Petrocronologia de rochas metapelíticas: uma revisão de conceitos-chave

Autores

DOI:

https://doi.org/10.11606/issn.2316-9095.v23-198908

Palavras-chave:

Metamorfismo, Petrologia, Metapelitos, Modelagem metamórfica, Geocronologia

Resumo

Rochas metapelíticas são importantes marcadores petrocronólogicos, não apenas pelas variadas e sensíveis paragêneses minerais e presença de fases datáveis, mas também por sua ampla e contínua distribuição ao longo de terrenos, permitindo, assim, estudos integrados e detalhados do metamorfismo e eventos em diferentes regiões. O presente trabalho visou sintetizar aspectos relevantes à caracterização petrológica e geocronológica de metapelitos para regimes de pressão média. Considerando o sistema químico KFMASH (K2O, FeO, MgO, Al2O3, SiO2, H2O), minerais como clorita, muscovita, cloritoide, biotita, estaurolita, granada, cordierita, andaluzita, cianita, sillimanita e feldspato potássico são típicos da paragênese de metapelitos para baixas ou médias pressões, desde que haja disponibilidade química e condições P-T para sua formação. De forma geral, tem-se como distintivas, com o aumento das condições P-T e o aparecimento dos respectivos minerais-índice, as zonas metamórficas da clorita, biotita, granada, estaurolita, cianita, sillimanita e sillimanita + ortoclásio. Para a determinação petrogenética e das condições do metamorfismo desses litotipos, estudos macro- e microestruturais, associados com análises de química mineral e de rocha total, propiciam a aplicação de métodos termobarométricos diversos, desde os convencionais, passando pelos otimizados e diagramas isoquímicos de fases e chegando nos termômetros monoelementares, cada qual com suas especificidades e aplicações. De modo a promover um estudo petrocronológico dos litotipos, fases minerais como zircão, granada, monazita e rutilo, em seus respectivos sistemas isotópicos, possibilitam atribuir idades a esses eventos metamórficos e, com a integração e interpretação dos dados obtidos, construir a trajetória P-T-t-d de formação dessas rochas e dos eventos/estágios dos processos envolvidos. Uma abordagem sistemática, de acordo com as particularidades da rocha, deve ser empregada, garantindo, assim, a acurácia dos resultados obtidos. 

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Amato, J. M., Johnson, C. M., Baumgartner, L. P., Beard, B. L. (1999). Rapid exhumation of the Zermatt–Saas ophiolite deduced from high-precision Sm–Nd and Rb–Sr geochronology. Earth and Planetary Science Letters, 171(3), 425-438. https://doi.org/10.1016/S0012-821X(99)00161-2

Anczkiewicz, R., Platt, J. P., Thirlwall, M. F., Wakabayashi, J. (2004). Franciscan subduction off to a slow start: evidence from high-precision Lu–Hf garnet ages on high grade-blocks. Earth and Planetary Science Letters, 225(1-2), 147-161. https://doi.org/10.1016/j.epsl.2004.06.003

Anczkiewicz, R., Thirlwall, M. F. (2003). Improving precision of Sm–Nd garnet dating by H2SO4 leaching: a simple solution to the phosphate inclusion problem. Geological Society of London, Special Publication, 220(1), 83-91. https://doi.org/10.1144/GSL.SP.2003.220.01.05

Attendorn, H. G., Bowen, R. N. C. (1997). Radioactive and stable isotope Geology. Londres: Chapman e Hall, 522 p.

Barrow, G. (1893). On an intrusion of muscovite biotite gneiss in the SE Highlands of Scotland and its accompanying metamorphism. Quarterly Journal of the Geological Society, 49, 330-358. https://doi.org/10.1144/GSL.JGS.1893.049.01-04.52

Barrow, G. (1912). On the geology of lower Deesidee and the southern highland border. Proceedings of the Geologists’ Associations, 23(5), 274-290. https://doi.org/10.1016/S0016-7878(12)80018-6

Bast, R., Scherer, E. E., Sprung, P., Fischer-Godde, M., Stracke, A., Mezger, K. (2015). A rapid and efficient ion-exchange chromatography for Lu–Hf, Sm–Nd, and Rb–Sr geochronology and the routine isotope analysis of sub-ng amounts of Hf by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 30(11), 2323-2333. https://doi.org/10.1039/C5JA00283D

Baxter, E. F., Ague, J. J., Depaolo, D. J. (2002). Prograde temperature–time evolution in the Barrovian type-locality constrained by Sm/Nd garnet ages from Glen Clova, Scotland. Journal of the Geological Society, 159(1), 71-82. https://doi.org/10.1144/0016-76901013

Baxter, E. F., Caddick, M. J., Ague, J. J. (2013). Garnet: common mineral, uncommonly useful. Elements, 9(6), 415-419. https://doi.org/10.2113/gselements.9.6.415

Baxter, E. F., Caddick, M. J., Dragovic, B. (2017). Garnet: a rock-forming mineral petrochronometer. Reviews in Mineralogy and Geochemistry, 83(1), 469-533. https://doi.org/10.2138/rmg.2017.83.15

Bea, F. (1996). Residence of REE, Y, Th and U in granites and crystal protoliths: implication for the chemistry of crystal melts. Journal of Petrology, 37(3), 521-552. https://doi.org/10.1093/petrology/37.3.521

Berman, R. G. (1988). Internally-consistent thermodynamic data for minerals in the system Na2O-K2O-CaO-MgOFeOFe 2O3-Al2O3-SiO2-TiO2-H2O-CO2. Journal of Petrology, 29(2), 445-522. https://doi.org/10.1093/petrology/29.2.445

Berman, R. G. (1991). Thermobarometry using multiequilibrium calculations: a new technique with petrologic applications. The Canadian Mineralogist, 29(4), 833-855.

Bhattacharya, A., Mohanty, L., Maji, A., Sen, S. K., Raith, M. (1992). Non-ideal mixing in the phlogopite-annite boundary: constraints from experimental data on Mg-Fe partitioning and reformulation of the biotite-garnet geothermometer. Contributions to Mineralogy and Petrology, 111, 87-93. https://doi.org/10.1007/BF00296580

Bingen, B., van Breemen, O. (1998). U-Pb monazite ages in amphibolite to granulite-facies orthogneiss reflect hydrous mineral breakdown reactions: Sveconorwegian Province of SW Norway. Contributions to Mineralogy and Petrology, 132, 336-353. https://doi.org/10.1007/s004100050428

Bird, A. F., Thirlwall, M. F., Strachan, R. A., Manning, C. J. (2013). Lu–Hf and Sm–Nd dating of metamorphic garnet: evidence for multiple accretion events during the Caledonian orogeny in Scotland. Journal of the Geological Society, 170(2), 301-317. https://doi.org/10.1144/jgs2012-083

Boatner, L. A. (2005). Synthesis, structure, and properties of monazite, pretulite, and xenotime. Reviews in Mineralogy and Geochemistry, 48(1), 87-121. https://doi.org/10.2138/rmg.2002.48.4

Bohlen, S. R. (1987). Pressure-temperature-time paths and a tectonic model for the evolution of granulites. Journal of Geology, 95(5), 617-632. https://doi.org/10.1086/629159

Bowring, S. A., Housh, T. (1995). The Earth’s early evolution. Science, 269(5230), 1535-1540. https://doi.org/10.1126/science.7667634

Bucher, K., Frey, M. (1994). Petrogenesis of metamorphic rocks. 6th ed. Berlin: Springer, 318 p.

Bucher, K., Frey, M. (2002). Petrogenesis of metamorphic rocks. 7th ed. Berlin: Springer, 341 p.

