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ABSTRACT — This paper stresses a specific line of development of the notion of finite field, from Éva-
riste Galois’s 1830 “Note sur la théorie des nombres,” and Camille Jordan’s 1870 Traité des substitutions 
et des équations algébriques, to Leonard Dickson’s 1901 Linear groups with an exposition of the Galois 
theory. 

This line of development highlights the key role played by some specific algebraic procedures. These in-
trinsically interlaced the indexations provided by Galois’s number-theoretic imaginaries with decom-
positions of the analytic representations of linear substitutions. Moreover, these procedures shed light on 
a key aspect of Galois’s works that had received little attention until now. 

The methodology of the present paper is based on investigations of intertextual references for identifying 
some specific collective dimensions of mathematics. We shall take as a starting point a coherent network 
of texts that were published mostly in France and in the U.S.A. from 1893 to 1907 (the “Galois fields 
network,” for short). The main shared references in this corpus were some texts published in France over 
the course of the 19th century, especially by Galois, Hermite, Mathieu, Serret, and Jordan. The issue of 
the collective dimensions underlying this network is thus especially intriguing. Indeed, the historiography 
of algebra has often put to the fore some specific approaches developed in Germany, with little attention 
to works published in France. Moreover, the “German abstract algebra” has been considered to have 
strongly influenced the development of the American mathematical community. Actually, this influence 
has precisely been illustrated by the example of Elliakim Hasting Moore’s lecture on “abstract Galois 
fields” at the Chicago congress in 1893. To be sure, this intriguing situation raises some issues of circu-
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lations of knowledge from Paris to Chicago. It also calls for reflection on the articulations between the 
individual and the collective dimensions of mathematics. Such articulations have often been analysed by 
appealing to categories such as nations, disciplines, or institutions (e.g., the “German algebra,” the “Chi-
cago algebraic research school”). Yet, we shall see that these categories fail to characterize an important 
specific approach to Galois fields. 

The coherence of the Galois fields network had underlying it some collective interest for “linear groups in 
Galois fields.” Yet, the latter designation was less pointing to a theory, or a discipline, revolving around a 
specific object, i.e. Gln(Fpn) (p a prime number), than to some specific procedures. In modern parlance, 
general linear groups in Galois fields were introduced in this context as the maximal group in which an 
elementary abelian group (i.e., the multiplicative group of a Galois field) is a normal subgroup. 

The Galois fields network was actually rooted on a specific algebraic culture that had developed over the 
course of the 19th century. We shall see that this shared culture resulted from the circulation of some 
specific algebraic procedures of decompositions of polynomial representations of substitutions. 



Introduction 

This paper investigates the history of Galois fields in the 19th century. Yet, many 
of the texts that one could relate to finite fields from a retrospective point of view will 
not be in the scope of the present investigation. I will rather analyse a specific line of 
development in which Galois fields were intrinsically interlaced with some procedures 
of decompositions of the analytic (i.e., polynomial) representations of linear groups. A 
key role in this context was played by Jordan’s famed 1870 Traité des substitutions et 
des équations algébriques (the Traité for short). This treatise provided a specific ap-
proach to linear groups in Galois fields that would be taken up in the thesis Leonard 
Dickson completed in 1896 under the supervision of Eliakim Hastings Moore: The 
analytic representation of substitutions on a power of a prime number of letters with a 
discussion of the linear group. This approach would be developed a few years later in 
Dickson’s 1901 monograph, Linear groups with an exposition of the Galois field theory.  

I shall problematize the issues that will be tackled in the present paper in section I 
below. Yet, before getting into details about these issues, let me first introduce further 
the mathematics involved by summing up briefly the role played by Galois fields in 
Jordan’s Traité1. The “Théorie de Galois” alluded to in the very short Livre I is all about 
higher congruences f ≡ 0 (mod. P), for an irreducible polynomial of degree n with 
integer coefficients. It thus deals with what would nowadays be called finite fields, or 
Galois fields, in the tradition of the number-theoretical imaginaries which Galois had 
introduced in his 1830 “Note sur la théorie des nombres” (the Note, for short)2. Yet, 
Galois’s imaginaries bear only a very indirect relation to the general principles of his 
famous “Mémoire sur les conditions de résolubilité des équations par radicaux” (the 
Mémoire, for short), and therefore also to the correspondence between fields and groups 
which is today perceived as the very essence of Galois theory3. Indeed, for Galois, num-
ber-theoretic imaginaries were above all useful in enabling a practice for dealing with 

                                                
1 For a description of Jordan’s specific relation to Galois’s works, and its reception, see [Brechenmacher, 2011] 
2 Independently of the legacy of Galois, finite fields had been developed in the legacy of Gauss by Schönemann, De-
dekind, and Kronecker. See [Frei, 2007]. I will not deal in this paper with these lines of developments of finite fields. 
Even though Dedekind had lectured on Galois’s works in Göttingen in the mid-1850s, his perspective remained dis-
connected from Jordan’s approach before the turn of the 20th century. 
3 In 1846, Liouville had insisted on the distinction between Galois’s imaginaries and the solvability of equations 
when he pointed out that the representation afforded by primitive roots did not imply any result on the solvability of 
higher congruences by radicals.[Galois, 1846, p.401] 
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the substitutions involved in the investigation of primitive equations of prime power 
degree4. [Galois, 1830b, p.405-407] [Galois, 1832, p.410] More precisely, one of the 
first general principles of the Mémoire had been to consider as rational “every rational 
function of a certain number of determined quantities which are supposed to be known a 
priori - we shall [then] say that we adjoin them to the equation to be solved5.” [Galois, 
1831b, p.418] The Mémoire’s first proposition stated that: “Let a given equation have 
the m roots a, b, c,... There will always be a group of permutations of the letters a, b, 
c,... [...] such that every function of the roots, invariant under the substitutions of the 
group, is rationally known.” [Galois, 1831b, p.421] The known rational functions can 
be retrospectively understood as forming a field. But the substitutions were acting on 
indeterminate letters or on arrangements of letters, not directly on the field. In the case 
of an equation of prime power degree, the pn roots could be indexed by number-
theoretic imaginaries. These in turn could be substantiated via cyclotomy, thus provi-
ding an analytic representation for the substitutions involved6. [Galois, 1830b, p.405] In 
sum, the finite fields underlying such indexations were considered both as additive and 
multiplicative abelian groups but without direct relation to the fields defined by rational 
functions of the roots7. 

Only a few references to Galois can be found in Jordan’s Livre II on substitutions, 
and none at all in its opening chapter “On substitutions in general”, which may today be 
described as group theory. The main allusion to Galois occurs in the section on the 
“Analytic representation of substitutions” (chap. II, § I), precisely in connection with 
the Traité’s first use of number-theoretic imaginaries for the indexing mentioned above. 
This resumption is crucial as it leads to the “origin of the linear group” (chap. II, § II), 
i.e. to central objects of Jordan’s treatise8. Indeed, underlying the indexing of pn letters 

                                                
4 In this paper, the term “substitution group” designates a permutation group on a finite number of letters. 
5 See annex 2 for some examples. This recourse to “known rational functions” was not original with Galois in 1830. 
Lagrange had developed the notion of “similar” functions as early as 1770 (Cf. [Waerden, 1985, p.81]). Two func-
tions f and g of the roots of a given equation are called similar, if all substitutions leaving f invariant also leave g in-
variant. It then follows that g is a rational function of f and of the coefficients of the initial equation. 
6 See annex 1 for some numerical examples. 
7 Because this paper will especially consider finite fields GF(pn), which are separable extensions (and even Galois 
extensions) on Fp, I will not deal with the retrospective linear algebraic standpoint of Artin’s Galois theory: most of 
the texts under consideration were not resorting to the notions of vector space, normality, separability, field 
extension, or even to a clear separation between groups and finite fields. Moreover, Galois’s theory of general equa-
tions was related to the formally different values of functions on n variables (or roots of general equations), it can 
therefore be applied to special equations with no multiple roots. For this reason, the equations considered in this 
paper will be supposed to have distinct roots. 
8 The groups considered are GLm(pn) along with its subgroups SLm(pn), PSLm(pn), SP2n(p), PSP2n(p), On(pn), etc. Cf. 
[Dickson, 1901] as well as [Dieudonné, 1962]. 
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was one type of substitution (a cycle) appearing in two analytic forms: (k k + 1) and (k 
gk). The “linear form” (k ak + b) originated from the composition of these two forms9. 

