A inteligência artificial será uma bênção ou preocupação em robôs assistivos para brincar?

Autores

  • Kim Adams Faculty of Rehabilitation Medicine, University of Alberta, Canada
  • Pedro Encarnação UCP - Católica Lisbon School of Business & Economics, Lisbon,
  • Adriana M. Rios-Rincón Faculty of Rehabilitation Medicine, University of Alberta, Canada / Medicine and Health Sciences School, Universidad del Rosario, Bogota,
  • Al M. Cook Faculty of Rehabilitation Medicine, University of Alberta, Canada

DOI:

https://doi.org/10.7322/jhgd.147242

Palavras-chave:

inteligência artificial, machine learning, robôs assistivos, manipulação aumentativa, brincar, crianças com deficiências.

Resumo

Os avanços recentes e popularidade da Inteligência Artificial (IA) oferecem possibilidades animadoras para melhorar a tecnologia, mas, também, trazem preocupação. Neste artigo, usamos nossa pesquisa para apresentar os benefícios potenciais do uso da IA em tecnologia assistiva para crianças com deficiências brincarem e examinar possíveis preocupações éticas em torno dos dados exigidos pelos algoritmos de IA. Uma vez que o brincar é um fator chave no bem-estar infantil e no desenvolvimento cognitivo, as incapacidades secundárias podem surgir como consequência de deficiências motoras. Robôs assistivos para manipulação aumentativa podem ser fundamentais para proporcionar às crianças com deficiência física oportunidades de brincar, mas precisamos adotar uma abordagem baseada em princípios e centrada no usuário para inovações técnicas.

Referências

Sullivan D. FAQ: All about the Google RankBrain algorithm. Google's using a machine learning technology called RankBrain to help deliver its search results. Here's what's we know about it. [cited 2018 May 15] Available from: https://searchengineland.com/faq-all-about-the-new-google-rankbrain-algorithm-234440.

McCarthy J, Hayes P. Some philosophical problems from the standpoint of artificial intelligence. In: Michie D. Machine intelligence. Elsevier, 1969; p.463.

Samuel AL. Some studies in machine learning using the game of checkers. IBM J Res Dev. 1959;3(3):210-29. DOI: http://dx.doi.org/10.1147/rd.33.0210

Rashidi P, Mihailidis A. A survey on ambient-assisted living tools for older adults. IEEE J Biom Health Informatics. 2013;17(3):579-90. DOI: http://dx.doi.org/10.1109/JBHI.2012.2234129

Stewart J. Tesla's autopilot was involved in another deadly car crash. [cited 2018 May 15] Available from: https://www.wired.com/story/tesla-autopilot-self-driving-crash-california/.

Cook AM, Alvarez L. Ethical and social implications of the use of robots in rehabilitation practice. In: Robotic assistive technologies. CRC Press, 2017; p.349-74.

Garvey C. Play. Cambridge: Havard University Press, 1990.

Parham LD. Play in occupational therapy. In: Parham LD, Fazio LS. Play in occupational therapy for children. St. Luis, Missouri: Mosby; 2008.

Besio S, Caprino F, Laudanna E. Profiling robot-mediated play for children with disabilities through ICF-CY: the example of the European project IROMEC. In: Miesenberger K, Klaus J, Zagler W, Karshmer A. Computers helping people with special needs. Lecture Notes in Computer Science, vol 5105. Springer, Berlin, Heidelberg: ICCHP, 2008.

Missiuna C, Pollock N. Play deprivation in children with physical disabilities: The role of the occupational therapist in preventing secondary disability. Am J Occup Ther. 1991;45(10):882-8. DOI: http://dx.doi.org/10.5014/ajot.45.10.882

Ferland F. The ludic model: play, children with physical disabilities, and occupational therapy. Canad J Occup Ther. 2007;74(3):194. DOI: http://dx.doi.org/10.1177/000841740707400307

Reilly M. Play as exploratory learning: Studies of curiosity behavior. Sage Publications; 1974.

Bundy AC. Assessment of play and leisure: delineation of the problem. Am J Occup Ther. 1993;47(3):217-22.

Musselwhite CR. Adaptive Play for Special Needs Children: Strategies to enhance communication and learning. San Diego: College-Hill Press; 1985.

Blanche EI. Play in children with cerebral palsy: Doing with-not doing to. [cited 2018 May 15] Available from: https://pdfs.semanticscholar.org/8949/3bd40ec2f718a38550ddfa9a8f7edc30cb24.pdf

Harkness L, Bundy AC. The test of playfulness and children with physical disabilities. Occup Ther J Res. 2001;21(2):73-89. DOI: http://dx.doi.org/10.1177/153944920102100203

Cook AM, Cavalier AR. Young children using assistive robotics for discovery and control. Teach Excep Children. 1999;31(5):72-8.

Adams KD, Alvarez L, Rios-Rincon AM. Robotic systems for augmentative manipulation to promote cognitive development, play, and education. [cited 2018 May 15] Available from: https://era.library.ualberta.ca/items/286c542b-5dca-460e-9fd8-a97edd6427fd/view/2a2c8878-0ae1-4720-a9cc-a2f4fb555be0/Adams%2520 (In%2520press)%2520Principles%2520and%2520practice%2520of%2520Rehab%2520robots%2520Book.pdf.