Bucher, K., Grapes, R. (2011). Petrogenesis of Metamorphi Rocks. 8th ed. Berlin: Springer, 428 p. https://doi.org/10.1007/978-3-540-74169-5

Buick, I. S., Hermann, J., Williams, I. S., Gibson, R., Rubatto, D. (2006). A SHRIMP U–Pb and LA-ICP-MS trace element study of the petrogenes;is of garnet–cordierite–orthoamphibole gneisses from the Central Zone of the Limpopo Belt, South Africa. Lithos, 88(1-4), 150-172. https://doi.org/10.1016/j.lithos.2005.09.001

Caddick, M. J., Kohn, M. J. (2013). Garnet: witness to the evolution of destructive plate boundaries. Elements, 9(6), 427-432. https://doi.org/10.2113/gselements.9.6.427

Campbell, A. J., Humayun, M. (1999). Trace element microanalysis in iron meteorites by laser ablation ICPMS. Analytical Chemistry, 71(5), 939-946. https://doi.org/10.1021/ac9808425

Carlson, R. W. (2014). Thermal ionisation mass spectrometry. In: Holland, H. D., Turekian, K. K. (eds.). Treatise on Geochemistry. 2nd ed. Oxford: Elsevier, p. 337-354. https://doi.org/10.1016/B978-0-08-095975-7.01427-3

Carswell, D. A., Harley, S. L. (1990). Mineral barometry and thermometry. In: Carswell, D. A. (ed.). Eclogite facies rocks. Glasgow: Blackie, p. 83-110.

Catlos, E. J., Harrison, T. M., Kohn, M. J., Grove, M., Ryerson, F. J., Manning, C., Upreti, B. N. (2001). Geochronologic and thermobarometric constraints on the evolution of the Main Central Thrust, central Nepal Himalaya. Journal of Geophysical Research – Solid Earth, 106(B8), 16177-16204. https://doi.org/10.1029/2000JB900375

Chen, Y.-X., Zheng, Y.-F., Chen, R.-X., Zhang, S.-B., Li, Q., Dai, M., Chen, L. (2011). Metamorphic growth and recrystallization of zircons in extremely 18O-depleted rocks during eclogitefacies metamorphism: Evidence from U–Pb ages, trace elements, and O–Hf isotopes. Geochimica et Cosmochimica Acta, 75(17), 4877-4898. https://doi.org/10.1016/j.gca.2011.06.003

Chenery, S., Cook, J. M. (1993). Determination of rare earth elements in single mineral grains by laser ablation microprobeinductively coupled plasma-mass spectrometry: preliminary study. Journal of Analytical Atomic Mass Spectrometry, 8, 299-303. https://doi.org/10.1039/JA9930800299

Cherniak, D. J., Watson, E. B., Grove, M., Harrison, T. M. (2004). Pb diffusion in monazite: a combined RBS/SIMS study 1. Geochimica et Cosmochimica Acta, 68(4), 829-840. https://doi.org/10.1016/j.gca.2003.07.012

Clark, D. J., Hensen, B. J., Kinny, P. D. (2000). Geochronological constraints for a two-stage history of the Albany-Fraser Orogen, Western Australia. Precambrian Research, 102(3-4), 155-183. https://doi.org/10.1016/S0301-9268(00)00063-2

Connolly, J. A. D. (1990). Multi-variable phase diagrams: An algorithm based on generalized thermodynamics. American Journal of Science, 290(6), 666-718. https://doi.org/10.2475/ajs.290.6.666

Connolly, J. A. D. (2009). The geodynamic equation of state: What and how. Geochemistry Geophysics Geosystems, 10(10), Q10014. https://doi.org/10.1029/2009GC002540

Corfu, F. (2013). A century of U–Pb geochronology: The long quest towards concordance. GSA Bulletin, 125(1-2), 33-47. https://doi.org/10.1130/B30698.1

Corfu, F., Muir, T. L. (1989). The Hemlo-Heron Bay greenstone belt and Hemlo Au-Mo deposit, Superior Province, Ontario, Canada; 2. Timing of metamorphism, alteration and Au mineralization from titanite, rutile, and monazite U–Pb geochronology. Chemical Geology: Isotope Geoscience section, 79(3), 183-200. https://doi.org/10.1016/0168-9622(89)90029-8

Corrie, S. L., Kohn, M. J. (2008). Trace-element distributions in silicates during prograde metamorphic reactions: implications for monazite formation. Journal of Metamorphic Geology, 26(4), 451-464. https://doi.org/10.1111/j.1525-1314.2008.00769.x

Crowley, J. L., Schoene, B., Bowring, S. A. (2007). U–Pb dating of zircon in the Bishop Tuff at the millennial scale. Geology, 35(12), 1123-1126. https://doi.org/10.1130/G24017A.1

Cruz-Uribe, A. M., Feineman, M. D., Zack, T., Jacob, D. E. (2018). Assessing trace element (dis) equilibrium and the application of single element thermometers in metamorphic rocks. Lithos, 314-315, 1-15. https://doi.org/10.1016/j.lithos.2018.05.007

Dasgupta, S., Sengupta, P., Guha, D., Fukupka, M. (1991). A refined garnet-biotite Fe−Mg exchange geothermometer and its application in amphibolites and granulites. Contributions to Mineralogy and Petrology, 109(1), 130-137. https://doi.org/10.1007/BF00687206

De Capitani, C., Petrakakis, K. (2010). The computation of equilibrium assemblage diagrams with Theriak/Domino software. American Mineralogist, 95(7), 1006-1016. https://doi.org/10.2138/am.2010.3354

DeWolf, C., Zeissler, C. J., Halliday, A., Mezger, K., Essene, E. (1996). The role of inclusions in U-Pb and Sm-Nd garnet geochronology: stepwise dissolution experiments and trace uranium mapping by fission track analysis. Geochimica et Cosmochimica Acta, 60(1), 121-134. https://doi.org/10.1016/0016-7037(95)00367-3

Dickin, A. P. (2005). Radiogenic Isotope Geology. 2nd ed. Cambridge: Cambridge University Press, 509 p. https://doi.org/10.1017/CBO9781139165150

Ducea, M. N., Ganguly, J., Rosenberg, E. J., Patchett, P. J., Cheng, W. J., Isachsen, C. (2003). Sm–Nd dating of spatially controlled domains of garnet single crystals: a new method of high-temperature thermochronology. Earth and Planetary Science Letters, 213(1-2), 31-42. https://doi.org/10.1016/S0012-821X(03)00298-X

Duchene, S., BlichertToft, J., Luais, B., Telouk, P., Lardeaux, J. M., Albarede, F. (1997). The Lu–Hf dating of garnets and the ages of the Alpine high-pressure metamorphism. Nature, 387, 586-589. https://doi.org/10.1038/42446

Engi, M. (2017). Petrochronology based on REE-minerals: monazite, allanite, xenotime, apatite. Reviews in Mineralogy and Geochemistry, 83(1), 365-418. https://doi.org/10.2138/rmg.2017.83.12

Engi, M., Lanari, P., Kohn, M. J. (2017). Significant ages: an introduction to petrochronology. Reviews in Mineralogy and Geochemistry, 83(1), 1-12. https://doi.org/10.2138/rmg.2017.83.1

Eskola, P. (1915). On the relations between the chemical and mineralogical composition in the metamorphic rocks of the Orijarvi region. Commission Geologique Finlande Bulletin, 44, 109-145.

Eskola, P. (1920). The mineral facies of rocks. Norsk Geologisk Tidsskr, 6, 143-194.

Eskola, P. (1939). Die metamorphen Gesteine. In: Barth, T. F. W., Correns, C. W., Eskola, P. Die Entstehung der Gesteine. Berlin: Springer, p. 1-115. https://doi.org/10.1007/978-3-642-86244-1

Ewing, T. A., Rubatto, D., Beltrando, M., Hermann, J. (2015). Constraints on the thermal evolution of the Adriatic margin during Jurassic continental break-up: U–Pb dating of rutile from the Ivrea-Verbano Zone, Italy. Contributions to Mineralogy and Petrology, 169, 44. https://doi.org/10.1007/s00410-015-1135-6

Ferry, J. M., Spear, F. S. (1978). Experimental Calibration of the partitioning of Fe and Mg between biotite and garnet. Contributions to Mineralogy and Petrology, 66, 113-117. https://doi.org/10.1007/BF00372150

Ferry, J. M., Watson, E. (2007). New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contributions to Mineralogy and Petrology, 154, 429-437. https://doi.org/10.1007/s00410-007-0201-0

Finger, F., Krenn, E. (2007). Three metamorphic monazite generations in a high-pressure rock from the Bohemian Massif and the potentially important role of apatite in simulating polyphase monazite growth along a PT loop. Lithos, 95(1-2), 103-115. https://doi.org/10.1016/j.lithos.2006.06.003

Fornelli, A., Langone, A., Micheletti, F., Pascazio, A., Piccarreta, G. (2014). The role of trace element partitioning between garnet, zircon and orthopyroxene on the interpretation of zircon U–Pb ages: An example from high-grade basement in Calabria (Southern Italy). International Journal of Earth Sciences, 103, 487-507. https://doi.org/10.1007/s00531-013-0971-8

Foster, C. T. (1991). The role of biotite as a catalyst in reaction mechanisms that form sillimanite. The Canadian Mineralogist, 29(4), 943-963.