As we shall see, some specific procedures of decompositions of the analytic repre-
sentation of n-ary substitutions would be one of the main specificities of Jordan’s pre-
sentation of Galois’s number-theoretic imaginaries in the long run. 

1. Problems, questions and methods 

In this section, I shall introduce the problems I am tackling in this paper as well as 
the methods I am appealing to. 

1.1 Algebra and the collective dimensions of mathematics 

Dealing with the history of a discipline, a theory, or a theorem immediately raises 
the issue of the selection of a relevant corpus of texts. Moreover, this issue poses the 
more general problem of the categories that are used for articulating the individual and 
the collective dimensions of mathematics.  

Let us exemplify this situation with one of the most well-known episode in the 
history of Galois fields. In a lecture he gave at the 1893 Chicago congress, E.H. Moore 
has often been considered to have introduced the “abstract notion of Galois field.” Yet, 
most commentaries on Moore’s lecture have not only celebrated the creation of a new 
abstract notion but also the starting point of the “Chicago research school in algebra.” 
Moreover, Moore’s lecture has often been considered as exemplifying the influence on 
the development of the American mathematical community of an abstract approach that 
was characteristic of “German mathematics”. [Parshall, 2004, p.264] But we shall see 
that in 1893 Moore stated that every finite field is the “abstract form” of a Galois field 
GF(pn) with no direct relation to the result that every finite field can be represented as a 
Galois extension of Fp, and therefore with little relation with the notion of “Körper” as it 
was developed in Germany. On the contrary, Moore’s lecture resulted in the circulation 
in Chicago of a specific approach developed in France over the course of the 19th 
century.  

The above example highlights how a label, such as the one of “abstract Galois 
field,” implicitly points both to some collective organizations of mathematics and to 

                                                
9 Following Galois and Jordan, in this paper the term “linear” substitutions/groups designate both linear and affine 
substitutions/groups. See [Galois, 1831b, p. 430-432], [Jordan, 1870, p.91].  
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some collectives of mathematicians. Moreover, this situation also suggests a tension in 
the evolution of mathematical knowledge, i.e. between individual creations, from which 
abstract notions are supposed to originate, and some collective dimensions, such as 
local social spaces (research schools) or more global institutional or national frames. 
Such tensions appear frequently in the historiography of algebra. The global evolutions 
of algebra from 1830 to 1930 have been analysed as the transformation of a discipline 
focused on equations to one investigating abstractly defined mathematical entities. 
Small-scale historical investigations have often focused on the origins of abstract 
entities as the creations of some individuals (e.g., groups, fields, algebras, rings). 
Larger-scale diffusions of these abstract notions have been studied through some genea-
logies of individuals (e.g., Galois, Jordan, Dedekind, Frobenius, Steinitz, Noether, 
Artin), as well as through some specific national or more local frameworks (e.g., set 
theoretical methods in Germany, or Hilbert’s axiomatic approach in Göttingen). As a 
result, categories that mix collective organizations of mathematics and collectives of 
mathematicians have often been used to analyse the historical evolutions of algebra, 
e.g., the “German abstract algebra,” the “Chicago algebraic research school,” the 
“French school of real analysis,” etc. To be sure, these categories illuminate some 
important aspects of the evolutions of mathematical knowledge. Yet, they also raise 
some difficult issues.  

First, both the categories of “nations” and “disciplines” were in the making in the 
time-period we would like to analyse. “Algebra” “fields” “equations” or “Germany” 
have had changing meanings in various times and spaces. Until the 1930s, “algebra” 
was not usually referring to an object-oriented discipline, i.e. as identifying both a 
corpus of specialized knowledge revolving around some specific objects and the ins-
titutionalized practices of transmissions of a group of professional specialists (i.e. the 
“algebraists”). [Brechenmacher et Ehrhardt, 2010] In France, for instance, algebra was, 
on the one hand, traditionally considered in the teaching of mathematics as an 
“elementary” or “intermediary” discipline encompassed by “the higher point of view” 
of analysis. On the other hand, algebra was also pointing to some procedures that made 
a “common link” between researches in the various branches of the mathematical 
sciences. [Brechenmacher, 2012a] What was explicitly identified as “algebraic” there-
fore often pointed to some implicit circulations between various theories. Therefore, 
appealing to the category “algebra” for thus a corpus of texts implicitly sheds a 
retrospective light on the evolutions we would like to analyse, which may bring both 
social and conceptual anachronisms, and therefore some inadequate collective di-
mensions. 
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Second, both disciplines and nations are actors categories. They were much in-
volved in public discourses on mathematics. Yet, these discourses did not correspond 
directly to any actual collective dimensions of mathematics. Quite often, they involved 
some boundary work that reflected the roles taken on by some authorities in embodying 
some collective models of mathematical lives. [Brechenmacher, 2012b] These boun-
daries were not only setting delimitations between mathematicians and non mathe-
maticians but were also supporting some hierarchies among the practitioners of mathe-
matics (researchers vs teachers and engineers, analysts vs algebraists, etc.). Disciplines 
and nations played a key role in setting such boundaries (e.g., “German algebra” vs. 
“French analysis”). They were intrinsically interlaced with some epistemic values (“abs-
tract” vs “concrete”, “pure” vs “applied”, “modern” vs “classical” etc.).  

For instance, in 1890, Émile Picard’s academic obituary of Georges Halphen was 
structured on the opposition between two different orientations in the mathematical 
thought (“la pensée mathématique”) : 

The ones aim above all at extending the domain of knowledge. Without 
always caring much about the difficulties they leave behind them, they do not 
fear to move forward, they always look for new fields of investigations. The 
others prefer to stay in a domain of already developed notions, which they 
seek to deepen further; they want to exhaust all consequences and they try to 
highlight the true grounds of the solution of each question. These two di-
rections in the mathematical thought can be seen in all the branches of this 
Science [...] the first one can nevertheless be found more often in connection 
with integral calculus and functions theory, and the second one in connection 
to modern algebra and analytic geometry. Halphen’s works were mostly 
related to the second orientation; this profound mathematician was above all 
an algebraist. [Picard, 1890, p.489] 

To be sure, it was a mixed blessing to be qualified by Picard as an “algebraist”. 
Again, in his 1922 obituary of Jordan, Picard highlighted the former’s “tendency to de-
velop a very general approach to mathematical questions as if he feared that some 
particularity may impeach him to see the true reasons of things”. Thus, Picard con-
cluded, “Jordan has really been a great algebraist; the fundamental notions he in-
troduced in analysis will save his name from oblivion”. [Picard, 1922] 

At the turn of the 20th century, Picard was far from being isolated in attributing 
more value to analysis than to algebra per se. Recall that, in France, the mathematical 
sciences were mainly divided between analysis, geometry and applications. Algebra and 
Arithmetics were therefore included in analysis. At the turn of the century, several 
authorities such as Jules Tannery, Picard, and Henri Poincaré, contrasted the “richness” 
of the power of unification of analysis with the “poverty” of considering algebra and/or 
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arithmetic as autonomous disciplines. Picard was one of the main advocate of such an 
opposition, which often aimed at blaming some approaches developed in Germany. 

Yet, the collective dimensions that were put to the fore in such public discourses 
were rarely coherent with the mathematical works of the authors of the discourses. For 
instance, Picard celebrated publicly Jordan’s presentation of the algebraic dimensions of 
Galois theory. Yet, in his own mathematical work, Picard was not appealing to Jordan’s 
approach but to the one of the German Leopold Kronecker.  

