Oral implant osseointegration model in C57Bl/6 mice: microtomographic, histological, histomorphometric and molecular characterization

Authors

  • Claudia Cristina Biguetti Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo http://orcid.org/0000-0003-4503-3108
  • Franco Cavalla Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo http://orcid.org/0000-0002-6896-5744
  • Elcia M. Silveira Universidade do Sagrado Coração, Departamento de Ciências Biológicas e da Saúde, Bauru
  • Angélica Cristina Fonseca Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo
  • Andreia Espindola Vieira Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paulo
  • Andre Petenuci Tabanez Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Pau http://orcid.org/0000-0002-9400-8833
  • Danieli C. Rodrigues University of Texas at Dallas, Department of Bioengineering, Dallas, Texas
  • Ana Paula Favaro Trombone Universidade do Sagrado Coração, Departamento de Ciências Biológicas e da Saúde, Bauru http://orcid.org/0000-0002-8102-6098
  • Gustavo Pompermaier Garlet Universidade de São Paulo, Faculdade de Odontologia de Bauru, Departamento de Ciências Biológicas, Bauru, São Paul http://orcid.org/0000-0002-5071-8382

DOI:

https://doi.org/10.1590/1678-7757-2017-0601%20

Keywords:

Osseointegration, Dental implants, Peri-implant endosseous healing, Bone implant interface

Abstract

Despite the successful clinical application of titanium (Ti) as a biomaterial, the exact cellular and molecular mechanisms responsible for Ti osseointegration remains unclear, especially because of the limited methodological tools available in this field. Objective: In this study, we present a microscopic and molecular characterization of an oral implant osseointegration model using C57Bl/6 mice. Material and Methods: Forty-eight male wild-type mice received a Ti implant on the edentulous alveolar crest and the peri-implant sites were evaluated through microscopic (μCT, histological and birefringence) and molecular (RealTimePCRarray) analysis in different points in time after surgery (3, 7, 14 and 21 days). Results: The early stages of osseointegration were marked by an increased expression of growth factors and MSC markers. Subsequently, a provisional granulation tissue was formed, with high expression of VEGFb and earlier osteogenic markers (BMPs, ALP and Runx2). The immune/inflammatory phase was evidenced by an increased density of inflammatory cells, and high expression of cytokines (TNF, IL6, IL1) chemokines (CXCL3, CCL2, CCL5 and CXC3CL1) and chemokine receptors (CCR2 and CCR5). Also, iNOS expression remained low, while ARG1 was upregulated, indicating predominance of a M2-type response. At later points in time, the bone matrix density and volume were increased, in agreement with a high expression of Col1a1 and Col21a2. The remodelling process was marked by peaks of MMPs, RANKL and OPG expression at 14 days, and an increased density of osteoclasts. At 21 days, intimate Ti/bone contact was observed, with expression of final osteoblast differentiation markers (PHEX, SOST), as well as red spectrum collagen fibers. Conclusions: This study demonstrated a unique molecular view of oral osseointegration kinetics in C57Bl/6 mice, evidencing potential elements responsible for orchestrating cell migration, proliferation, ECM deposition and maturation, angiogenesis, bone formation and remodeling at the bone-implant interface in parallel with a novel microscopic analysis.

Downloads

Download data is not yet available.

Downloads

Published

2022-09-12

Issue

Section

Original Articles

How to Cite

Oral implant osseointegration model in C57Bl/6 mice: microtomographic, histological, histomorphometric and molecular characterization. (2022). Journal of Applied Oral Science, 26, e20170601. https://doi.org/10.1590/1678-7757-2017-0601