Foster, G., Parrish, R. R., Horstwood, M. S. A., Chenery, S., Pyle, J., Gibson, H. D. (2004). The generation of prograde P–T–t points and paths; a textural, compositional, and chronological study of metamorphic monazite. Earth and Planetary Science Letters, 228(1-2), 125-142. https://doi.org/10.1016/j.epsl.2004.09.024

Frost, B. R. (1991). Stability of oxide minerals in metamorphic rocks. Reviews in Mineralogy & Geochemistry, 25, 469-488.

Frost, B. R., Frost, C. (2014). Essentials of igneous and metamorphic petrology. Cambridge: Cambridge University Press, 331 p. https://doi.org/10.1017/9781108685047

Gao, X.-Y., Zheng, Y.-F., Chen, Y.-X., Tang, H.-L., Li, W.-C. (2015). Zircon geochemistry records the action of metamorphic fluid on the formation of ultrahigh-pressure jadeite quartzite in the Dabie orogen. Chemical Geology, 419, 158-175. https://doi.org/10.1016/j.chemgeo.2015.10.043

Gardés, E., Jaoul, O., Montel, J.-M., Seydoux-Guillaume, A.-M., Wirth, R. (2006). Pb diffusion in monazite: An experimental study of Pb2++Th4+⇔2Nd3+ interdiffusion. Geochimica et Cosmochimica Acta, 70(9), 2325-2336. https://doi.org/10.1016/j.gca.2006.01.018

Gauthiez-Putallaz, L., Rubatto, D., Hermann, J. (2016). Dating prograde fluid pulses during subduction by in situ U–Pb and oxygen isotope analysis. Contributions to Mineralogy and Petrology, 171, 15. https://doi.org/10.1007/s00410-015-1226-4

Gengo, R. M., Santos, C. A. Moraes, R., Szabó, G. A. J. (2022). O uso de pseudosseções em petrologia metamórfica: conceitos básicos e aplicações, com ênfase em pelitos: O uso de pseudosseções em petrologia metamórfica. Geologia USP. Série Científica, 22(1), 21-38. https://doi.org/10.11606/issn.2316-9095.v22-186131

Goudie, D. J., Fisher, C. M., Hanchar, J. M., Crowley, J. L., Ayers, J. C. (2014). Simultaneous in situ determination of U-Pb and Sm-Nd isotopes in monazite by laser ablation ICP-MS. Geochemistry, Geophysics, Geosystems, 15(6), 2575-2600. https://doi.org/10.1002/2014GC005431

Gradim, C., Roncato, J., Pedrosa-Soares, A. C., Cordani, U., Dussin, I., Alkmim, F. F., Queiroga, G., Jacobsohn, T., Silva, L. C. D., Babinski, M. (2014). The hot backarc zone of the Araçuaí orogen, eastern Brazil: From sedimentation to granite generation. Brazilian Journal of Geology, 44(1), 155-180. https://doi.org/10.5327/Z2317-4889201400010012

Guo, X., Navrotsky, A., Kukkadapu, R. K., Engelhard, M. H., Lanzirotti, A., Newville, M., Ilton, E. S., Sutton, S. R., Xu, H. (2016). Structure and thermodynamics of uranium containing iron garnets. Geochimica et Cosmochimica Acta, 189, 269-281. https://doi.org/10.1016/j.gca.2016.05.043

Haack, U. K., Gramse, M. (1972). Survey of garnets for fossil fission tracks. Contributions to Mineralogy and Petrology, 34, 258-260. https://doi.org/10.1007/BF00373298

Harley, S. L., Kelly, N. M., Möller, A. (2007). Zircon behaviour and the thermal histories of mountain chains. Elements, 3(1), 25-30. https://doi.org/10.2113/gselements.3.1.25

Harlov, D. E., Hetherington, C. J. (2010). Partial highgrade alteration of monazite using alkali-bearing fluids: experimental and nature. American Mineralogist, 95(7), 1105-1108. https://doi.org/10.2138/am.2010.3525

Harlov, D. E., Wirth, R., Hetherington, C. J. (2007). The relative stability of monazite and huttonite at 300-900°C and 200-1000 Mpa: Precambrian and the propagation of metastable mineral phases. American Mineralogist, 92(10), 1652-1664. https://doi.org/10.2138/am.2007.2459

Harlov, D. E., Wirth, R., Hetherington, C. J. (2011). Fluidmediated partial alteration of monazite: the role of coupled dissolution-reprecipitation during apparent solid-state element mass transfer. Contributions to Mineralogy and Petrology, 162, 329-348. https://doi.org/10.1007/s00410-010-0599-7

Harvey, J., Baxter, E. F. (2009). An improved method for TIMS high precision neodymium isotope analysis of very small aliquots (1-10 ng). Chemical Geology, 258(3-4), 251-257. https://doi.org/10.1016/j.chemgeo.2008.10.024

Hayden, L. A., Watson, E. B., Wark, D. A. (2008). A thermobarometer for sphene (titanite). Contributions to Mineralogy and Petrology, 155, 529-540. https://doi.org/10.1007/s00410-007-0256-y

Heaman, L. M., Parrish, R. R. (eds.) (1991). U–Pb geochronology of accessory minerals. Toronto: Mineral Association of Canada.

Hermann, J., Rubatto, D. (2003). Relating zircon and monazite domains to garnet growth zones: age and duration of granulite facies metamorphism in the Val Malenco lower crust. Journal of Metamorphic Geology, 21(9), 833-852. https://doi.org/10.1046/j.1525-1314.2003.00484.x

Hermann, J., Rubatto, D., Korsakov, A., Shatsky, V. S. (2001). Multiple zircon growth during fast exhumation of diamondiferous, deeply subducted continental crust (Kokchetav massif, Kazakhstan). Contributions to Mineralogy and Petrology, 141, 66-82. https://doi.org/10.1007/s004100000218

Hirata, T., Nesbitt, R. W. (1995). U-Pb isotope geochronology of zircon: Evaluation of the laser probe-inductively coupled plasma mass spectrometry technique. Geochimica et Cosmochimica Acta, 59(12), 2491-2500. https://doi.org/10.1016/0016-7037(95)00144-1

Hodges, K. V., Spear, F. S. (1982). Geothermometry, geobarometry and the Al2SiO5 triple point at Mt. Moosilauke, New Hampshire. American Mineralogist, 67(11-12), 1118-1134.

Holdaway, M. J., Lee, S. M. (1977). Fe-Mg cordierite stability in high-grade politic rocks based on experimental, theoretical and natural observations. Contributions to Mineralogy and Petrology, 63(2), 175-198. https://doi.org/10.1007/BF00398778

Horn, I., Rudnick, R. L., McDonough, W. F. (2000). Precise elemental and isotope ratio measurement by simultaneous solution nebulisation and laser ablation-ICP-MS: Application to U-Pb geochronology. Chemical Geology, 164(3-4), 281-301. https://doi.org/10.1016/S0009-2541(99)00168-0

Hoskin, P. W. O., Black, L. P. (2000). Metamorphic zircon formation by solid-state recrystallization of protolith igneous zircon. Journal of Metamorphic Geology, 18(4), 423-439. https://doi.org/10.1046/j.1525-1314.2000.00266.x

Ibanez-Mejia, M., Bloch, E. M., Vervoort, J. D. (2018). Timescales of collisional metamorphism from Sm-Nd, Lu-Hf and U-Pb thermochronology: a case from the Proterozoic Putumayo Orogen of Amazonia. Geochimica et Cosmochimica Acta, 235, 103-126. https://doi.org/10.1016/j.gca.2018.05.017

Iizuka, T., Komiya, T., Rino, S., Maruyama, S., Hirata, T. (2010). Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochimica et Cosmochimica Acta, 74(8), 2450-2472. https://doi.org/10.1016/j.gca.2010.01.023

Ireland, T. R. (1995). Ion microprobe mass spectrometry: techniques and applications in cosmochemistry, geochemistry, and geochronology. Advanced Anal Geochemistry, 2, 1-118.