Moreover, these discourses were circulating in various medias and were far from 
drawing a homogeneous picture. For instance, in 1898 Louis Couturat published a paper 
in the Revue de métaphysique et de morale which opposed both the process of “arith-
metization” of mathematics and the one of autonomization of algebra to the unified 
perspective provided by the “science of order” in the tradition of René Descartes, Louis 
Poinsot, and Galois. [Couturat, 1898] Yet, in Robert Adhémard’s 1922 obituary of Jor-
dan, the science of order was presented in a very similar way as German algebra in 
other discourses, but with a direct reference to the war with Germany: 

In 1860, Jordan was already devoting himself to the Algebra of order, i.e., an 
Algebra of ideas which is much higher than the Algebra of computations. He 
naturally followed Galois’s works. [...] Whenever Jordan manipulates a 
mathematical being, it is with the austere hold of his powerful claw. 
Wherever [Jordan] passes, the trench is cleared. [Adhémard, 1922] 

In the reviews they published in various journals, some actors who did not have 
prominent positions in key mathematical centres expressed publicly their appreciations 
of the collective developments of mathematics. These discourses were sometimes in 
direct opposition with the ones of the academic authorities of mathematics. Their views 
can be quite refreshing in regard with the themes and heroes the historiography of 
algebra has often put to the fore. Let us consider two examples. First, in a paper that 
aimed at expressing the importance of the notion of group, the American Georges A. 
Miller blamed David Hilbert’s “Grundlagen der Geometrie” for avoiding the modern 
methods in group theory “even where it would simplify the treatment of the subject in 
hand”. [Miller, 1903, p.89] Second, let consider the review the French Léon Autonne 
wrote on Jean-Armand de Séguier’s works on group theory. One would recognize in 
this review a quite canonical statement about the origin of a conceptual approach to 
algebra, and its slow diffusion... if only the name of Séguier was replaced by the one of 
Richard Dedekind: 

M. abbott de Séguier is one of the most eminent among contemporary 
algebraists. If his works are not as famous as they deserve to be, it is because 
they deal with such a deep and difficult order of idea - i.e., the most abstract 
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and general group theory- that only a very few people, even among mathe-
maticians, are able to follow the author. [Autonne, 1913] 

In 1904, de Séguier had published a treatise entitled Élements de la théorie des 
groupes abstraits (“Elements of Abstract group theory”). That such a book was pu-
blished in Paris at a time-period for which the historiography has often opposed the 
German abstract algebra to the French analysis highlights the limits of both national and 
disciplinary categories. Moreover, de Séguier was not an exceptional isolated individual 
in France. His works were recognized by other mathematicians, not only in France, but 
also in the U.S.A. Séguier’s books on group theory were indeed systematically listed in 
Miller’s reports to the A.M.S. on the recent progresses in group theory, in company 
with some other Frenchmen’s works, such as Edmond Maillet’s and Raymond Leva-
vasseur’s. 

1.2 Networks of texts as a method of investigation 

Taking into consideration historical sources such as Séguier’s works thus neces-
sitates to go beyond the structurations of the collective dimensions of mathematics that 
are provided by nations, institutions and disciplines. As has been seen above, the evo-
lutions of categories such as “algebra” during the time-period under consideration 
especially raise difficulties in the very first step of the historical investigation, which is 
the selection of a corpus of text. 

This situation makes it compulsory to study carefully the ways texts were referring 
one to another, thereby constituting some networks of texts. Yet, such networks cannot 
be simply identified as webs of quotations. [Goldstein, 1999] Not only do practices of 
quotations vary in times and spaces but intertextual relations may also be implicit. My 
approach to this problem consists in choosing a point of reference from which a first 
corpus is built by following systematically the explicit traces of intertextual relations. A 
close reading of the texts involved then gives access to some more implicit forms of 
intertextual references. [Brechenmacher, 2012c] Among these, I shall especially discuss 
in this paper the references to the “analytic representation of substitutions”. The signi-
fication of such a reference may seem quite straightforward at first sight. Which may be 
the reason why the analytic representation of substitutions has actually remained un-
noticed in the historiography. Yet, as shall be seen in this paper this reference desi-
gnated a specific collective dimension of mathematics that played a key role in the de-
velopment of Galois fields. Because they provide a heuristic for the construction of a 
corpus, and thus a discipline for reading texts, intertextual investigations permit to iden-
tify the collective dimensions of mathematics whose are shaped by circulations of 
knowledge and practices. 



190 Frédéric Brechenmacher 

 

To be sure, such networks of texts should nevertheless not be considered as cons-
tellations in an empty sky. First, each author usually belonged to several networks, 
which pointed to various topics, times and spaces. Second, in laying the emphasis on 
textual interrelations, my investigations therefore do not aim at discussing the main col-
lective dimensions in which the actors were involved. Yet, that a group of text presents 
and objective intertextual coherence raises issues. What did the texts of such a group 
share? What was circulating in such a network? 

1.3 The Galois fields network 

In the framework of a collective research project10, a database of intertextual refe-
rences has been worked out for all the texts published on algebra in France from 1870 to 
191411. Investigations of intertextual connections have then aimed at decomposing the 
global corpus into subgroups of texts. One of these subgroups gives rise to a coherent 
network, which was mostly active during a single ten-year period, from 1893 to 1907, 
and which involved mainly French and American authors. 

This group initially involved actors in Chicago (e.g., Moore, Dickson, Ida May 
Schottenfels, Joseph H. Wedderburn, William Bussey, Robert Börger) and in Paris (Jor-
dan, Émile Borel and Jules Drach, Le Vavasseur, de Séguier, Potron, Autonne) but 
quickly extended to actors in Stanford (Miller, William A. Manning, Hans Blichfeldt), 
and to other individuals such as William. L. Putnam, Edward V. Huntington or Lewis 
Neikirk. 

One of the main mathematical issue that was shared in this collection of texts was 
the one of “Galois fields” “champs de Galois” or “imaginaires de Galois”. For this 
reason, I shall designate this collection as the Galois fields network. Yet, this desi-
gnation should not be understood as pointing to a specific mathematical theory or dis-
cipline. There was no homogeneous way of considering such a theory for all the authors 
of the network. In this paper, I shall thus pose the identity of the Galois fields network 
as a problem. 

This network is coherent in the sense that its texts refer not only frequently to each 
other but also to a core of shared references. Let us thus characterize further the Galois 
fields network by looking at its main shared references. 

                                                
10 CaaFÉ: Circulations of algebraic and arithmetic practices and knowledge (1870-1945) : France, Europe, U.S.A; 
http://caafe.math.cnrs.fr 
11 The corpus has been selected by using the classification of the Jahrbuch. On Thamous database of intertextual refe-
rences, see http://thamous.univ-rennes1.fr/presentation.php 
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These were, on the one hand, some retrospective references to some papers 
published in France in the 1860s, mostly by Charles Hermite, Joseph-Alfred Serret, 
Émile Mathieu, and Jordan, as well as to Galois’s works in the early 1830s. These refe-
rences were not exclusive of others, such as those to more recent works of Georg Frobe-
nius, Alfred Loewy, or Felix Klein, whose influence in the U.S.A has been well docu-
mented. [Parshall et Rowe, 1994, p.147-455] But none of these played as important a 
role for the collective identity of the network as the works of the 1860s. Moreover, this 
core of shared references played a key role in establishing links between texts. For 
instance, the issues tackled in a paper published by Moore in 1895, and entitled “Con-
cerning Jordan’s linear groups” were quickly discussed in France. Another paper, 
published by the French Le Vavasseur in 1896, “Sur les symboles imaginaires de Ga-
lois” immediately raised a controversy with the American Miller in the Academy of 
Paris. 

On the other hand, the main shared references contemporary to the authors of the 
network were Moore’s 1893 paper on Galois fields, Dickson’s 1901 monograph on li-
near groups, and Séguier’s 1904 monograph on abstract groups. 

The Galois fields network thus revolved around a two-fold periodization: its 
authors were active from 1893 to 1907 and shared a core of references from the 1860s. 
We shall see that the two times and spaces involved here point to a shared algebraic 
culture that can neither be identified to a discipline nor to any simple national or 
institutional dimension. These two times ans spaces were mainly articulated by two 
treaties: Serret’s 1866 Cours d’algèbre supérieure and Jordan’s 1870 Traité. 

1.4 The structure of the present paper 

The methodology of the present investigation consists in starting with a micro-
historical analysis of a local episode, which was one of the main shared reference in the 
Galois field corpus, i.e., the works of Moore and Dickson in Chicago from 1893 to 
1896. We shall provide a detailed analysis of this episode with a careful attention to the 
algebraic procedures involved. This small-scale analysis highlights the key role played 
by some specific procedures that were interlaced to a specific notation: the analytic re-
presentation of substitutions. 

In the third and fourth sections of this paper, we shall change the scale of analysis 
in investigating the long run circulation of these procedures in the 19th century, espe-
cially in the works of Galois and Jordan. 

Finally, in the fifth section of this paper, we get back to Chicago in 1893 for the 
purpose of identifying the shared algebraic culture lying beneath the Galois fields 
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network, which can be characterized as a specific approach to both linear groups and 
Galois fields, but with no interest in Galois Theory. 

