Proteomic analysis of the acquired enamel pellicle formed on human and bovine tooth

a study using the Bauru in situ pellicle model (BISPM)




Proteins, Saliva


The acquired enamel pellicle (AEP) is an organic film, bacteria-free, formed in vivo as a result of the selective adsorption of salivary proteins and glycoproteins to the solid surfaces exposed to the oral environment. Objective: This study aimed to compare the proteomic profile of AEP formed in situ on human and bovine enamel using a new intraoral device (Bauru in situ pellicle model – BISPM). Material and Methods: One hundred and eight samples of human and bovine enamel were prepared (4x4 mm). Nine subjects with good oral conditions wore a removable jaw appliance (BISPM) with 6 slabs of each substrate randomly allocated. The AEP was formed during the morning, for 120 minutes, and collected with an electrode filter paper soaked in 3% citric acid. This procedure was conducted in triplicate and the pellicle collected was processed for analysis by LC-ESI-MS/MS. The obtained mass spectrometry MS/MS spectra were searched against human protein database (SWISS–PROT). Results: The use of BISPM allowed the collection of enough proteins amount for proper analysis. A total of 51 proteins were found in the AEP collected from the substrates. Among them, 15 were common to both groups, 14 were exclusive of the bovine enamel, and 22 were exclusive of the human enamel. Proteins typically found in the AEP were identified, such as Histatin-1, Ig alpha-1, Ig alpha 2, Lysozyme C, Statherin and Submaxillary gland androgen-regulated protein 3B. Proteins not previously described in the AEP, such as metabolism, cell signaling, cell adhesion, cell division, transport, protein synthesis and degradation were also identified. Conclusion: These results demonstrate that the proteins typically found in the AEP appeared in both groups, regardless the substrate. The BISPM revealed to be a good device to be used in studies involving proteomic analysis of the AEP.


Download data is not yet available.






Original Articles