Ireland, T. R. (2015). Secondary ion mass spectrometry (SIMS). In: Rink, W. J., Thompson, J. W. (eds). Encyclopedia of Scientific Dating Methods. Berlin: Springer, p. 739-740. https://doi.org/10.1007/978-94-007-6326-5_106-1

Ireland, T. R., Williams, I. S. (2003). Considerations in zircon geochronology by SIMS. Reviews in Mineralogy and Geochemistry, 53(1), 215-241. https://doi.org/10.2113/0530215

Jackson, S. E., Longerich, H. P., Dunning, G. R., Fryer, B. J. (1992). The application of laser ablation-microprobeinductively coupled plasma-mass spectrometry (LAMICP-MS) to in situ trace-element analysis in minerals. Canadian Mineralogist, 30(4), 1049-1064.

Jackson, S. E., Longerich, H. P., Horn, I., Dunning, G. R. (1996). The application of laser ablation microprobe (LAM)-ICP-MS to in situ U-Pb zircon geochronology. Journal of Conference Abstracts, 1, 283.

Janots, E., Engi, M., Berger, A., Allaz, J., Schwarz, J-O., Spandler, C. (2008). Prograde metamorphic sequence of REEminerals in pelitic rocks of the Central Alps: implications for allanite–monazite–xenotime phase relations from 250 to 610°C. Journal of Metamorphic Geology, 26(5), 509-526. https://doi.org/10.1111/j.1525-1314.2008.00774.x

Jäger, E., Hunziker, J. C. (1979). Lectures in Isotope Geology. Berlin: Springer-Verlag, 342 p. https://doi.org/10.1007/978-3-642-67161-6

Jeffries, T. E., Pearce, N. J. G., Perkins, W. T., Raith, A. (1996). Chemical fractionation during infrared and ultraviolet laser ablation inductively coupled plasma mass spectrometry: implications for mineral microanalysis. Analytical Communications, 33(1), 35-39. https://doi.org/10.1039/AC9963300035

Johnson, T. A., Vervoort, J. D., Ramsey, M. J., Aleinikoff, J. N., Southworth, S. (2018). Constraints on the timing and duration of orogenic events by combined Lu–Hf and Sm–Nd geochronology: an example from the Grenville orogeny. Earth and Planetary Science Letters, 501, 152-164. https://doi.org/10.1016/j.epsl.2018.08.030

Just, J., Schulz, B., Wall, H., Jourdan, F., Pandit, M. K. (2011). Monazite CHIME/EPMA dating of Erinpura granitoid deformation: implications for Neoproterozoic tectono-thermal evolution of NW India. Gondwana Research, 19(2), 402-412. https://doi.org/10.1016/j.gr.2010.08.002

Kamber, B., Frei, R., Gibb, A. (1998). Pitfalls and new approaches in granulite chronometry: an example from the Limpopo Belt, Zimbabwe. Precambrian Research, 91(3-4), 269-285. https://doi.org/10.1016/S0301-9268(98)00053-9

Kelsey, D. E., Clark, C., Hand, M. (2008). Thermobarometric modelling of zircon and monazite growth in melt-bearing systems: examples using model metapelitic and metapsammitic granulites. Journal of Metamorphic Geology, 26(2), 199-212. https://doi.org/10.1111/j.1525-1314.2007.00757.x

Kelsey, D. E., Powell, R. (2011). Progress in linking accessory mineral growth and breakdown to major mineral evolution in metamorphic rocks: a thermodynamic approach in the Na2O–CaO–K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–ZrO2 system. Journal of Metamorphic Geology, 29(1), 151-166. https://doi.org/10.1111/j.1525-1314.2010.00910.x

Kingsbury, J. A., Miller, C. F., Wooden, J. L., Harrison, T. M. (1993). Monazite paragenesis and U–Pb systematics in rocks of the eastern Mojave Desert, California, U.S.A.: implications for thermochronometry. Chemical Geology, 110(1-3), 147-167. https://doi.org/10.1016/0009-2541(93)90251-D

Kohn, M. J., Malloy, M. A. (2004). Formation of monazite via prograde metamorphic reactions among common silicates: Implications for age determinations. Geochimica et Cosmochimica Acta, 68(1), 101-113. https://doi.org/10.1016/S0016-7037(03)00258-8

Kohn, M. J., Wieland, M. S., Parkinson, C. D., Upreti, B. N. (2005). Five generations of monazite in Langtang gneisses: implications for chronology of the Himalayan metamorphic core. Journal of Metamorphic Geology, 23(5), 399-406. https://doi.org/10.1111/j.1525-1314.2005.00584.x

Kooijman, E., Mezger, K., Berndt, J. (2010). Constraints on the U–Pb systematics of metamorphic rutile from in situ LA-ICP-MS analysis. Earth and Planetary Science Letters, 293(3-4), 321-330. https://doi.org/10.1016/j.epsl.2010.02.047

Košler, J., Sláma, J., Belousova, E., Corfu, F., Gehrels, G. E., Gerdes, A., Horstwood, M. S., Sircombe, K. N., Sylvester, P. J., Tiepolo, M., Whitehouse, M. J. (2013). U–Pb Detrital Zircon Analysis—Results of an inter-laboratory comparison. Geostandards and Geoanalytical Research, 37(3), 243-259. https://doi.org/10.1111/j.1751-908X.2013.00245.x

Košler, J., Tubrett, M. N., Sylvester, P. J. (2007). Application of laser ablation ICP-MS to U-Th-Pb dating of monazite. Geostandards Newsletter, 25(2-3), 375-386. https://doi.org/10.1111/j.1751-908X.2001.tb00612.x

Koziol, A. M. (1989). Recalibration of the garnet-plagioclase-Al2SiO5-quartz (GASP) geobarometer and applications to natural paragenesis. EOS, 70(15), 493.

Koziol, A. M., Newton, R. C. (1988). Redetermination of the anorthite breakdown reaction and improvement of the plagioclase-garnet-Al2SiO5-quartz geobarometer. American Mineralogist, 73(3-4), 216-223.

Kylander-Clark, A. R. (2017). Petrochronology by laserablation inductively coupled plasma mass spectrometry. Reviews in Mineralogy and Geochemistry, 83(1), 183-198. https://doi.org/10.2138/rmg.2017.83.6

Kylander-Clark, A. R. C., Hacker, B. R., Cottle, J. M. (2013). Laserablation split-stream ICP petrochronology. Chemical Geology, 345, 99-112. https://doi.org/10.1016/j.chemgeo.2013.02.019

Lana, C., Farina, F., Gerdes, A., Alkmim, A., Gonçalves, G. O., Jardim, A. C. (2017). Characterization of zircon reference materials via high precision U–Pb LA-MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 32(10), 2011-2023. https://doi.org/10.1039/C7JA00167C

Lana, C., Gonçalves, G. O., Mazoz, A., Buick, I., Kamo, S., Scholz, R., Wang, H., Moreira, H., Babinski, M., Queiroga, G. (2022). Assessing the U-Pb, Sm-Nd and Sr-Sr Isotopic Compositions of the Sumé Apatite as a Reference Material for LA-ICP-MS Analysis. Geostandards and Geoanalytical Research, 46(1), 71-95. https://doi.org/10.1111/ggr.12413