2. Linear groups in Galois fields from 1893 to 1907 

Given the time-period during which the Galois fields network developed, it is quite 
natural to attempt to characterize the collective dimensions of this network as regard to 
the context of the institutionalization of finite group theory at the turn of the 20th cen-
tury. Moreover, given the important proportion of American mathematicians involved, 
one may aim at inscribing the Galois fields network in the context of the development 
of the American mathematical research community. Yet, we shall see in this section that 
even though appealing to a discipline such as group theory, or to a nation such as the 
U.S.A., sheds light on some aspects of the Galois field network, neither the categories 
of discipline nor of nation succeed in characterizing the specificity of this network. 

2.1 The problematic collective dimensions of the Galois fields network 

2.1.1 Disciplines: finite groups 

The institutionalization of finite group theory is an important collective trend in 
which the Galois fields network participated. Reports were produced ([Miller, 1898], 
[Miller, 1902], [Miller, 1907], [Dickson, 1899]), monographs were published 
([Burnside, 1897b], [Dickson, 1901], [Séguier, 1904b], [Le Vavasseur, 1904]) and 
discussions were developed on issues related to the teaching and the history of finite 
groups. 

The network originated between Otto Hölder’s abstract formulation of the notion 
of quotient group [Hölder, 1889] and the emergence of group representation theory. The 
determination of all groups of a given order was often proclaimed as a general goal. 
This question had al- ready been presented as the “general problem” of substitutions in 
the third edition of Serret’s Cours. [Serret, 1866, p.283] The texts of the network either 
pointed to Serret or to the “abstract” formulation Arthur Cayley had given to the 
“general problem of groups” in the first volume of the American Journal of 
Mathematics. [Cayley, 1878, p.50] The use of the composition series of the Jordan-
Hölder theorem potentially reduced the general problem to the one of the determination 
of all simple groups. The identification of classes of simple groups therefore raised 
difficult issues related to the various concrete forms of representations of abstract 
groups such as substitutions groups or collineation groups. [Silvestri, 1979] 
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The latter problem was much related to the development of abstract group theory 
(i.e. groups defined by symbolic, and later axiomatic, operations). First, the use of the 
Jordan-Hölder theorem required the consideration of quotient groups that were not 
introduced by substitutions but by symbolic laws of operations. [Nicholson, 1993, p.81-
85] Second, Hölder’s use of Sylow’s theorems for determining simple groups of order 
less than 200, [Hölder, 1892] or groups of orders p3, pq2, pqr, p4, [Hölder, 1893] was 
based on the identification of abstract groups up to isomorphism12. 

2.1.2 Disciplines: abstract group 

Hölder’s approach to abstract groups was a shared reference in the Galois fields 
network. In his paper of 1889, Hölder initially appealed to the abstract approach deve-
loped by Walther von Dyck [Dyck, 1882] in the legacy of Cayley. A symbolic approach 
was nevertheless developed earlier in 1877-1878 by Frobenius, partly in the legacy of 
Cayley as well. [Hawkins, 2008] After Hölder eventually appealed to Frobenius’s ap-
proach in 1892, the two mathematicians would publish a series of papers on topics 
closely related one to the other (Sylow theorem, composition series, solvable groups 
etc.). But unlike Hölder’s, Frobenius’s works did not become a shared reference in the 
Galois fields network until 1901. 

The variety of attitudes to Frobenius shows that the category of “abstract finite 
group theory” is not appropriate for identifying the collective dimensions of the Galois 
fields network13. Moreover, that issues related to abstract groups circulated in the Galois 
fields network did not imply a shared approach toward abstraction. Unlike Moore, other 
key authors followed Frobenius’s works closely. But, on the one hand, Burnside’s 1897 
Theory of groups of finite order indicated the longstanding concerns for symbolic laws 
of combination which had circulated from Cambridge to other academic contexts in 
Great Britain and the United States. On the other hand, it was on Georg Cantor’s set 
theory that Séguier had grounded his 1904 monograph on abstract groups. 

                                                
12 In the mid-1860s, the use of Jordan’s “method of reduction” of groups into composition series had raised repre-
sentation issues.[Jordan, 1867a, p.108] The notion of isomorphism had been appropriated by Jordan from the frame-
work of cristallography and had been presented as a general notion of the theory of substitutions.[Jordan, 1870, p.56] 
It would play a key role in the connections Klein would develop between various types of groups in the late 1870s 
and would become “abundant” in the 1890s. [Frobenius, 1895, p.168] First, Hölder’s introduction of abstract quotient 
groups would point to the isomorphism theorems. [Frobenius, 1895] Second, the actual composition of groups from 
factor-groups could not be undertaken unless all the automorphisms of the groups involved would be known. [Höl-
der, 1893, p.313] [Hölder, 1895, p.340] 
13 For instance, Moore did not refer to Frobenius in the 1890s even though [Burnside, 1896] pointed out that [Frobe-
nius, 1893] had already made use of the notion of the group of automorphisms of a group that [Moore, 1894] had 
claimed to introduce. Several authors actually claimed independently to have abstractly identified the group of auto-
morphisms of abelian groups of type (1, 1,..., 1) (i.e., Frobenius, Hölder, Moore, Burnside, Le Vavasseur, and 
Miller), a problem that pointed to the traditional introduction of the general linear group in the legacies of Galois and 
Jordan as will be seen in greater details later.  
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2.1.3 Nations 

National categories were no more relevant than theories for identifying the Galois 
fields network. For instance, the works of the Americans Frank N. Cole and John 
W. Young were frequently referred to by Frobenius. Reciprocally, Miller appealed to 
Frobenius’s works early on in the mid-1890s. In his first Report on recent progress in 
the theory of the groups of finite order, he put to the fore Frobenius’s representation 
theory when he acknowledged the growing importance of linear groups. [Miller, 1898, 
p.248] But Dickson nevertheless mentioned Frobenius neither in his 1899 Report on the 
recent progress in the theory of linear groups, nor in his monograph. The situation did 
not change until 1901, when a review of Alfred Loewy criticized Dickson’s restatement 
of some of Frobenius’s results. 

2.2 Moore’s Galois fields 

We have seen that large-scale categories, such as nations and disciplines, fail to 
characterize the collective dimensions of the Galois fields networks. Let us now change 
our scale of investigation. In this section, we shall focus on a micro-historical analysis 
of one the main shared references of the network, i.e. Moore’s works on Galois fields 
from 1893 to 1896. 

2.2.1 Research schools 

In their work of reference on the development of the American mathematical com-
munity, Karen Parshall and David Rowe have analysed in detail the institutional back-
ground of Moore’s paper in the context of the emergence of the “Chicago research 
school.” [Parshall et Rowe, 1994, p.261- 455] They have especially highlighted the 
strong influence of Félix Klein’s Göttingen. But even though the roles played by Ger-
man universities in the training of many American mathematicians have been well 
documented, the influence of this institutional framework on mathematics has been 
assumed quite implicitly. The Chicago research school has indeed been characterized by 
its “abstract and structural” approach to algebra, which was called a “characteristic of 
trendsetting German mathematics.” [Parshall, 2004, p.264] Here two difficulties arise. 

First, the role attributed to “abstract algebra” reflects the tacit assumption that the 
communication of some local knowledge should require direct contact. Because the 
historiography of algebra has usually emphasized the abstract and structural approaches 
developed in Germany, and especially in the center of Göttingen, other, more local, 
abstract approaches, such as in Cambridge or Chicago, have raised issues about the 
imperfect communication of some tacit knowledge, as exemplified by the late inter-
breeding in the 1930s of the German Moderne Algebra and the Anglo-American ap-
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proach to associative algebras. [Fenster et Schwermer, 2005] In this frame- work, 
algebraic developments in France, such as Séguier’s, have been either ignored or con-
sidered as some isolated attempts modelled on German or Anglo-American approaches. 
[Dubreil, 1982] 

Second, as has already been highlighted in the previous section of this paper, both 
disciplines and nations are actors categories which were much involved in public 
discourses. Recall that Moore’s 1893 paper was read at the congress that followed the 
World Columbian exposition in Chicago. [Parshall et Rowe, 1994, p. 296-330] The 
world fair was dedicated to the discovery of America and was the occasion of much 
display of national grandeur.[Brian et al., 1893] In parallel to the elevation of the first 
great wheel, presented by the Americans as a challenge to the Eiffel Tower, or to the 
Viking ship that sailed from Norway as a counterpoint to the replica of Columbus’s 
three caravels, the architectural influence of the French École des Beaux arts was 
challenged by the German folk village. The latter especially included an exhibit of the 
German universities with a section on mathematics at Göttingen. 

