A Teoria dos Supercontinentes: discussão e crítica construtiva
DOI:
https://doi.org/10.11606/issn.2316-9095.v22-191048Palavras-chave:
Fissão, Fusão, Nuna, Nena, Gondwana, PangeaResumo
A Teoria dos Supercontinentes teve como seu instaurador principal Alfred Wegener, nos seus clássicos trabalhos nas primeiras décadas do século XX. Deve ser destacada a frente de contestação que lhe foi imposta de geocientistas dos dois mundos (então, todos “geossinclinalistas”). A retomada (e o crédito) só veio com Harry Hess, em 1962, quando este mostrou que os grandes empecilhos (fatores desconhecidos da deriva continental, não explicados devidamente), inibidores da teoria, passaram a ser cientificamente demonstráveis. Isso com suas pesquisas, com o conceito de convecção mantélica e mais ainda com proveito do ímpeto do surgimento da Tectônica de Placas (e o combate ao fixismo sensu lato). Seguindo Hess, alguns trabalhos foram acrescentados, com novas proposições, adendos, revisões, principalmente entre 1992 e 2005. Desde então, instalou-se fase notável de contribuições, publicações, livros e capítulos, todos com novos dados científicos. Temos que admitir que esse ramo das geociências ainda está em estágio de fluxo. A aplicação desses conceitos e conhecimentos, merecedora de um projeto internacional específico, foi estendida do Arqueano (no caso mais problemático de todos erátemas) até o fim do Mesoproterozoico (e.g. projetos “Gondwana”, “Rodínia” etc.). Concomitantemente a esses trabalhos e dados, já surgiram várias questões pendentes, para todos os casos de supercontinentes. Catalogamos uma série de problemas que queremos expor e as soluções que são demandadas. O conclusivo hoje é que o supercontinente Pangea, pelos seus dados geológicos gerais, geocronológicos e paleomagnéticos, é o único que pode ser colocado no status de fato científico. Todas as demais configurações propostas anteriores à Pangea são boas hipóteses de trabalho, a serem investigadas/exploradas de forma multidisciplinar.
Downloads
Referências
Aspler, L. B., Chiarenzelli, J. P. (1998). The New Archean supercontinents? Evidence from Early Paleoproterozoic. Sedimentary Geology, 120(1-4), 75-104. https://doi.org/10.1016/S0037-0738(98)00028-1
Bleeker, W. (2003). The late Archean Record: a puzzle in ca. 35 pieces. Lithos, 71(2-4), 99-134. https://doi.org/10.1016/J.LITHOS.2003.07.003
Brito Neves, B. B., Fuck, R. A., Campanha, G. A. (2021). Basement inliers of the Brasiliano Structural Provinces. Journal of South American Earth Sciences, 110, 103392. https://doi.org/10.1016/j.jsames.2021.103392
Cawood, P. A., Hawkesworth, C. J., Pisarevsky, S. A., Dhuime, B., Capitanio, F. A., Nebel, O. (2018). Geological archive of the onset of plate tectonics. Philososphical Transactions Royal Society A, 376(2132), 20170405. https://doi.org/10.1098/rsta.2017.0405
Cawood, P. A., Martin, E., Murphy, J. B., Pisarevsky, S. A. (2021). Gondwana’s interlinked perifheral orogens. Earth and Planetary Sciences Letters, 568, 117057. https://doi.org/10.1016/j.epsl.2021.117057
Condie, K. C. (1997). Plate tectonics and crustal evolution. 4. Ed. Oxford: Butterworth/Heinemann, 282 p. https://doi.org/10.1016/B978-0-7506-3386-4.X5000-9
Condie, K. C. (2002). Break up of a Paleoproterozoic supercontinent. Gondwana Research, 5(1), 41-43. https://doi.org/10.1016/S1342-937X(05)70886-8
Condie, K. C. (2011). Earth as an evolving planetary system. Amsterdam: Elsevier, 574 p. https://doi.org/10.1016/C2010-0-65818-4
Dearnly, R. (1966). Orogenic fold belts and the hypothesis od Earth evolution. Physics and Chemistry of the Earth, 7, 1-24. https://doi.org/10.1016/0079-1946(66)90002-4
Der Pluijm, B. V. A., Marshak, S. (2004). Earth Structure. 2. Ed. Londres: Norton & Co., 673 p.