Lanari, P., Engi, M. (2017). Local Bulk Composition Effects on Metamorphic Mineral Assemblages. Reviews in Mineralogy and Geochemistry, 83(1), 55-102. https://doi.org/10.2138/rmg.2017.83.3

Li, Q.-L., Lin, W., Su, W., Li, X.-H., Shi, Y.-H., Liu, Y., Tang, G.-Q. (2011). SIMS U–Pb rutile age of lowtemperature eclogites from southwestern Chinese Tianshan, NW China. Lithos, 122(1-2), 76-86. https://doi.org/10.1016/j.lithos.2010.11.007

Liati, A., Gebauer, D., Wysoczanski, R. (2002). U–Pb SHRIMP-dating of zircon domains from UHP garnet-rich mafic rocks and late pegmatoids in the Rhodope zone (N Greece); evidence for Early Cretaceous crystallization and Late Cretaceous metamorphism. Chemical Geology, 184(3-4), 281-299. https://doi.org/10.1016/S0009-2541(01)00367-9

Ludwig, K. R., Cooper, J. A. (1984). Geochronology of Precambrian granites and associated U–Ti–Th mineralization, northern Olary province, South Australia. Contributions to Mineralogy and Petrology, 86, 298-308. https://doi.org/10.1007/BF00373676

Luvizotto, G. L., Zack, T. (2009). Nb and Zr behavior in rutile during high-grade metamorphism and retrogression: An example from the Ivrea–Verbano Zone. Chemical Geology, 261(3-4), 303-317. https://doi.org/10.1016/j.chemgeo.2008.07.023

Luvizotto, G. L., Zack, T., Triebold, S., von Eynatten, H. (2009). Rutile occurrence and trace element behavior in medium-grade metasedimentary rocks: example from the Erzgebirge, Germany. Mineralogy and Petrology, 97, 233-249. https://doi.org/10.1007/s00710-009-0092-z

Mason, R. (1990). Petrology of the metamorphic rocks. Londres: Unwin Hyman, 230 p.

Melo, M. G., Stevens, G., Lana, C., Pedrosa-Soares, A. C., Frei, D., Alkmim, F. F., Alkmin, L. A. (2017). Two cryptic anatectic events within a syn-collisional granitoid from the Araçuaí orogen (Southeastern Brazil): Evidence from the polymetamorphic Carlos Chagas batholith. Lithos, 277, 51-71. https://doi.org/10.1016/j.lithos.2016.10.012

Mezger, K., Hanson, G., Bohlen, S. (1989). U-Pb systematics of garnet: dating the growth of garnet in the Late Archean Pikwitonei granulite domain at Cauchon and Natawahunan Lakes, Manitoba, Canada. Contributions to Mineralogy and Petrology, 101, 136-148. https://doi.org/10.1007/BF00375301

Mezger, K., Rawnsley, C., Bohlen, S., Hanson, G. (1991). U-Pb garnet, sphene, monazite and rutile ages: implications for the duration of high-grade metamorphism and cooling histories, Adirondack Mts., New York. Journal of Geology, 99(3), 415-428. https://doi.org/10.1086/629503

Miyashiro, A. (1961). Evolution of Metamorphic Belts. Journal of Petrology, 2(3), 277-311. https://doi.org/10.1093/petrology/2.3.277

Montel, J.-M., Foret, S., Veschambre, M., Nicollet, C., Provost, A. (1996). Electron microprobe dating of monazite. Chemical Geology, 131(1-4), 37-53. https://doi.org/10.1016/0009-2541(96)00024-1

Newton, R. C., Haselton, H. T. (1981). Thermodynamics of the garnet-plagioclase-Al2SiO5-quartz geobarometer. In: Newton, R. C., Navtrotsy, A., Wood, B. J. (eds.). Thermodynamics of Mineral and Melts. Nova York: Springer-Verlag, p. 131-147. https://doi.org/10.1007/978-1-4612-5871-1_7

Ni, Y., Hughes, J. M., Mariano, A. N. (1995). Chrystal chemistry of monazite and xenotime structures. American Mineralogist, 80(1-2), 21-26. https://doi.org/10.2138/am-1995-1-203

Overstreet, W. C. (1967). The Geologic Occurrence of Monazite. USGS Professional Paper, 530, 327. https://doi.org/10.3133/pp530

Paiva-Silva, P. A. P. (2018). Modelagem metamórfica dos xistos pelíticos do segmento Turmalina-Capelinha, centronorte de Minas Gerais, Orógeno Araçuaí, Brasil. Trabalho de Conclusão de Curso. Ouro Preto: Departamento de Geologia – UFOP.

Paquette, J. L., Peucat, J. J., Bernard-Griffiths, J., Marchand, J. (1985). Evidence for old Precambrian relics shown by U-Pb zircon dating of eclogites and associated rocks in the Hercynian Belt of South Brittany, France. Chemical Geology, 52(2), 203-216. https://doi.org/10.1016/0168-9622(85)90018-1

Parrish, R. R. (1990). U–Pb dating of monazite and its application to geological problems. Canadian Journal of Earth Sciences, 27(11), 1431-1450. https://doi.org/10.1139/e90-152

Parrish, R. R., Nowell, G., Noble, S. R., Horstwood, M., Timmerman, H., Shaw, P., Bowen, I. J. (1999). LA-PIMMS: A new method of U-Th-Pb geochronology using micro-sampling techniques. Journal of Conference Abstracts, 4, 799.

Patchett, P. J., Tatsumoto, M. (1980). A routine high-precision method for Lu–Hf isotope geochemistry and chronology. Contributions to Mineralogy and Petrology, 75, 263-267. https://doi.org/10.1007/BF01166766

Peterman, E. M., Snoeyenbos, D. R., Jercinovic, M. J., Kylander-Clark, A. (2016). Dissolution–reprecipitation metasomatism and growth of zircon within phosphatic garnet in metapelites from western Massachusetts. American Mineralogist, 101(8), 1792-1806. https://doi.org/10.2138/am-2016-5524

Philpotts, A. R. (1990). Principles of Igneous and Metamorphic Petrology. Englewood Cliffs: Prentice Hall, 609 p.

Poitrasson, F., Chenery, S., Shepherd, T. J. (2000). Electron microprobe and LA-ICP-MS study of monazite hydrothermal alteration: Implications for U-Th-Pb geochronology and nuclear ceramics. Geochimica et Cosmochimica Acta, 64(19), 3283-3297. https://doi.org/10.1016/S0016-7037(00)00433-6

Pollington, A. D., Baxter, E. F. (2010). High resolution Sm–Nd garnet geochronology reveals the uneven pace of tectonometamorphic processes. Earth and Planetary Science Letters, 293(1-2), 63-71. https://doi.org/10.1016/j.epsl.2010.02.019

Pollington, A. D., Baxter, E. F. (2011). High precision microsampling and preparation of zoned garnet porphyroblasts for Sm-Nd geochronology. Chemical Geology, 281(3-4), 270-282. https://doi.org/10.1016/j.chemgeo.2010.12.014

Powell, R., Holland, T. J. B. (1988). An internally consistent thermodynamic dataset with uncertainties and correlations: application methods, worked examples and a computer program. Journal of Metamorphic Geology, 6(2), 173-204. https://doi.org/10.1111/j.1525-1314.1988.tb00415.x

Powell, R., Holland, T. J. B. (1994). Optimal geothermometry and geobarometry. Journal of Metamorphic Geology, 79(1-2), 120-133.