In regard with mathematics, Klein had been commissioned by the Prussian govern-
ment to the fair. He had contributed “a brief sketch of the growth of mathematics in the 
German universities in the course of the present century” to the book Die deutschen 
Universitäten, which had been edited for the exhibit of the German universities. [Lexis, 
1893] Moreover, during the fair, Klein delivered a series of lectures which aimed at 
“pass[ing] in review some of the principal phases of the most recent development of 
mathematical thought in Germany.”[Klein, 1894] Klein was also the glorious guest of 
the congress while Moore was both the host of the congress and one of its main 
organizers. 

2.2.2 Paying tribute to Klein... 

As we shall in this section, Moore’s lecture – the concluding lecture of the Chicago 
congress – was clearly aimed at both paying tribute to Klein’s Icosahedron and to some 
recent works developed in the U.S.A. 

On the one hand, Moore generalized to a “new doubly infinite system of simple 
groups” (i.e. PSl2(pn)), what was then designated as the three “Galois groups” (i.e. 
PSl2(p), p = 5,7,11) involved in the modular equations that had been especially 
investigated by Klein, following Galois, Hermite, and Kronecker among others. 
[Goldstein, 2011] The generalization consisted in having the analytic form of uni-
modular binary linear fractional substitutions (i.e. PSl2(p)), with ad − bc ≡ 1 mod.p 
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operate on pn letters indexed by Galois number theoretic imaginaries, instead of the 
usual case prime number p of letters Fp = Z/pZ. 

On the other hand, the issues Moore tackled were those associated with the con-
tinuation of the lists of simple groups that had been established by the American Cole 
up to the order 500, [Cole, 1892]14 following Hölder’s list up to order 200. [Hölder, 
1892] For the purpose of continuing the list up to 600, Cole had put to the fore a simple 
group of order 504 (i.e. PSl2(23)). Moore showed that Cole’s group – as well as a simple 
group of order 360 he had introduced in 1892 – belonged to his “new doubly infinite” 
system of simple groups. 

The extension of the system of indices from p elements to pn elements was based on 
the introduction of the notion of a “field” as a “system of symbols” defined by “abstract 
operational identities” of addition and multiplication:  

Suppose that the s marks may be combined by the four fundamental opera-
tions of algebra [...]. Such a system of s marks we call a field of order s. The 
most familiar instance of such a field [...] is the system of p incongruous 
classes (modulo p) of rational integral numbers. 

Galois discovered an important generalization of the preceding field [...] the 
system of pn incongruous classes (modulo p, Fn (x))15. [Moore, 1893] 

2.2.3 […] but colliding to the implicit collective dimension lying beneath the use of Galois 
imaginaries  

At first sight, the mathematical issues tackled by Moore in 1893 may seem very co-
herent with the institutional influence of Germany on the development of the American 
mathematical community.  

Yet, the nature of the relevant collective dimensions changes if one shifts the scale 
of analysis from institutions to texts. Even though he aimed at celebrating the emer-
gence of some abstract researches in the U.S.A. in the framework of the Göttingen tradi-
tion, Moore actually collided to the implicit collective dimension that was underlying 
the use of analytic representations of substitutions, such as ����

����

 , on Galois number theo-
retic imaginaries. 

This situation is illustrated by the fact that, in the context of the development of the 
Chicago research school, Moore’s Galois fields would be collectively described as ha-

                                                
14 Except for the orders 360 and 432 which Frobenius dealt with in 1893.  
15 In modern parlance, this sentence is identifying a Galois field as the finite field of incongruous classes of poly-
nomials F modulo p and modulo a given irreducible integral polynomial Fn of degree n.  
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ving given an “abstract” or “general” form to some previous works by Serret, Jordan, 
and Mathieu: 

The linear groups investigated by Galois, Jordan and Serret were defined for 
the field of integers taken modulo p; the general Galois field entered only in-
cidentally in their investigation. The linear fractional group on a general Ga-
lois Field was partially investigated by Mathieu, and exhaustively by Moore 
[...]. [Dickson, 1901, p.1] 

Moreover, a similar abstract formulation was not only often attributed to Borel and 
Drach’s 1895 textbook but Moore’s results on PSl2(pn) were also traced back to Jordan’s 
1870 treatise: 

The expression Galois Field is perhaps not yet in general use. The notion is 
due To Galois and is fully developed by Serret. [1866] The theory in its abs-
tract form is developed by Moore [1893 and 1896], and by Borel et Drach 
[1895]. Jordan [1870] and Moore [1898], have shown that the quaternary 
linear homogeneous substitution group of order 8!/2 in the Galois Field, and 
the alternating group of degree eight, both of which are simple, are holoe-
drically isomorphic. [Schottenfels, 1899] 

2.3 What’s new in Moore’s paper? 

Let us now address the issue of the nature of Moore’s individual contribution. 
What was actually new in the 1893 congress paper?  

It is obviously not possible to attribute to Moore the origin of the notion of Galois 
field as this notion had already been introduced by Galois (as well as by Carl Gauss and 
Poinsot before Galois, as will be seen later), and developed by several other authors 
such as Serret, Mathieu, Jordan, etc. One may thus be tempted to attribute to Moore a 
more “abstract” definition of the notion of Galois field, one that would fit the axiomatic 
approach developed in Göttingen and thereby herald the postulationist program that 
would develop at the beginning of the 20th century in Chicago. As a matter of fact, we 
have seen above that Moore was celebrated by his followers in Chicago for his truly 
abstract and general presentation of Galois fields. Yet, such an interpretation is 
contradicted by a closer look at the chronology of Moore’s publications. 

2.3.1 The shadow of Klein-Fricke’s textbook on Moore’s incomplete references 

A first version of Moore’s lecture was published in 1893. There, Moore had noted 
that: “it should be remarked further that every field of order s is in fact abstractly con-
sidered as a Galois field of order s”. [Moore, 1893, p.75] But he neither provided any 
proof nor any further details about this remark until the second version he completed in 
autumn 1895 for the publication of the proceedings of the congress. [Moore, 1896, 
p.242] Yet, in the meantime, several other mathematicians provided an abstract de-
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finition of Galois field: Burnside dealt in 1894 with exactly the same issue of the sim-
plicity of PSL2(pn) and Drach gave in 1895 an abstract definition to “Galois 
imaginaries”. [Borel et Drach, 1895, p.343-349] Moreover, Heinrich Weber and Hilbert 
claimed in 1893-1895 to lay new ground on Galois’s theory of equations by appealing 
to Dedekind’s concept of “Körper”16. [Weber, 1893] [Weber, 1896] [Hilbert, 1894] 

The focus of the first version of Moore’s paper was on the proof of the simplicity 
of PSl2(p

n) on the model of the case of PSl2(p) treated in [Klein et Fricke, 1890, p. 419-
450]. Alongside with [Hölder, 1889], the textbook of Klein and Fricke was actually the 
main bibliographic reference of Moore’s paper. Not only had Cole authored the refe-
rences to the simple groups investigated by Jordan17, [Moore, 1893, p.74] but most other 
references had been taken from the Klein-Fricke textbook18. It is likely that Moore had 
not read [Gierster, 1881] closely, and had not read [Serret, 1859] and [Serret, 1865] at 
all. Moore even suggested that both mathematicians dealt only with the case n = 1, 
while in fact they used Galois imaginaries in some parts of their works. [Moore, 1893, 
p.76] 

Moreover, even though the relevant works of [Mathieu, 1860, p.38], and [Mathieu, 
1861b, p.261] on linear fractional substitutions and number-theoretic imaginaries were 
identified precisely by [Gierster, 1881, p.330], Moore did not mention Mathieu until 
1895 when he would add a last-minute note to the revised version of his paper.[Moore, 
1896, p.242] Mathieu had nevertheless investigated various aspects of PSL2(pn), and had 
already introduced Cole’s group of order 504 (with no concern about the issue of 
simplicity)19. 