Cook AM, Hoseit P, Liu KM, Lee RY, Zenteno-Sanchez CM. Using a robotic arm system to facilitate learning in very young disabled children. IEEE Transact Biom Eng. 1988;35(2):132-7. DOI: http://dx.doi.org/10.1109/10.1351

Cook A, Howery K, Gu J, Meng M. Robot enhanced interaction and learning for children with profound physical disabilities. Technol Disabil. 2000;13:1-8.

Cook AM, Meng MQ, Gu JJ, Howery K. Development of a robotic device for facilitating learning by children who have severe disabilities. IEEE Trans Neural Syst Rehabil Eng. 2002;10(3):178-87. DOI: http://dx.doi.org/10.1109/TNSRE.2002.802877

Cook AM, Bentz B, Harbottle N, Lynch C, Miller B. School-based use of a robotic arm system by children with disabilities. IEEE Trans Neural Syst Rehabil Eng. 2005;13(4):452-60. DOI: http://dx.doi.org/10.1109/TNSRE.2005.856075

Cook A, Encarnação P, Adams K. Robots: assistive technologies for play, learning and cognitive development. Technol Disabil. 2010;22(3):127-45. DOI: http://dx.doi.org/10.3233/TAD-2010-0297

Cook A, Adams K, Volden J, Harbottle N, Harbottle C. Using Lego robots to estimate cognitive ability in children who have severe physical disabilities. Disabil Rehabil Assist Technol. 2011;6(4):338-46. DOI: http://dx.doi.org/10.3109/17483107.2010.534231

Skard LS. Test of playfulness. In: Parham D, Fazio L. Play in occupational therapy. 2nd. 2008; p.71-93.

Ríos-Rincón AM, Adams K, Magill-Evans J, Cook A. Playfulness in children with limited motor abilities when using a robot. Phys Occup Ther Pediatr. 2016;36(3):232-46. DOI: http://dx.doi.org/10.3109/01942638.2015.1076559

McCarty ME, Clifton RK, Chollard R. The beginnings of tool use by infants and toddlers. Infancy. 2001;2(2):233-56.

Buttelmann D, Carpenter M, Call J, Tomasello M. Rational tool use and tool choice in human infants and great apes. Child Dev. 2008;79(3):609-26. DOI: https://doi.org/10.1111/j.1467-8624.2008.01146.x

Forman G. Observations of young children solving problems with computers and robots. J Res Child Educ. 1986;1(2):60-74. DOI: https://dx.doi.org/10.1080/02568548609594908

Encarnação P, Alvarez L, Rios A, Maya C, Adams K, Cook AM. Using virtual robot mediated play activities to assess cognitive skills. Disabil Rehabil Assist Technol. 2014;9(3):231-41. DOI: https://dx.doi.org/10.3109/17483107.2013.782577

Poletz L, Encarnação P, Adams K, Cook AL. Robot skills and cognitive performance of preschool children. Technol Disabil. 2010;22(3):117-26. DOI: https://dx.doi.org/10.3233/TAD-2010-0296

Adams KD, Rios-Rincon AM, Puyo LMB, Cruz JLC, Medina MFG, cook Am, et al. An exploratory study of children's pretend play when using a switch-controlled assistive robot to manipulate toys. Br J Occup Ther. 2017;80(4):216-24. DOI: https://dx.doi.org/10.1177/0308022616680363

Csikszentmihalyi M. Flow: the psychology of optimal experience. New York: Harper & Row; 1990.

Sakamaki I, Tavakoli M, Adams K. Generating forbidden region virtual fixtures by classification of movement intention based on event-related desynchronization. IEEE Global Conference Signal Inform Proc. Canada: 2017.

Castellanos JL, Gomez MF, Adams KD. Using machine learning based on eye gaze to predict targets: An exploratory study. IEEE Symposium Series Comp Intelligence. 2017; DOI: https://dx.doi.org/10.1109/SSCI.2017.8285207

Schneider MJ, Fins J, Wolpaw J. Ethical issues in BCI research. In: Wolpaw JR, Wolpaw EW. Brain-computer interfaces: principles and practice. New York: Oxford; 2012.

Yuste R, Goering S, Arcas BA, Bi G, Carmena JM, Carter A, et al. Four ethical priorities for neurotechnologies and AI. Nature. 2017;551:159-63. DOI: https://dx.doi.org/10.1038/551159a

Najafi M, Sharifi M, Adams K, Tavakoli M. Robotic assistance for children with cerebral palsy based on learning from tele-cooperative demonstration. Int J Intellig Robotics Applicat. 2017;1(1):43-54. DOI: https://dx.doi.org/10.1007/s41315-016-0006-2

Friedrich O, Racine E, Steinert S, Pömsl J, Jox RJ. An analysis of the impact of brain-computer interfaces on autonomy. Neuroethics. 2018;1-13. DOI: https://dx.doi.org/10.1007/s12152-018-9364-9

Cook AM, Polgar JM. Cook & Hussey's assistive technologies: principles and practice. Philadelphia: Elsevier; 2007.

Sulivan LS, Illes J. Ethics in published brain–computer interface research. J Neural Eng. 2018;15(1):013001. DOI: https://dx.doi.org/10.1088/1741-2552/aa8e05

Riek L, Howard D. A code of ethics for the human-robot interaction profession. [cited 2018 May 15] Available from: http://robots.law.miami.edu/2014/wp-content/uploads/2014/03/a-code-of-ethics-for-the-human-robot-interaction-profession-riek-howard.pdf.2014

Institute Future of Life. Asilomar AI principles. [cited 2018 May 15] Available from: https://futureoflife.org/ai-principles/.

Publicado

2018-06-26

Edição

Seção

Artigos Originais