Powell, R., Holland, T. J. B. (2008). On thermobarometry. Journal of Metamorphic Geology, 26(2), 155-179. https://doi.org/10.1111/j.1525-1314.2007.00756.x

Powell, R., Holland, T. J. B., Worley, B. (1998). Calculating phase diagrams involving solid solutions via nonlinear equations, with examples using THERMOCALC. Journal of Metamorphic Geology, 16(4), 577-588. https://doi.org/10.1111/j.1525-1314.1998.00157.x

Pyle, J. M., Spear, F. S. (2003). Four generations of accessoryphase growth in low-pressure migmatites from SW New Hampshire. American Mineralogist, 88(2-3), 338-351. https://doi.org/10.2138/am-2003-2-311

Richards, J. P., Krogh, T. E., Spooner, E. T. C. (1988). Fluid inclusions characteristics and U–Pb rutile age of late hydrothermal alteration veining at the Suoshi stratiform copper deposit, central African copper belt. Economic Geology, 83(1), 118-139. https://doi.org/10.2113/gsecongeo.83.1.118

Richter, F., Lana, C., Stevens, G., Buick, I., Pedrosa-Soares, A. C., Alkmim, F. F., Cutts, K. (2016). Sedimentation, metamorphism and granite generation in a back-arc region: Records from the Ediacaran Nova Venécia Complex (Araçuaí Orogen, Southeastern Brazil). Precambrian Research, 272, 78-100. https://doi.org/10.1016/j.precamres.2015.10.012

Roddick, J. C., Bevier, M. L. (1995). U-Pb dating of granites with inherited zircon: Conventional and ion microprobe results from two Paleozoic plutons, Canadian Appalachians. Chemical Geology, 119(1-4), 307-329. https://doi.org/10.1016/0009-2541(94)00107-J

Rubatto, D. (2002). Zircon trace element geochemistry: partitioning with garnet and the link between U–Pb ages and metamorphism. Chemical Geology, 184(1-2), 123-138. https://doi.org/10.1016/S0009-2541(01)00355-2

Rubatto, D. (2017). Zircon: The Metamorphic Mineral. Reviews in Mineralogy and Geochemistry, 83(1), 261-295. https://doi.org/10.2138/rmg.2017.83.9

Rubatto, D., Hermann, J. (2007). Experimental zircon/melt and zircon/garnet trace element partitioning and implications for the geochronology of crustal rocks. Chemical Geology, 241(1-2), 38-61. https://doi.org/10.1016/j.chemgeo.2007.01.027

Rubatto, D., Williams, I. S., Buick, I. S. (2001). Zircon and monazite response to prograde metamorphism in the Reynolds Range, central Australia. Contributions to Mineralogy and Petrology, 140, 458-468. https://doi.org/10.1007/PL00007673

Schaltegger, U., Fanning, M., Günther, D., Maurin, J. C., Schulmann, K., Gebauer, D. (1999). Growth, annealing and recrystallization of zircon and preservation of monazite in high-grade metamorphism: conventional and in situ U–Pb isotope, cathodoluminescence and microchemical evidence. Contributions to Mineralogy and Petrology, 134(2-3), 186-201. https://doi.org/10.1007/s004100050478

Schaltegger, U., Schmitt, A. K., Horstwood, M. S. A. (2015). U–Th–Pb zircon geochronology by ID-TIMS, SIMS, and laser ablation ICP-MS: Recipes, interpretations, and opportunities. Chemical Geology, 402, 89-110. https://doi.org/10.1016/j.chemgeo.2015.02.028

Schannor, M., Lana, C., Fonseca, M. A. (2019). São Francisco-Congo Craton break-up delimited by U-Pb-Hf isotopes and trace-elements of zircon from metasediments of the Araçuaí Belt. Geoscience Frontiers, 10(2), 611-628. https://doi.org/10.1016/j.gsf.2018.02.011

Schannor, M., Lana, C., Nicoli, G., Cutts, K., Buick, I., Gerdes, A., Hecht, L. (2021). Reconstructing the metamorphic evolution of the Araçuaí orogen (SE Brazil) using in situ U–Pb garnet dating and P–T modelling. Journal of Metamorphic Geology, 39(9), 1145-1171. https://doi.org/10.1111/jmg.12605

Schärer, U., Krogh, T. E., Gower, C. F. (1986). Age and evolution of the Grenville Province in eastern Labrador from U–Pb systematics in accessory minerals. Contributions to Mineralogy and Petrology, 94, 438-451. https://doi.org/10.1007/BF00376337

Scherer, E. E., Cameron, K. L., Blichert-Toft, J. (2000). Lu–Hf garnet geochronology: Closure temperature relative to the Sm–Nd system and the effects of trace mineral inclusions.

Geochimica et Cosmochimica Acta, 64(19), 3413-3432. https://doi.org/10.1016/S0016-7037(00)00440-3

Scherer, E. E., Munker, C., Mezger, K. (2001). Calibration of the Lutetium-Hafnium Clock. Science, 293(5530), 683-687. https://doi.org/10.1126/science.1061372

Scherer, E. E., Whitehouse, M. J., Munker, C. (2007). Zircon as a monitor of crustal growth. Elements, 3(1), 19-24. https://doi.org/10.2113/gselements.3.1.19

Schmitt, A. K., Vazquez, J. A. (2017). Secondary ionization mass spectrometry analysis in petrochronology. Reviews in Mineralogy and Geochemistry, 83(1), 199-230. https://doi.org/10.2138/rmg.2017.83.7

Schmitt, A. K., Zack, T. (2012). High-sensitivity U–Pb rutile dating by secondary ion mass spectrometry (SIMS) with an O2 + primary beam. Chemical Geology, 332-333, 65-73. https://doi.org/10.1016/j.chemgeo.2012.09.023

Schmitz, M. D., Schoene, B. (2007). Derivation of isotope ratios, errors, error correlations for U–Pb geochronology using 205Pb-235U-(233U)-spiked isotope dilution thermal ionization mass spectrometric data. Geochemistry, Geophysics, Geosystems, 8(8), Q08006. https://doi.org/10.1029/2006GC001492

Schoene, B. (2014). U–Th–Pb geochronology. In: Rudnick, R (ed.). Treatise on Geochemistry. Oxford: Elsevier, v. 4.10, p. 341-378.

Schoene, B., Baxter, E. F. (2017). Petrochronology and TIMS. Reviews in Mineralogy and Geochemistry, 83(1), 231-260. https://doi.org/10.2138/rmg.2017.83.8

Schulz, B. (2021). Monazite microstructures and their interpretation in petrochronology. Frontiers in Earth Science, 9, 668566. https://doi.org/10.3389/feart.2021.668566

Schulz, B., Brätz, H., Bombach, K., Krenn, E. (2007). In-situ Th-Pb dating of monazite by 266 nm laser ablation and ICP-MS with a single collector, and its control by EMP analysis. Zeitschrift Angewandte Geologie, 35, 377-392.

Schulz, B., Schussler, U. (2013). Electron-microprobe Th-U-Pb monazite dating in Early-Paleozoic high-grade gneisses as a completion of U-Pb isotopic ages (Wilson Terrane, Antarctica). Lithos, 175-176, 178-192. https://doi.org/10.1016/j.lithos.2013.05.008

Seman, S., Stockli, D. F., McLean, N. M. (2017). U-Pb geochronology of grossular-andradite garnet. Chemical Geology, 460, 106-116. https://doi.org/10.1016/j.chemgeo.2017.04.020

Shimizu, N., Hart, S. (1982). Isotope fractionation in secondary ion mass spectrometry. Journal of Applied Physics, 53, 1303-1311. https://doi.org/10.1063/1.330636

Simpson, A., Gilbert, S., Tamblyn, R., Hand, M., Spandler, C., Gillespie, J., Nixon, A., Glorie, S. (2021). In-situ Lu–Hf geochronology of garnet, apatite and xenotime by LA ICP MS/MS. Chemical Geology, 577, 120299. https://doi.org/10.1016/j.chemgeo.2021.120299

Skora, S., Lapen, T. J., Baumgartner, L. P., Johnson, C. M., Hellebrand, E., Mahlen, N. J. (2009). The duration of prograde garnet crystallization in the UHP eclogites at Lago di Cignana, Italy. Earth and Planetary Science Letters, 287(3-4), 402-411. https://doi.org/10.1016/j.epsl.2009.08.024

Smith, H. A., Barreiro, B. (1990). Monazite U–Pb dating of staurolite grade metamorphism in pelitic schists. Contributions to Mineralogy and Petrology, 105, 602-615. https://doi.org/10.1007/bf00302498

Smye, A. J., Stockli, D. F. (2014). Rutile U–Pb age depth profiling: A continuous record of lithospheric thermal evolution. Earth and Planetary Science Letters, 408, 171-182. https://doi.org/10.1016/j.epsl.2014.10.013

Spandler, C., Hermann, J., Rubatto, D. (2004). Exsolution of thortveitite, yttrialite and xenotime during low temperature recrystallization of zircon from New Caledonia, and their significance for trace element incorporation in zircon. American Mineralogist, 89(11-12), 1795-1806. https://doi.org/10.2138/am-2004-11-1226

Spear, F. S. (1992). Thermobarometry and P-T paths from granulite facies rocks: an introduction. Precambrian Research, 55(1-4), 201-207. https://doi.org/10.1016/0301-9268(92)90024-I

Spear, F. S. (1995). Metamorphic Phase Equilibria and Pressure-Temperature-Time Paths. Washington, D.C.: Mineralogical Society of America - Monograph, 799 p.