2.3.2 Every Galois field is a Galois field 

Had Moore built his 1893 lecture on the four pages Klein and Fricke had devoted 
to Galois imaginaries? Actually, his use of the expression Galois theory indicates that 
Moore had certainly read Jordan’s Livre I. Moreover, the formulation he gave of Galois 
fields pointed to the extensive development of Serret’s 1866 Cours. Indeed, both [Klein 
et Fricke, 1890] and [Jordan, 1870] were faithful to Galois’s original presentation in 
focusing on the fact that GF(pn) is isomorphic to Fp(j), with j a root of xpn−1 

≡ 0. In con-

                                                
16 See [Kiernan, 1971, p.137-141] and [Corry, 1996, p.34-45]. 
17 In a modern notation, Moore’s paper referred to Jordan’s investigations of Alt(n), PSl(n, p), and PΩε(n, p). 
18 Moore had indeed reproduced the references made to [Serret, 1866] and[Jordan, 1870] by[Klein et Fricke, 1890, 
p. 419] as well as the references to [Serret, 1859], [Serret, 1865] and [Gierster, 1881] in [Klein et Fricke, 1890, p. 
411]. 
19 In 1861, Mathieu had used the threefold transitive group PSl2(pn) for introducing a five fold transitive group on 12 
letters. He had also announced the existence of a five fold transitive group on 24 letters, which he would eventually 
introduce in 1873 (i.e. the Mathieu groups M12 and M24).  



 A history of Galois fields 199 

 

trast, Serret had developed an arithmetic approach to GF(pn) as Fp(X)/(f(x)). Galois’s (or 
Jordan’s or Klein’s and Fricke’s) presentation was the one that was actually helpful for 
the group-theoretical purpose of Moore’s paper. But Moore turned Galois upside down. 

On the one hand, what he designated as a Galois field was actually Augustin 
Cauchy’s approach to higher congruences, [Boucard, 2011b] as developed later by Ser-
ret’s concrete function field representation, and which Moore nevertheless attributed to 
Galois. 

On the other hand, Moore’s notion of abstract field was close to Galois’s initial 
presentation. The statement that a finite field can be abstractly considered as a Galois 
field actually echoed the connection between two perspectives on number theoretic ima-
ginaries, as it had already been displayed in textbooks such as Serret’s in 1866. [Serret, 
1866, p.179-181] It was quite close to stating that every Galois field (in the sense of 
Galois) is the abstract form of a Galois field (in the sense of Cauchy or Serret): 

The Galois field GF[qn] is uniquely defined for every q=prime, n=positive 
integer; that is: Fn(X)  – which are irreducible (mod. q) – do exist. 

The GF[qn] is independent of the particular irreducible Fn(X) used in its 
construction. For the details of this Galois theory, see Galois: Sur la théorie 
des nombres (Bulletin des Sciences mathématiques de M. Férussac, vol. 13, p. 
428, 1830; reprinted, Journal de Mathématiques pures et appliquées, vol. 11, 
pp. 398-407, 1846); Serret, Algèbre supérieure, fifth edition, vol. 2, p. 122-
189; and Jordan: Substitutions, p. 14-18. [Moore, 1893] 

In Moore’s approach, the relation of abstract fields to number-theoretic imaginaries 
was analogous to the relation between classes of abstract simple groups and the repre-
sentation of a given simple group. On the one hand, because irreducible polynomials 
mod p “do exist,” as Moore claimed, Serret’s approach provided a construction of a 
field of pn elements, [Moore, 1893, p.75] i.e. “an existence proof” of the abstract field. 
[Moore, 1896, p.212] On the other hand, the notion of abstract field was a normal inter-
pretation of Galois’s 1830 Note in the context of the considerations on the symbolic 
laws of complex numbers and associative algebras that had been developed since the 
1870s20. Klein-Fricke had indeed considered Galois imaginaries as complex numbers 
����� � ������ ��� �. Commutative systems of hypercomplex numbers were typi-
cally investigated by the consideration of the minimal polynomial of the system. In the 
case of finite fields, the minimal polynomial was of the form ����� � � � ��as Moore 
would prove in 1896. 

                                                
20 In the tradition of investigations on associative algebras, [Borel et Drach, 1895, p.343-350] and[Moore, 1895] both 
provided tables of compositions of number-theoretic imaginaries. On the history of associative algebras, see [Haw-
kins, 1972, p.244-256] and [Parshall, 1985, p. 226-261]. 
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In short, Moore had stated that finite abstract fields can be represented as function 
fields. In contrast, this statement had no relation with Galois fields in the sense of field 
extensions and Galois groups21. In the framework of Weber’s presentation of Dede-
kind’s Galois theory, Moore’s “Galois fields” were both “endlicher Körper” and “Con-
gruenz Körper” but they were not “Galois’sche Körper.” 

2.3.3 Lost in a fog of old French works 

Recall that the introduction of abstract Galois fields was not the initial aim of the 
1893 lecture. But as a result, Moore nevertheless established a direct relation between 
[Serret, 1866] and [Klein et Fricke, 1890]. In doing so, he had jumped over more than 
twenty years of development of mathematics. Yet, unlike Burnside who mastered the 
relevant references to the works of Serret, Jordan, and Mathieu, Moore seems to have 
been lost in a fog of old French works. 

But even more dramatically, Moore’s system of simple groups had actually already 
been introduced by Mathieu in 1861. What Mathieu had done exactly on Galois fields 
was especially problematic to Moore. The 1893 version of the congress lecture was sup-
posed to be followed by a more complete publication in Mathematische Annalen. But 
this did not happen and Moore published instead a paper on triple systems. When 
Moore referred to Mathieu for the first time, he promised he would devote a subsequent 
paper to point[ing] out the exact point of contact [of his works] with Mathieu’s results. 
[Moore, 1895, p.38] But no such paper was ever published and Moore eventually settled 
for the addition of a short allusive note to the revised edition of the congress paper. 

As a result, before the publication of the proceedings of the congress in 1896, 
Moore and his student Dickson struggled to access the tacit collective dimension of 
some texts published in France in the 1860s, especially by appealing to Jordan’s 1870 
Traité. As will be seen in greater details later, the main problem of Dickson’s thesis was 
actually to specify the relations between the works of Jordan and Mathieu on linear 
groups in Galois fields22. 

Moore’s 1893 paper thus eventually resulted in the circulation of some works that 
were foreign to Klein’s legacy as is illustrated by the publication from 1893 to 1896 of a 
train of papers on “Jordan’s linear groups in Galois fields”. Not only was Dickson’s 
doctoral thesis devoted to the investigation of the collective dimensions Moore’s Galois 

                                                
21 As any finite field of pn elements can be represented as the splitting field of P(X) = Xpn 

− X on Fp, every finite field 
can be represented as a Galois field. But such a splitting field was not considered as a Galois extension on Fp: Moore 
had no concern for the interplay between groups and fields which is characteristic of Galois theory 
22 One of the main results of Dickson’s thesis was to generalize Moore’s doubly-infinite system of simple groups to 
the triply-infinite system Slm(pn)/Z with Z the center of Slm(pn) and (m, n, p) different from (2, 1, 2) or (2, 1, 3).  
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fields had accidentally bumped into in 1893. But, more generally, many of the early 
works of the Chicago research school were systematic generalizations of some state-
ments of Jordan’s Traité.  

In sum, Moore’s works on Galois field from 1893 to 1896 can be analysed as a 
process of appropriation of a specific collective framework associated to the use of 
analytic representations of substitutions on Galois imaginaries. This situation highlights 
the difficult problem of identifying the scales at which various forms of collective di-
mensions play a relevant role in the evolutions of mathematics, especially in respect to 
the articulation of the collective dimensions of texts with the ones of actors, such as 
disciplines or nations. 

3. Galois number-theoretical imaginaries in the long run 

Let us now investigate the collective dimension Moore accidently collided to in 
1893. We shall thus change once again our scale of analysis by looking more closely 
into some texts that have been published in the long-term. This section is thus based on 
a retrospective approach of the 19th century from the standpoint of the Galois fields net-
work at the turn of the 20th century. 

3.1 On the variety of the forms of representations of substitutions in the 19th century 

We have seen that Galois fields were intrinsically interlaced in Moore’s works with 
the use of a specific form of representation of substitutions: the analytic representation. 
We shall thus start our present investigations with an overview of the variety of forms 
of representations of substitutions that have been used during the 19th century: 

• Two-lines representations (a turns into d ; b turns into c etc.):  

(a,b,c,d,e,...) 

(d,c,a,e,b,...) 

• Products of transpositions : 

(ad)(de)(eb)(bc)(ca) 

• Symbolic notations of the operations between substitutions: 

ghg−1 = K 

• Tabular representations of groups and subgroups of substitutions: 
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• Analytic representations, which consist in indexing the letters by a sequence of 
integers in order to represent the substitutions on these letters by polynomials. 

The latter form of representation has remained unnoticed in most historiographical 
accounts on group theory. Yet, we shall see that the analytic representation has played a 
key role in both the development of the notions of Galois fields and linear groups. 

