Do matrix metalloproteinase and cathepsin K inhibitors work synergistically to reduce dentin erosion?

Authors

  • Xiujiao Lin Fujian Medical University, School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fuzhou
  • Xinwen Tong Fujian Medical University, School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fuzhou
  • Hui Yang Fujian Medical University, School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fuzhou
  • Yiying Chen Fujian Medical University, School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fuzhou
  • Hao Yu Fujian Medical University, School and Hospital of Stomatology, Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Laboratory of Fujian College and University, Fuzhou http://orcid.org/0000-0001-7940-1410

DOI:

https://doi.org/10.1590/1678-7757-2022-0449

Keywords:

Dentin erosion, Matrix metalloproteinase, Cathepsin K, Inhibitors

Abstract

Objectives: To evaluate the effects of matrix metalloproteinase (MMP) and cathepsin K (catK) inhibitors on resistance to dentin erosion. Methodology: 
A total of 96 dentin specimens (3×3×2 mm) were prepared and randomly assigned into four groups (n=24): deionized water (DW); 1 µM odanacatib (ODN, catK inhibitor); 1 mM 1,10-phenanthroline (PHEN, MMP inhibitor); and 1 µM odanacatib + 1 mM 1,10-phenanthroline (COM). Each group was further divided into two subgroups for the application of treatment solutions before (PRE) and after erosive challenges (POST). All specimens were subjected to four daily erosive challenges for 5 d. For each erosive challenge, the specimens in subgroup PRE were immersed in the respective solutions before cola drinks, while the specimens in subgroup POST were immersed in the respective solutions after cola drinks (the immersion duration was 5 min in both cases). All specimens were stored in artificial saliva at 37°C between erosive challenges. The erosive dentin loss (EDL) was measured by profilometry. The residual demineralized organic matrix (DOM) of specimens was removed using type VII collagenase and evaluated by profilometry. Both the EDL and thickness of the residual DOM were statistically analyzed by two-way analysis of variance (ANOVA) and Bonferroni’s test (α=0.05). The surface topography and transverse sections of the specimens were observed using SEM. MMPs and catK were immunolabeled in the eroded dentin and in situ zymography was performed to evaluate the enzyme activity. Results: Significantly lower EDL was found in the groups ODN, PHEN, and COM than in the control group (all p<0.05), while no significant difference in EDL was found among the groups ODN, PHEN, and COM (all p>0.05). The application sequence showed no significant effect on the EDL of the tested groups (p=0.310). A significantly thicker DOM was observed in the group ODN than in the control group regardless of the application sequence (both p<0.05). The treatment with ODN, PHEN, and COM inhibited the gelatinolytic activity by approximately 46.32%, 58.6%, and 74.56%, respectively. Conclusions: The inhibition of endogenous dentinal MMPs and catK increases the acid resistance of human dentin but without an apparent synergistic effect. The inhibition of MMPs and catK is equally effective either before or after the acid challenge.

Downloads

Download data is not yet available.

Downloads

Published

2023-05-15

Issue

Section

Original Articles

How to Cite

Do matrix metalloproteinase and cathepsin K inhibitors work synergistically to reduce dentin erosion?. (2023). Journal of Applied Oral Science, 31, e20220449. https://doi.org/10.1590/1678-7757-2022-0449