Spear, F. S. (2010). Monazite–allanite phase relations in metapelites. Chemical Geology, 279(1-2), 55-62. https://doi.org/10.1016/j.chemgeo.2010.10.004

Spear, F. S., Cheney, J. T. (1989). A petrogenetic grid for politic schists in the system SiO2–Al2O3–FeO–MgO–K2O–H2O. Contributions to Mineralogy and Petrology, 101, 149-164. https://doi.org/10.1007/BF00375302

Spear, F. S., Parrish, R. R. (1996). Petrology and cooling rates of the Valhalla complex, British Columbia, Canada. Journal of Petrology, 37(4), 733-765. https://doi.org/10.1093/petrology/37.4.733

Spear, F. S., Pyle, J. M. (2002). Apatite, monazite, and xenotime in metamorphic rocks. Reviews in Mineralogy and Geochemistry, 48(1), 293-335. https://doi.org/10.2138/rmg.2002.48.7

Spear, F. S., Pyle, J. M. (2010). Theoretical modeling of monazite growth in a low-Ca metapelite. Chemical Geology, 273(1-2), 111-119. https://doi.org/10.1016/j.chemgeo.2010.02.016

Spear, F. S., Rumble, D. (1986). Pressure, temperature and structural evolution of the Orfordville Belt, west-central New Hampshire. Petrology, 27(5), 1071-1093. https://doi.org/10.1093/petrology/27.5.1071

Stowell, H. H., Taylor, D. L., Tinkham, D. L., Goldberg, S. A., Ouderkirk, K. A. (2001). Contact metamorphic P–T–t paths from Sm–Nd garnet ages, phase equilibria modelling and thermobarometry: Garnet Ledge, south-eastern Alaska, USA. Journal of Metamorphic Geology, 19(6), 645-660. https://doi.org/10.1046/j.0263-4929.2001.00337.x

Tatsumoto, M., Unruh, D. M., Patchett, P. J. (1981). U-Pb and Lu-Hf systematics of Antarctic meteorites. Memoirs of National Institute of Polar Research, 20(n. esp.), 237-249.

Taylor, R. J. M., Clark, C., Harley, S. L., Kylander-Clark, A. R. C., Hacker, B. R., Kinny, P. D. (2017). Interpreting granulite facies events through rare earth element partitioning arrays. Journal of Metamorphic Geology, 35(7), 759-775. https://doi.org/10.1111/jmg.12254

Taylor, R. J. M., Clark, C., Reddy, S. M. (2012). The effect of grain orientation on secondary ion mass spectrometry (SIMS) analysis of rutile. Chemical Geology, 300-301, 81-87. https://doi.org/10.1016/j.chemgeo.2012.01.013

Taylor, R. J. M., Harley, S. L., Hinton, R. W., Elphick, S., Clark, C., Kelly, N. M. (2015). Experimental determination of REE partition coefficients between zircon, garnet and melt: A key to understanding high-T crustal processes. Journal of Metamorphic Geology, 33(3), 231-248. https://doi.org/10.1111/jmg.12118

Taylor, R. J. M., Kirkland, C. L., Clark, C. (2016). Accessories after the facts: Constraining the timing, duration and conditions of high-temperature metamorphic processes. Lithos, 264, 239-257. https://doi.org/10.1016/j.lithos.2016.09.004

Taylor-Jones, K., Powell, R. (2015). Interpreting zirconiumin-rutile thermometric results. Journal of Metamorphic Geology, 33(2), 115-122. https://doi.org/10.1111/jmg.12109

Thomas, J., Watson, E. B., Spear, F., Shemella, P. T., Nayak, S. K., Lanzirotti, A. (2010). TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz. Contributions to Mineralogy and Petrology, 160, 743-759. https://doi.org/10.1007/s00410-010-0505-3

Thomas, J. B., Watson, E. B., Spear, F. S., Wark, D. A. (2015). TitaniQ recrystallized: experimental confirmation of the original Ti-in-quartz calibrations. Contributions to Mineralogy and Petrology, 169, 27. https://doi.org/10.1007/s00410-015-1120-0

Thompson, A. B. (1976). Mineral reactions in pelitic rocks: II. Calculation of some P-T-X (Fe-Mg) phase relations. American Journal of Science, 276(4), 401-454. https://doi.org/10.2475/ajs.276.4.425

Thompson, J. B. Jr. (1957). The graphical analysis of mineral assemblages in pelitic schists. American Mineralogist, 42(11-12), 842-858. Disponível em: http://www.minsocam.org/ammin/AM42/AM42_842.pdf Acesso em: 04 jan. 2023.

Tichomirowa, M., Whitehouse, M. J., Nasdala, L. (2005). Resorption, growth, solid state recrystallisation, and annealing of granulite facies zircon—a case study from the Central Erzgebirge, Bohemian Massif. Lithos, 82(1-2), 25-50. https://doi.org/10.1016/j.lithos.2004.12.005

Tilley, C. E. (1925). Metamorphic zones in the southern Highlands of Scotland. Quartely Journal of the Geological Society, 81, 100-112. https://doi.org/10.1144/GSL.JGS.1925.081.01-04.05

Tomkins, H. S., Powell, R., Ellis, D. J. (2007). The pressure dependence of the zirconium-in-rutile thermometer. Journal of Metamorphic Geology, 25(6), 703-713. https://doi.org/10.1111/j.1525-1314.2007.00724.x

van Breemen, O., Hawkesworth, C. J. (1980). Sm–Nd isotopic study of garnets and their metamorphic host rocks. Transactions of the Royal Society of Edinburgh: Earth Sciences, 71(2), 97-102. https://doi.org/10.1017/S0263593300013535

Vernon, R. H., Clarke, G. L. (2008). Principles of metamorphic petrology. Cambridge: Cambridge University Press, 446 p.

Viete, D. R., Kylander-Clark, A. R. C., Hacker, B. R. (2015). Single-shot laser ablation split stream (SS-LASS) petrochronology deciphers multiple, short-duration metamorphic events. Chemical Geology, 415, 70-86. https://doi.org/10.1016/j.chemgeo.2015.09.013

Vlach, S. R. F. (2009). Mineralogia, análise e datação de monazita e xenotima com microssonda eletrônica e aplicações. Tese (Livre-Docência). São Paulo: Departamento de Mineralogia e Geotectônica, Instituto de Geociências – USP, 186 p. https://doi.org/10.11606/T.44.2013.tde-31102013-190318

Vlach, S. R. F. (2010). Th-U-PbT dating by electron probe microanalysis, part I. Monazite: analytical procedures and data treatment. Geologia USP. Série Científica, 10(1), 61-85. https://doi.org/10.5327/Z1519-874X2010000100006

Vonlanthen, P., Fitz Gerald, J. D., Rubatto, D, Hermann, J. (2012). Recrystallization rims in zircon (Valle d’Arbedo. Switzerland): An integrated cathodoluminescence, LA-ICP-MS, SHRIMP, and TEM study. American Mineralogist, 97(2-3), 369-377. https://doi.org/10.2138/am.2012.3854

Vry, J. K., Baker, J. A. (2006). LA-MC-ICPMS Pb–Pb dating of rutile from slowly cooled granulites: Confirmation of the high closure temperature for Pb diffusion in rutile. Geochimica et Cosmochimica Acta, 70(7), 1807-1820. https://doi.org/10.1016/j.gca.2005.12.006