This situation can be analysed as a part of a large scale phenomenon, i.e. the crucial 
role played by polynomial representations of functions in the long run of the 18th and 
19th centuries (with extensions to infinite sums or products). It is well known that such 
a conception of functions has been challenged in the 19th century, especially in con-
nection to the issues raised by representations by Fourier series from which Cantor’s set 
theory would emerge in the 1870s. Yet, analytical representations continued to play an 
important role even after the introduction of a more general notion of functions as 
applications, as is exemplified by Henri Poincaré’s efforts in the 1880s to provide an 
analytical representation of fuchsian functions by infinite sums or products. 

Karl Weierstrass’s factorization theorem is another example of the lasting influence 
of analytic representations. The theorem illustrates that such representations are not li-
mited to a form of notation: the cannot be dissociated from some specific algebraic 
procedures modelled on the factorization of polynomial expressions. As a matter of fact, 
Weierstrass’s theorem states that any analytical function – i.e. the sum of a power series 
– can be expressed as an infinite product which factors contains the zeros of the 
function considered. The factorization theorem also highlights the limitations of analytic 
representations. It was indeed in attempting to generalize Weierstrass’s theorem to 
infinite products of rational expressions that Gösta Mittag-Leffler was drawned to 
Cantor’s set theory. In the case of functions with singular points, one can provide some 
global analytical representations only in some specific cases while, in general, one has 
to consider a function as an application between two sets of points. As Cantor wrote to 
Mittag-Leffler in 1882: “In your approach, as well as in the path that Weierstrass is 
following in his lecture, you cannot access to any general concept because you are de-
pendent of analytical representations”. (cited in [Turner, 2012]) 
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3.2 The analytic representation of substitutions 

Given a substitution S operating on p letters ak (p prime), the problem of the ana-
lytic representation is to find an analytic function f such that S(ak) = af (k). As shall be 
seen in greater details later, an influential approach to this problem (especially for Dick-
son’s 1896 thesis) was the one of Hermite. In 1863, Hermite provided a complete cha-
racterization of the analytic representations of substitutions for the cases p = 5 and p = 
7. For instance, any substitution on 5 letters can be represented by combinations of the 
following polynomial forms: 

k ; k2 ; k3 + ak 

Hermite also stated a general criterion for substitutions to have an analytic form. 
His approach was based on the use of Joseph-Louis Lagrange’s interpolation formula. 
Given two functions φ and ψ of degree p associated to two substitutions S and T on p 
letters, the substitution ST is then associated with the function φψ. Now, in order to keep 
the degree of φψ equal to p, it is necessary to consider both the indices of the p letters 
and the coefficients of φ and ψ modulo p. The problem of the analytic representation is 
thus tightly linked to the one of the indexation of the letters on which the substitutions 
are acting. In case of substitutions acting on pn letters, one has to consider Galois’s num-
ber-theoretic imaginaries. 

3.3 The special case of cycles: two indexations, two analytic representations 

In the special case when the number of letters is a prime number p, an indexation 
can be given by representing the p letters as the pth roots of unity, i.e., as the roots of the 
binomial equation: 

Xp 
− 1 = 0 

As a matter of fact, all the roots of this equation can be expressed by the sequence 
(0,1,...,p−1) of the powers of a single root, ω (i.e. a “primitive root” of the binomial 
equation): 

ω0, ω1, ω2,..., ωp−1 

In the above indexation, the root ωk turns into ωk+1, by adding 1 to the exponent k. 
This operation is associated to the substitution (k k + 1), which provides the analytic 
representation of a cycle by the affine function f (k) = k + 1 (or, more generally, f (k) = k 
+ a). 

But let now consider the list of all the roots of unity less the unity itself, that is the 
roots of the irreducible cyclotomic equation (on � ) deduced from the binomial 
equation:  
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This sequence of p − 1 roots can be reindexed in the following way:  

ωg , ωg2 

, ..., ωgp−1 

by appealing to a primitive root g of the binomial congruence:  

Xp−1 
− 1 ≡ 0 mod(p) 

Such a reindexation provides an alternative analytic representation of a cycle by the 
form (k gk), i.e., the linear function f (k) = gk. 

To sum it up, cycles can be represented analytically in the two following ways:  

• an operation of addition (k k + a) 

• an operation of multiplication (k gk) 

This double representation is crucial. It allows to simultaneously decompose the set 
of roots of unity into subsets and to factorize binomial equations. As shall be seen in the 
next section, this procedure of decomposition plays a key role in Gauss’s famous proof 
that cyclotomic equations can be solved by radicals. 

3.4 Cyclotomy 

Unlike Alexandre Théophile Vandermonde (1774) and Lagrange’s (1771) ap-
proaches to the special cases x5 

− 1 = 0 and x11 
− 1 = 0, Gauss’s 1801 Disquitiones 

arithmeticae had introduced a general method of successive factorizations for proving 
the solvability by radicals of (irreducible) cyclotomic equations of degree p − 1. The 
factorizations resorted to organizations of the roots in a specific order by appealing to 
the two indexings provided by a pth  primitive root of unity ω and by a primitive root g 
mod. p23. For any factorization p − 1 = e f, let h = ge, and consider the equation of degree 
e whose roots correspond to the following e “periods" of sums of f terms: 

�� � �
�
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����

 (� � � � �) 

Such decompositions of the roots into periods allows factorizing the initial (im-

primitive) cyclo- tomic equation into e factors of degree f. A numerical example for 

p = 19 is provided in Annex 1. 

A few years later, in 1808, Lagrange gave a new proof of the solvability of cyclo-

tomic equations. The successive auxiliary equations attached to Gauss’s periods were 

                                                
23

 On Gauss’s proof of the existence of primitive roots of cyclotomic equations, see [Neumann, 2007]. 
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replaced by the direct consideration of an auxiliary function of the coefficients and of 
roots of unity, i.e. the Lagrangian resolvent  

� � ��
�
� �

�
�
��
��� �

���
�
���� 

with α a primitive p − 1th root of unity24. 

3.5 Poinsot’s groups 

In his 1808 review of Lagrange’s treatise, Louis Poinsot commented on the two ap-
proaches of Gauss and Lagrange. At this occasion, he had designated Gauss’s periods as 
“groups” in a sense Galois would also use later on. Groups in this sense involved both 
partitions of “permutations of letters” (i.e. arrangements of the roots or indexing lists) 
and decompositions of “systems of substitutions” (the operations from one permutation 
to another)25. 

As seen before, Gauss’s decomposition resorted to a single kind of substitution (i.e. 
cycles). But two forms of actions had to be distinguished depending on whether the 
cycles were acting within the groups or between the groups. Poinsot had discussed these 
two forms of actions from a geometric perspective. The roots generated by a primitive 
root of unity could be represented “as if they were in a circle” [Boucard, 2011a, p.62] (a 
numerical example is provided for the case p = 7 in annex 1). 

• On the one hand, the operation (k gk) decomposes the set of roots into various 
subset, or blocks, that can be moved one on the other by rotations of the circle. For 
instance, in the circle below, one can distinguish the blocks (B, C, E) et (D, F, G): one 
passes from one block to the other by the multiplication of a primitive root g mod. p that 
turns B, C, E into D, F, G. 

• On the other hand, the roots can be made to move forward by translations, i.e., by 
the operation (k xk1) on their indices, which for instance turns B into C, C into E, E into 
B etc. 

                                                
24 The Lagrangian resolvent line of development of Galois theory has been well documented. See [Kiernan, 1971, 
p.103-110]. 
25 The ambivalence of the terminology “group” as regard to the distinction between the “permutations of the roots” 
and the “substitutions” has often been considered as a limitation of Galois’s approach (e.g. [Dahan Dalmedico, 1980, 
p.282], [Radloff, 2002]). But it should be pointed out that this ambivalence was the very nature of “groups” as they 
originated from the decomposition of imprimitive groups by the consideration of blocks of imprimitivity of letters. 
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Gauss’s procedure of indexation thus established a connection between arithmetics 
(congru- ences), algebra (factorization of equations), geometry (circular representation), 
and mechanics (translations and rotations on/of a circle). 

