HEART RATE DYNAMICS BY NOVEL CHAOTIC GLOBALS TO HRV IN OBESE YOUTHS

Autores

  • Franciele Marques Vanderlei Department of Physiotherapy, UNESP - Univ Estadual Paulista - Presidente Prudente, São Paulo, Brazil.
  • Luiz Carlos M. Vanderlei Department of Physiotherapy, UNESP - Univ Estadual Paulista - Presidente Prudente, São Paulo, Brazil.
  • David M. Garner Department of Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Gipsy Lane, Oxford OX3 0BP, United Kingdom.

DOI:

https://doi.org/10.7322/jhgd.96772

Palavras-chave:

obese youths, complexity, chaotic globals, multi-taper method, high spectral.

Resumo

Objective: this study aimed to assess the heart rate dynamics in young obese subjects by novel chaotic globals to HRV. Methods: eighty-six young subjects were distributed in two equal groups (n = 43) according to the nutritional status: obese and control following Body Mass Index. For the analysis of HRV indexes, the heart rate was recorded heartbeat to heartbeat with the young resting in dorsal (prone) position for 30 minutes. Results: after Anderson-Darling and Lilliefors tests, the data was deemed non-normal. So, Kruskal-Wallis test of significance was applied for the statistical analysis, level set at (p < 0.01). Principal Component Analysis (PCA) identified two components represented 100% of total variance. The algorithm which applies all three parameters is suggested as the most influential and statistically very significant at the level (p < 0.001); it also elevates the chaotic response. Conclusion: youth obesity increases the chaotic response. The reasons for the study include quantitative assessment to allow effective dietary, pharmacological or even surgical intervention in the condition.

Referências

Seely AJ, Macklem P. Fractal variability: an emergent property of complex dissipative systems. Chaos. 2012; 22(1): 013108. DOI: http://dx.doi.org/10.1063/1.3675622

Goldberger AL, West BJ. Chaos and order in the human body. MD Comput. 1992; 9(1): 25-34.

Goldberger AL. Cardiac chaos. Science. 1989; 243(4897):1419.

Elbert T, Ray WJ, Kowalik ZJ, Skinner JE, Graf KE, Birbaumer N.Chaos and physiology: deterministic chaos in excitable cell assemblies. Physiol Rev. 1994; 74(1):1-47.

Ho MW. The rainbow and the worm: The physics of organisms. Singapore: World scientific, 2008.

Abreu LC. Heart rate variability as a functional marker of development. J Hum Growth Dev. 2012; 22(3): 279-282.

Souza NM, Rossi RC, Vanderlei FM, Vitor ALR, Bernardo AFB, Gonçalves ACCR, Ferreira LL, Vanderlei LCM. Heart rate variability in obese children. J Hum Growth Dev. 2012; 22(3): 328-333.

Vanderlei FM, Rossi RC, Souza NM, Sá DA, Gonçalves TM, Pastre CM, Abreu LC, Valenti VE, Vanderlei LCM. Heart rate variability in healthy adolescents at rest. J Hum Growth Dev. 2012; 22(1): 173-178

Vanderlei LCM, Pastre CM, Hoshi RA, Carvalho TD, Godoy MF. Basic notions of heart rate variability and its clinical applicability. Rev Bras Cir Cardiovasc. 2009; 24(2): 205-17. DOI: http://dx.doi.org/10.1590/S0102- 76382009000200018

Johnson RW, Shore JE. Which is the better entropy expression for speech processing: -S logS or log S? IEEE Trans Acoust. 1984; 32(1): 129-137.

Garner DM, Ling BWK. Measuring and locating zones of chaos and irregularity. J Syst Sci Complex. 2014; 27(3): 494-506. DOI: http://dx.doi.org/ 10.1007/s11424-014-2197-7

Shannon CE. A Mathematical Theory of Communication. Bell System Technical J. 1948; 27(3): 379-423.

Zyczkowski K. Renyi extrapolation of Shannon entropy. Open Sys Information Dyn. 2003; 3(10): 297-310.

Alkan A, Kiymik MK. Comparison of AR and Welch methods in epileptic seizure detection. J Med Sys. 2006; 6(30): 413-419.

Ghil M. The SSA-MTM Toolkit: Applications to analysis and prediction of time series. Proc SPIE. 1997; 3165: 216-230. Doi: http://dx.doi.org/10.1117/12.279594

Percival DB, Walden AT. Spectral Analysis for Physical Applications: Multitaper and Conventional Univariate Techniques. New York: Cambridge University Press, 1993.

