward, J. F. Dewey, P. L. Hancock (Eds.). Continental extensional tectonics. Geological Society of London, Special Publications, 28(1), 95-107. https://doi.org/10.1144/GSL.SP.1987.028.01.08

Weijermars, R., Schmeling, H. (1986). Scaling of Newtonian and non-Newtonian fluid dynamics without inertia for quantitative modelling of rock flow due to gravity (including the concept of rheological similarity). Physics of the Earth and Planetary Interiors, 43(4), 316-330. https://doi.org/10.1016/0031-9201(86)90021-X

Zhang, S., Chang, S., Huang, H., Dong, Y., Shen, Y., Luo, Y., Zhu, B. (2020). Prediction of favorable carbonate reservoirs under extremely thick salts via poststack facies-controlled and prestack zoeppritz equation inversions in the Santos Basin of Brazil. Hindawi Geofluids, 2020, 6205185. https://doi.org/10.1155/2020/6205185

Zhong, X., Escalona, A. (2020). Evidence of rift segmentation and controls of Middle to late jurassic synrift deposition in the ryggsteinen ridge area, Northern North Sea. AAPG Bulletin, 104(7), 1531-1565. https://doi.org/10.1306/03172018173

Zwaan, F., Schreurs, G. (2017). How oblique extension and structural inheritance influence rift segment interaction: Insights from 4D analog models. Interpretation, 5(1), SD119-SD138, https://doi.org/10.1190/INT-2016-0063.1

Zwaan, F., Schreurs, G., Adam, J. (2018). Effects of sedimentation on rift segment evolution and rift interaction in orthogonal and oblique extensional settings: Insights from analogue models analysed with 4D X-ray computed tomography and digital volume correlation techniques. Global and Planetary Change, 171, 110-133. https://doi.org/10.1016/j.gloplacha.2017.11.002

Zwaan, F., Schreurs, G., Naliboff, J., Buiter, S. J. H. (2016). Insights into the effects of oblique extension on continental rift interaction from 3-D analogue and numerical models. Tectonophysics, 693(Parte B), 239-260. https://doi.org/10.1016/j.tecto.2016.02.036

Downloads

Publicado

2021-12-14

Como Citar

Pereira, C. E. L. ., Gomes, C. J. S. ., & Araujo, M. N. C. de . (2021). A influência de estruturas preexistentes na formação de riftes oblíquos: o uso da modelagem física e sua comparação com a fase Pré-sal da Bacia de Santos, Brasil. Geologia USP. Série Científica, 21(4), 103-124. https://doi.org/10.11606/issn.2316-9095.v21-181314

Edição

Seção

Artigos