Donovan, S. K. (1987). The fit of the continents in the late Precambrian. Nature, 327, 139-141. https://doi.org/10.1038/327139a0
Du Toit, A. L. (1927). A geological comparison of South America with South Africa. Washington: Carnegie Institution of Washington. Disponível em: https://paleoarchive.com/literature/DuToit1927-GeologicalComparisonSouthAmericaSouthAfrica.pdf. Acesso em: 23 set. 2021.
Du Toit, A. L. (1937). Our wandering continents: an hypothesis of continental drifting. Edinburgh: London, Oliver and Boyd.
Ernst, R. E., Bleeker, W., Söderlund, U., Kerr, A. C. (2013). Large Igneous Provinces and supercontinent: toward completing the plate tectonics revolution. Lithos, 174, 1-14. https://doi.org/10.1016/j.lithos.2013.02.017
Evans, D. A. D., Mitchell, R. N. (2011). Assembly and breakup of the core of Paleoproterozoic–Mesoproterozoic supercontinent Nuna. Geology, 39(5), 443-446. https://doi.org/10.1130/G31654.1
Evans, D. A. D., Pisarevsky, S. (2008). Plate tectonics on early Earth? Weighing the paleomagnetic evidences. The Geological Society of America, Special Publication, 440, 249-264. https://doi.org/10.1130/2008.2440(12)
Gower, C. F., Ryan, A. B., Rivers, T. (1990). Mid-Proterozoic Laurentia-Baltica: an overview of its geological evolution and a summary of the contributions made by this volume. In: C. F. Gower, T. Rivers, A. B. Ryan (Eds.). Mid Proterozoic Laurentia Baltica. Geological Association of Canada Special Paper, 38, p. 1-20. Disponível em: https://www.researchgate.net/publication/313082013_Mid-Proterozoic_Laurentia-Baltica_An_overview_of_its_geological_evolution_and_a_summary_of_the_contributions_made_by_this_volume. Acesso em: 23 set. 2021.
Hatcher Jr., R. D., Carlson, M. P., McBride, J. H., Catalán. J. R. M. (2007). 4-D framework of the continental crust. Colorado: Boulder. (Geological Society of America Memoir, 200.)
Hess, H. H. (1962). History of ocean basins. In: A. E. J. Engel, H. L. James, B. F. Leonard (Eds.). Petrologic studies: a volume in honor of A. F. Buddnigton. P. 599-620. Disponível em: http://www.mantleplumes.org/WebDocuments/Hess1962.pdf. Acesso em: 23 set. 2021.
Hoffman, P. F. (1988). United Plates of America, the birth of a craton. Annual Reviews of Earth and Planetary Sciences, 16, 543-603. https://doi.org/10.1146/annurev.ea.16.050188.002551
Hoffman, P. F. (1991). Did the breakout of Laurentia turn Gondwana inside out? Sciences, 252(5011), 1409-1412. https://doi.org/10.1126/science.252.5011.1409
Hoffman, P. F. (1992). Rodinia, Gondwanaland, Pangea and Amasia; alaternating inematics scenarios of supercontinental fusion. Eos Transactions American Geophysical Union, 73(14), 282.
Holmes, A. (1928). Theory of continental drift: a symposium on the origin and movement of land masses, both inter-continental and intra-continental, as proposed by Alfred Wegener. Nature, 122, 431-433. https://doi.org/10.1038/122431a0
Kearey, P., Klepeis, A. K., Vine, F. J. (2009). Global tectonics. 3. Ed. Chichester: Wiley-Blackwell, 496 p.
Lahtinen, R., Korja, A., Nironeen, M. (2012). Assembly of the Supercontinent Hudsonia (Columbia) a 1.64-1.79. In: Supercontinent Symposium 2012. Oral presentation.