Kawaguchi M, Takamatsu I, Kazama T. Rocuronium dose-dependently suppresses the spectral entropy response to tracheal intubation during propofol anaesthesia. Br J Anaesth. 2009; 102(5):667-72. Doi: http://dx.doi.org/10.1117/12.279594

Morgaz J, Granados MD, Dominguez JM, Navarrete R, Fernandez A, Galan A, et al. Evaluation of spectral entropy to measure anaesthetic depth and antinociception in sevoflurane-anaesthetised Beagle dogs. Vet J. 2011; 188(3): 352-355. Doi: http://dx.doi.org/10.1016/j.tvjl.2010.06.001

Alvarez D, Hornero R, Marcos J, Del Campo F, Lopez M. Spectral analysis of electroencephalogram and oximetric signals in obstructive sleep apnea diagnosis. Conf Proc IEEE Eng Med Biol Soc. 2009; 2009: 400-403. Doi: http://dx.doi.org/10.1109/IEMBS.2009.5334905

Moosavi SH, Topulos GP, Hafer A, Lansing RW, Adams L, Brown E et al. Acute partial paralysis alters perceptions of air hunger, work and effort at constant P(CO(2) and V(E). Respir Physiol. 2000; 122(1): 45-60.

Banzett RB, Lansing RW, Reid MB, Adams L, Brown R. Air hunger’ arising from increased PCO2 in mechanically ventilated quadriplegics. Respir Physiol. 1989; 76(1):53-67.

Binks AP, Vovk A, Ferrigno M, Banzett RB. The air hunger response of four elite breath-hold divers. Respir Physiol Neurobiol. 2007; 159(2):171-177. Doi: http://dx.doi.org/10.1016/j.resp.2007.06.014

Souza NM, Vanderlei LCM, Garner DM. Risk evaluation of diabetes mellitus by relation of chaotic globals to HRV. Complexity. 2015; 20(3): 84-92. Doi: 10.1002/cplx.21508.

Vanderlei FM, Vanderlei LCM, Garner DM. Chaotic global parameters correlation with heart rate variability in obese children. J Hum Growth Dev. 2014; 24(1):24-30.

Atrash HK, Carpentier R. The evolving role of public health in the delivery of health care. J Hum Growth Dev. 2012; 22(3): 396-399.

Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. 1988.

Vanderlei LCM, Silva RA, Pastre CM, Azevedo FM, Godoy MF. Comparison of the Polar S810i monitor and the ECG for the analysis of heart rate variability in the time and frequency domains. Braz J Med Biol Res. 2008; 41(10):

-859. DOI: http://dx.doi.org/10.1590/S0100-879X2008005000039

Godoy MF, Takakura IT, Correa PR. Relevância da análise do comportamento dinâmico não linear (Teoria do Caos) como elemento prognóstico de morbidade e mortalidade em pacientes submetidos à cirurgia de revascularização miocárdica. Arq Ciênc Saúde. 2005; 12(4):167-171.

Mann ME, Lees JM. Robust estimation of background noise and signal detection in climatic time series. Climatic Change. 1996; 33(3):409-445. Doi: http://dx.doi.org/10.1007/BF00142586

Donaldson GC, Seemungal TA, Hurst JR, Wedzicha JA. Detrended fluctuation analysis of peak expiratory flow and exacerbation frequency in COPD. Eur Respir J. 2012; 40(5): 1123-1129. DOI: http://dx.doi.org/10.1183/09031936.00180811

Peng CK, Havlin S, Stanley HE, Goldberger AL. Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos. 1995; 5(1): 82-87. DOI: http://dx.doi.org/10.1063/1.166141

Anderson TW, Darling DA. A test of goodness of fit. J Am Stat Assoc. 1954; 49(268): 765-769.

Jolliffe IT. Principal Component Analysis, Series: Springer Series in Statistics. New York: Springer, 2002.

Kruskal WH, Wallis WA. Use of ranks in onecriterion variance analysis. J Am Stat Assoc. 1952; 260(47): 583-621.

Bernardo AFB, Vanderlei LCM, Garner DM. HRV Analysis - A clinical and diagnostic tool in Chronic Obstructive Pulmonary Disease. Int Schol Res Notices. 2014; 2014: 6. Doi: http://dx.doi.org/10.1155/2014/673232.

Publicado

2015-04-07

Edição

Seção

Pesquisa Original