Wark, D. A., Watson, E. B. (2006). TitaniQ: a titaniumin-quartz geothermometer. Contributions to Mineralogy and Petrology, 152, 743-754. https://doi.org/10.1007/s00410-006-0132-1

Wasserburg, G. J., Jacousen, S. B., DePaolo, D. J., McCulloch, M. T., Wen, T. (1981). Precise determinations of Sm/Nd ratios, Sm and Nd isotopic abundances in standard solutions. Geochimica et Cosmochimica Acta, 45(12), 2311-2323. https://doi.org/10.1016/0016-7037(81)90085-5

Watson, E. B., Harrison, T. M. (2005). Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308(5723), 841-844. https://doi.org/10.1126/science.1110873

Watson, E. B., Wark, D. A., Thomas, J. B. (2006). Crystallisation thermometers for zircon and rutile. Contributions to Mineralogy and Petrology, 151, 413-433. https://doi.org/10.1007/s00410-006-0068-5

Whitehouse, M. J., Platt, J. P. (2003). Dating high-grade metamorphism: constraints from rare-earth elements in zircon and garnet. Contributions to Mineralogy and Petrology, 145, 61-74. https://doi.org/10.1007/s00410-002-0432-z

Whitney, D. L., Evans, B. W. (2010). Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95(1), 185-187. https://doi.org/10.2138/am.2010.3371

Williams, I. S. (2001). Response of detrital zircon and monazite, and their U–Pb isotopic systems, to regional metamorphism and host-rock partial melting, Cooma Complex, southeastern Australia. Australian Journal of Earth Sciences, 48(4), 557-580. https://doi.org/10.1046/j.1440-0952.2001.00883.x

Williams, I. S., McKibben, M. (1998). Applications of microanalytical techniques to understanding mineralizing processes. Reviews in Economic Geology, 7, 1-35. https://doi.org/10.5382/Rev.07

Williams, M. L., Jercinovic, M. J., Hetherington, C. J. (2007). Microprobe monazite geochronology: Understanding geologic processes by integrating composition and chronology. Annual Review of Earth and Planetary Sciences, 35, 137-175. https://doi.org/10.1146/annurev.earth.35.031306.140228

Williams, M. L., Jercinovic, M. J., Mahan, K. H., Dumond, G. (2017). Electron microprobe petrochronology. Reviews in Mineralogy and Geochemistry, 83(1), 153-182. https://doi.org/10.2138/rmg.2017.83.5

Wing, B. A., Ferry, J. M., Harrison, T. M. (2003). Prograde destruction and formation of monazite and allanite during contact and regional metamorphism of pelites: petrology and geochronology. Contributions to Mineralogy and Petrology, 145, 228-250. https://doi.org/10.1007/s00410-003-0446-1

Winkler, H. G. F. (1979). Petrogenesis of metamorphic rocks. Nova York: Springer Verlag, 348 p.

Winter, J. D. (2010). Principles of igneous and metamorphic petrology. 2nd ed. Nova York: Prentice Hall, 720 p.

Woods, G. (2017). Resolution of 176Yb and 176Lu Interferences on 176Hf to Enable Accurate 176Hf/177Hf Isotope Ratio Analysis Using La-QQQ with MS/MS. Agilent Technologies. https://doi.org/10.13140/RG.2.1.3971.6245

Xiang, H., Connolly, J. A. D. (2022). GeoPS: An interactive visual computing tool for thermodynamic modelling of phase equilibria. Journal of Metamorphic Geology, 40(2), 243-255. https://doi.org/10.1111/jmg.12626

Yakymchuk, C., Brown, M., Clark, C., Korhonen, F. J., Piccoli, P. M., Siddoway, C. S., Taylor, R. J. M., Vervoort, J. D. (2015). Decoding polyphase migmatites using geochronology and phase equilibria modelling. Journal of Metamorphic Geology, 33(2), 203-230. https://doi.org/10.1111/jmg.12117

Yakymchuk, C., Clark, C., White, R. W. (2017). Phase Relations, Reaction Sequences and Petrochronology. Reviews in Mineralogy and Geochemistry, 83(1), 13-54. https://doi.org/10.2138/rmg.2017.83.2

Yang, T. N., Zhang, H. R., Liu, Y. X., Wang, Z. L., Song, Y. C., Yang, Z. S., Tian, S. H., Xie, H. Q., Hou, K. J. (2011). Permo-Triassic arc magmatism in central Tibet: Evidence from zircon U–Pb geochronology, Hf isotopes, rare earth elements, and bulk geochemistry. Chemical Geology, 284(3-4), 270-282. https://doi.org/10.1016/j.chemgeo.2011.03.006

Yardley, B. W. D. (2004). Introdução à petrologia metamórfica. Tradução Reinhardt A. Fuck. Brasília: Editora UnB, 434 p.

Zack, T., Hogmalm, J. (2015). In-Situ Lu-Hf Dating of Xenotime by Reaction Cell Isotope Separation. Prague: Goldschmidt.

Zack, T., Kooijman, E. (2017). Petrology and Geochronology of Rutile. Reviews in Mineralogy and Geochemistry, 83(1), 443-467. https://doi.org/10.2138/rmg.2017.83.14

Zack, T., Moraes, R., Kronz, A. (2004a). Temperature dependence of Zr in rutile: empirical calibration of a rutile thermometer. Contributions to Mineralogy and Petrology, 148, 471-488. https://doi.org/10.1007/s00410-004-0617-8

Zack, T., Stockli, D. F., Luvizotto, G. L., Barth, M. G., Belousova, E., Wolfe, M. R., Hinton, R. W. (2011). In situ U–Pb rutile dating by LA-ICP-MS: 208Pb correction and prospects for geological applications. Contributions to Mineralogy and Petrology, 162, 515-530. https://doi.org/10.1007/s00410-011-0609-4

Zack, T., von Eynatten, H., Kronz, A. (2004b). Rutile geochemistry and its potential use in quantitative provenance studies. Sedimentary Geology, 171(1-4), 37-58. https://doi.org/10.1016/j.sedgeo.2004.05.009

Zhao, Z.-F., Zheng, Y.-F., Wei, C.-S., Chen, F.-K., Liu, X., Wu, F.-Y. (2008). Zircon U–Pb ages, Hf and O isotopes constrain the crustal architecture of the ultrahigh-pressure Dabie orogen in China. Chemical Geology, 253(3-4), 222-242. https://doi.org/10.1016/j.chemgeo.2008.05.011

Zheng, J. P., Griffin, W. L., O’Reilly, S. Y., Zhao, J. H., Wu, Y. B., Liu, G. L., Pearson, N., Zhang, M., Ma, C. Q., Zhang, Z. H., Yu, C. M. (2009). Neoarchean (2.7 Ga–2.8 Ga) accretion beneath the North China Craton: U–Pb age, trace elements and Hf isotopes of zircons in diamondiferous kimberlites. Lithos, 112(3-4), 188-202. https://doi.org/10.1016/j.lithos.2009.02.003

Zheng, Y. F., Wu, Y.-B., Zhao, Z.-F., Zhang, S.-B., Xu, P., Wu, F.-Y. (2005). Metamorphic effect on zircon Lu–Hf and U–Pb isotope systems in ultrahigh-pressure eclogite-facies metagranite and metabasalt. Earth and Planetary Science Letters, 240(2), 378-400. https://doi.org/10.1016/j.epsl.2005.09.025

Zwart, H. J. (1962). On the determination of polymetamorphic mineral associations and its application to the Bosost area (Central Pyrenees). Geologische Rundschau, 52, 38-65. https://doi.org/10.1007/BF01840064

Downloads

Publicado

2023-04-11

Edição

Seção

Artigos

Como Citar

Paiva-Silva, P. A. de ., Queiroga, G. ., & Moraes, R. de . (2023). Petrocronologia de rochas metapelíticas: uma revisão de conceitos-chave. Geologia USP. Série Científica, 23(1), 43-68. https://doi.org/10.11606/issn.2316-9095.v23-198908

Dados de financiamento