Li, Z. X., Bogdanova, S. V., Collins, A. S., Davidson, A., De Waele, B., Ernst, R. E., Fitzsimons, I. C. W., Fuck, R. A., Gladkochub, D. P., Jacobs, J., Karlstrom, K. E., Lu, S., Natapov, L. M., Pease, V., Pisarevsky, S. A., Thrane, K., Vernikovsky, V. (2008). Assembly, configuration and break up of Rodinia: a synthesis. Precambrian Research, 160(1-2), 179-210. https://doi.org/10.1016/j.precamres.2007.04.021
Light, M. P. R. (1982). Limpopo Mobile belt: a result of continental collision. Tectonics, 1(4), 325-342. https://doi.org/10.1029/TC001i004p00325
Lubnina, N. V., Slabunov, A. (2011). Reconstruction of the Kenorland supercontinent in the Noearchean based on paleomagnetic and geological data. Moscow University Geology Bulletin, 66(4), 242. https://doi.org/10.3103/S0145875211040077
Lubnina, N. V., Slabunov, A. (2017). The Karelian craton in the Structure of the Kenorland supercontinent in the Neoarchean: New Paleomagnetic and Isotope Geochronology Data on Granulites of the Onega Complex. Moscow University Geology Bulletin, 72(6), 377-390. https://doi.org/10.3103/S0145875217060072
McMenamin, M. A. S. (1982). A case for two late Proterozoicearliest Cambrian faunal province loci. Geology, 10(6), 209-292. Disponível em: https://www.researchgate.net/publication/236000351_A_case_for_two_late_Proterozoicearliest_Cambrian_faunal_province_loci. Acesso em: 29 set. 2021.
McMenamin, M. A. S., McMenamin, D. L. S. (1990). The emergence of animals: the Cambrian breakthrough. Nova York: Columbia University Press. https://doi.org/10.7312/mcme93416
Mitchel, R. N., Kilian, T. M., Evans, D. A. (2012). Supercontinent cycles and the calculation of absolute paleolongitude in deep time. Nature, 482, 208-211. https://doi.org/10.1038/nature10800
Moores, E. M. (1991). Southwest US-East Antarctic (SWEAT) connection: a hypothesis. Geology, 19(5), 425-428. https://doi.org/10.1130/0091-7613(1991)019≤0425:SUSEAS≥2.3.CO;2
Moores, E. M., Twiss, R. J. (1995). Tectonics. Nova York: W. H. Freeman and Company, 415 p.
Murphy, J. B., Dostal, J. D. (2011). Secular variation in magmatism and tectonic implication. Lithos, 123(1-4), IX-XII. https://doi.org/10.1016/j.lithos.2011.01.008
Murphy, J. B., Nance, R. D. (2003). Do supercontinent introvert or extrovert?: Sm-Nd isotope evidence. Geology, 31(10), 873-876. https://doi.org/10.1130/G19668.1
Murphy, J. B., Nance, R. D., Cawood, P. A. (2009). Contrasting modes of supercontinent formation and the conundrum of Pangea. Gondwana Research, 15(3-4), 408-420. https://doi.org/10.1016/j.gr.2008.09.005
Pehrsson, S. J., Berman, R. G., Eglington, B., Rainbird, R. (2013). The Neoarchean supercontinent revisited the case of the Rae family of cratons. Precambrian Research, 232, 27-43. https://doi.org/10.1016/j.precamres.2013.02.005
Pesonen, L. J., Elming, S. Å., Mertanen, S., Pisarevskt, S., D’Agrella-Filho, M. S., Meert, J. G., Schmidt, P. W., Abrahamsen, N., Bylund, G. (2003). Paleomagnetic configuration of continents during the Proterozoic. Tectonophysics, 375(1-4), 289-324. https://doi.org/10.1016/S0040-1951(03)00343-3
Piper, J. D. A. (1982). The Precambrian palaemagnetic record: the case of the Proterozoic supercontinent. Earth and Planetary Science Letters, 59(1), 61-89. https://doi.org/10.1016/0012-821X(82)90118-2
Piper, J. D. A. (2010). Protopangea: Paleomagnetic definition of Earth oldest (mid-Archean-Paleoproterozoic) supercontinent. Journal of Geodynamics, 50(3-4), 154-165. https://doi.org/10.1016/j.jog.2010.01.002
Powell, C. McA., Li, Z. X., MacElhinny, M. W., Meert, J. G., Park, J. K. (1993). Paleomagnetic constraints on timing of the Neoproterozoic breakup of Rodinia and the Cambrian formation of Gondwana. Geology, 21(10), 898-892. https://doi.org/10.1130/0091-7613(1993)021≤0889:PCOTOT≥2.3.CO;2
Raumer, J. F., Stampfli, G. M., Bussy, F. (2003). Gondwanaderived microcontinents – the constituents of Variscan and alpine collisional orogens. Tectonophysics, 365(1-4), 7-22. https://doi.org/10.1016/S0040-1951(03)00015-5
Rogers, J. J. W. (1996). A history of continents in the last past three billions or years. The Journal of Geology, 104(1), 91-107. https://doi.org/10.1086/629803
Rogers, J. J. W., Santosh, M. (2004). Continents and supercontinents. Nova York: Oxford University Press, 289 p.
Romano, M., Cifelli, R. L. (2015). 100 Years of continental drift. Science, 350(6263), 915-916. https://doi.org/10.1126/science.aad6230
Sadowski, G. R., Campanha, G. A. C. (2004). Grandes falhas do Brasil continental. In: V. Mantesso-Neto, A. Bartorelli, C. D. R. Carneiro, B. B. Brito Neves (Eds.). Geologia do Continente Sul-Americano: Evolução da Obra de Fernando Marques de Almeida. São Paulo: Beca, p. 407-422.
Schmitt, R. S., Fragoso, R. A., Collins, A. S. (2018). Suturing Gondwana in the Cambrian: the orogenic events of the final amalgamation. In: S. Siegesmund, M. A. S. Basei, P. Oyhantçabal, S. Oriolo (Eds). Geology of Southwest Gondwana: regional geology reviews. Cham: Springer International Publishing, p. 411-232. https://doi.org/10.1007/978-3-319-68920-3_15
Scholl, D. W., Von Huene, R. (2007). Crustal recycling at modern subduction zones applied to the past: issues of growth and preservation of continental basement crust, mantle geochemistry, and supercontinent reconstruction. In: R. D. Hatcher Jr., M. Carlson, J. H. McBride, J. R. M. Catalán (Eds.). 4-D framework of the continental crust. Boulder, Colorado: The Geological Society Memoir, 200. https://doi.org/10.1130/2007.1200(02)
Stanistreet, I. G. (1993). Ancient and modern examples of tectonic escape basins: the A witwatersrans Basin compared with the Cenozoic Maracaibo basin. Tectonic Controls and Signatures in Sedimentary Successions, 20, 363-376. https://doi.org/10.1002/9781444304053.ch19
Suess, E. (1901). Das Antilitz der Erde. Paris: Colin. Sutton, J. (1963). Long-term cycles in the evolution of the continents. Nature, 198, 731-735. https://doi.org/10.1038/198731b0
Torsvik, T. H., Amudsen, H., Hartz, E. A., Corfu, F., Kuszniire, N., Gaina, C., Doubrovine, P. V., S. B., Aswall, L. D., Jamtveit, B. (2013). A Precambrian microcontinent in the Indian Ocean. Nature Geoscience, 6(3), 223-227. https://doi.org/10.1038/ngeo1736
Umbgrove, J. M. F. (1947). The pulse of the Earth. The Hague, Netherlands: Martinus Nijholf, 380 p. https://doi.org/10.1007/978-94-010-3017-5
Valentine, J. W., Moores, E. M. (1970). Plate tectonics regulation of faunal diversity and sea level. Nature, 228, 657-659. https://doi.org/10.1038/228657a0
Veevers J. J. (1989). Middle/Later Triassic (230 ± 5Ma) singularity in the stratigraphic and magmatic history of the Pangean heat anomaly. Geology, 17(9), 784-787. https://doi.org/10.1130/0091-7613(1989)017<0784:MLTMSI>2.3.CO;2
Veevers, J. J. (1994). Pangea: evolution of a supercontinent and its consequences for Earth’s paleoclimate and sedimentary environments. Special Paper of the Geological Society of America, 288, 13-23. https://doi.org/10.1130/SPE288-p13
Wegener, A. (1912). Die Entstehung der Kontinent. Geologische Rundschau, 3, 276-292. https://doi.org/10.1007/BF02202896
Wegener, A. (1922). Die Entstehung der kontinente und Ozeane. Berlim: Gebrüder Borntraeger.
Williams, H., Hoffman, P. F., Lewry, J. F., Monger, J. W., Rivers, T. (1991). Anatomy of North America: thematic geological portrayals of the continent. Tectonophysics, 187(1-3), 117-134. https://doi.org/10.1016/0040-1951(91)90416-P
Windley, B. F. (1977). The evolving continents. Chichester: John Wiley & Sons, 399 p.
Windley, B. F. (1995). The evolving continents. 3. ed. Chichester: John Wiley & Sons, 526 p.
Worsley, T., Moody, J. B., Nance, R. D. (1985). Proterozoic to recent tectonic tuning of biogeochemical cycles. In: E. T. Sundquist, W. S. Broecker (Eds). The carbon cycle and atmospheric CO2: natural variations Archean to present, 32, p. 561-572. https://doi.org/10.1029/GM032p0561
Worsley, T., Nance, D., Moody, J. B. (1982). Plate tectonic episodicity: a deterministic model for periodic Pangeas. Eos Transactions American Geophysical Union, 65(45), 1104.
Worsley, T., Nance, D., Moody, J. B. (1984). Global tectonics and eustasy for the past 2 billions years. Marine Geology, 58(3-4), 373-400. https://doi.org/10.1016/0025-3227(84)90209-3
Zak, J., Zulauf, G., Röhling, H. G. (eds.). (2013). Crustal evolution and geodynamic process in Central Europe. Proceedings of the Joint Conference of the Czech and German Geological Societies Help in Plzen (Pilsen). Schriftenenrihe der Deutschen für Geowissennschaften, 82, 201 p.
Zhang, S., Zheng-Xiang, L., Evans, D. A. D., Wu, H., Li, H., Dong, J. (2012). Pre-Rodinia supercontinent Nuna shaping up: A global synthesis with new paleomagnetic results from North China. Earth and Planetary Science Letters, 353-354, 145-155. https://doi.org/10.1016/j.epsl.2012.07.034
Zhao, G., Cawood, P. A., Wilde, S. A., Sun, M. (2002). Review of global 2.1-1.8 Ga collisional orogens and accreted cratons: a pre-Rodinia supercontinent? Earth-Science Reviews, 59(1-4), 125-162. https://doi.org/10.1016/S0012-8252(02)00073-9
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2022 Benjamim Bley de Brito Neves
Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Autores que publicam nesta revista concordam com os seguintes termos:
- Autores mantém os direitos autorais e concedem à revista Geologia USP. Série Científica, o direito de primeira publicação, com o trabalho sob a licença Creative Commons BY-NC-SA (resumo da Licença: https://creativecommons.org/licenses/by-nc-sa/4.0 | texto completo da licença: https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode) que permite o compartilhamento do trabalho de forma não comercial e conferindo os devidos créditos autorais da primeira publicação nesta revista.
- Autores têm autorização para assumir contratos adicionais separadamente, para distribuição não-exclusiva da versão do trabalho publicada nesta revista (publicar em repositório institucional ou como capítulo de livro), conferindo os devidos créditos autorais da primeira publicação nesta revista.
- Autores têm permissão e são estimulados a publicar e distribuir seu trabalho online (em repositórios institucionais ou na sua página pessoal) a qualquer ponto antes ou durante o processo editorial, uma vez que isso pode gerar alterações produtivas, bem como aumentar o impacto e a citação do trabalho publicado (Veja O efeito do Acesso Aberto e downloads no impacto das citações).
Como Citar
Dados de financiamento
-
Conselho Nacional de Desenvolvimento Científico e Tecnológico
Números do Financiamento 303576/2019-7