In 1815, Cauchy introduced cycles by appealing to a similar circular representation 
[Cauchy, 1815, p.75-81] even though he did not focus on the analytic representations 
induced by the two forms of actions of cycles (k k + 1) and (k gk). Cauchy indeed rather 
had favoured other modes of representations of substitutions such as products of cycles, 
[Dahan Dalmedico, 1980, p.286-295] the two lines notation, the symbolic notation, and 
some tabular representations26. On the contrary, the analytic representation of subs-
titutions played a key role role in Galois’s approach as shall be seen in the next section. 

��������������

3.6 Galois’s criterion for irreducible equations of prime degree 

We have seen that the analytic representation of substitutions is far from being 
limited to a specific notation. This representation cannot be dissociated from some spe-
cific procedures of decompositions. In this section, we shall highlight the role played by 
these procedures in the concluding theorem of Galois’s famed Mémoire. 

Recall that Galois’s Mémoire is organized into two parts: the first provides a gene-
ral presentation while the second is devoted to the application to a special class of 
equations. 

                                                
26 Cauchy also introduced a terminology that has been used throughout the 19th century, that of “arithmetic 
substitutions” for (k k + a) and of “geometric substitutions” (k gk).
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• The first part is famous for its proposition V, which presents the problem of the 
solvability by radicals as resorting to the interplay between successive adjunctions of 
roots and the successive decompositions of a group caused by the successive adjunc-
tions of roots to the equation27. 

• The second part of the memoir follows proposition V. It is concluded by a crite-
rion of solvability to irreductible equations of a prime degree: 

Theorem 1 Galois’s criterion 

In order that an equation of prime degree be solvable by radicals, it is necessary 

and sufficient that, if two of its roots are known, the others can be expressed rationally. 
[Galois, 1831b, p.432] 

This theorem provides an extension to the class of solvable equations that were 
already known before Galois, i.e. Gauss’s binomial equations (all the roots are the 
successive powers of one of them) and Niels Henrik Abel’s equations (all the roots are 
rational functions of one of them). 

The analytic representation of substitutions plays a key role in both the statement 
and the proof of Galois’s criterion. An alternative statement of the theorem is indeed the 
following28: 

An irreducible equation of prime degree is solvable by radicals if and only if 
any function invariable by the substitutions  

xk , xak+b 

is rationnaly known [Galois, 1832, p.431]. 

The key argument of the proof is that the smallest non-trivial group in the 
successive reductions had to be generated by a cycle. Here, Galois explicitly referred to 
Cauchy even though he did not appeal to the latter’s representation of substitutions as 
products of cycles but to analytic representations. Galois looked for the penultimate 
group in the successive reductions of the given equation. He showed that if its subs-
titutions are represented by (xk, xf (k)), then 

f (k + c) = f (K) + C, i.e. these substitutions turn cycles k + c into cycles f (k) + C29. 

Thus : 

                                                
27 For some systematic comments on the general principles of Galois’s Mémoire, see [Radloff, 2002] and [Ehrhardt, 
2012]. 
28 In modern parlance, Galois’s theorem states than an irreducible equation of degree p is solvable by radicals if and 
only if its Galois group is a subgroup of the affine group. 
29 This group is the maximal group in which the cyclic group (k k + a) is a normal subgroup. 
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f (k + 2c) = f (k) + 2C, ..., f (k + mc) = f (k) + mC 

Let now consider that c = 1 and k = 0 ; let b = f (0):  

f (m) = Am + b 

Let now a = A, Galois eventually deduced that: 

f(k) = ak + b 

Galois has designated such substitutions as “linear substitutions” 30. 

As will be seen in greater detail later, the core argument of Galois’s proof would 
circulatethroughout the 19th century. The introduction of the general linear group in 
Jordan’s Traité would especially “originate” from the exact same argument. In modern 
parlance Galois’s theorem and its proofs boil down to showing that the linear group is 
the maximal group in which an elementary abelian group (the cyclic group Fp

∗ in the 
case n = 1 or a direct product of cyclic groups in general) is a normal subgroup. 

As we shall see in the next section, it was in attempting to generalize this theorem 
to the analytic forms of roots of equations of degree pn that Galois introduced the num-
ber theoretic imaginaries. 

 

                                                
30 In modern parlance, these are affine substitutions.
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[Galois, 1846] 

3.7 Galois’s attempts to generalize his criterion to equations of degree p
n
 

It is well known that the Mémoire has remained unpublished until Joseph Liouville 
edited a selection of Galois’s works in his journal in 1846. Yet, the criterion had already 
been stated in Galois’s very first note on the issue of the solvability by radicals, “Ana-
lyse d’un mémoire sur la résolution algébrique des équations,” which was published in 
the Bulletin de Férussac in 1830 (the Analyse for short). 

In this paper, Galois was already looking for a more general statement for 
equations of compound degree. The note indeed started with the introduction of the dis-
tinction between primitive and imprimitive equations: a “non-primitive equation of 
degree mn is an equation that can be decomposed into m factors of degree n, by 
appealing to a single equation of degree m.” [Galois, 1830a, p.395] These equations 
were also designated as Gauss’s equations. In his “Fragment of second memoir”31, Ga-
lois indeed appealed to “M. Gauss’s method of decomposition” for reducing the pro-
blem of finding solvable irreducible equations of composite degree to the one of finding 
solvable primitive equations of degree pn. [Galois, 1831a, p. 434] 

The aim of the second memoir was to generalize Galois’s criterion to solvable pri-
mitive equations by the general characteristic that their degree had to be a power of a 
prime. Such a generalization raised the issue of the indexation of systems of pn letters.  

Galois first solved this problem in decomposing the letters into n blocs of p letters. 
He considered a primitive equation of degree N that turned into Q imprimitive equations 
by the adjunction of a radical of prime degree. The group of the equation was then par-
titioned into conjugated imprimitive groups. Let H be one of these imprimitive groups; 
its letters were decomposed on the model of Gauss’s method of indexation into a table 
of p columns whose rows correspond to systems of imprimitivity: 
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Galois then argued that N = pn. More importantly, the above allowed the in-
troduction of n series of p indices for the indexing of the letters, and thereby to give an 
analytic representation to substitutions on pn letters into n series of p indices:  

                                                
31 Recall that even though the second memoir remained unpublished until 1846, its redaction is nevertheless anterior 
than the final version of the first memoir which two first versions have been lost after having been submitted to the 
Académie.  
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The general form of the letters will be  
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with ��
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�
� some indices that can take the p values 0, 1, 2, 3, ..., p −1 

[Galois, 1831a, p.426]. 

Substitutions on pn letters could then be represented by functions φ, ψ, χ, ...σ of the 
indices32: 

[...] in the group H, all the substitutions have the form 
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Galois then investigated further the case of primitive equations of degree p2. A 
cycle, or a “circular substitution” as he said following Cauchy, would have the follo-
wing form: 
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But then, Galois argued, because the substitutions of the group have to transform 
cycles into cycles, they must have a “linear form” : [Galois, 1831a, p.439] 
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Galois then successively computed the number of linear substitutions on p2 letters 
and looked for solvable “divisors” (i.e. subgroups) of the group by investigating subs-
titutions of the following form: 

� � �

� � �
������������ � � � � �� 

In the Analyse, Galois had already made it clear that the groups of orders p or p + 1 
formed by the above substitutions were related to the modular equations of elliptic func-
tions. We shall get back to this issue later. 

3.8 Galois’s number theoretic imaginaries 

The problem of the analytic representation of substitutions on pn letters is also 
related to the introduction of number theoretic imaginaries in a note Galois published in 

                                                
32 In modern parlance, the indices form a finite field of pn elements, which is introduced as a vector space of 
dimention n over the field Z/pZ 



 A history of Galois fields 211 

 

1830 in the Bulletin de Férussac33. The aim of the Note was actually to show that any 
system of pn indices could be reindexed “in analogy with” the indexing of p letters 0, 1, 
2,..., p − 1 by the roots 1, g, g2, ..., gp−1 of Gauss’s congruence xp 

≡ x(mod.p), i.e. by the 
iterated powers of a primitive root j of xpn 

≡ x(mod.p)34. We have seen before that in the 
case of a prime number p, such reindexations allow to pass from one form of repre-
sentation of cycles, (k k + 1), to the other (k gk), and thus play a key role in Galois’s cri-
terion. As a matter of fact, Galois presented his note on number theoretic imaginaries as 
a “lemma” for the investigation of primitive substitutions on pn letters. [Galois, 1832, 
p. 410] 

Let 

f (x) ≡ 0 mod(p) 

be an irreducible higher congruence of degree n. As was common at the time, Galois 
legitimized the introduction of imaginary roots j by appealing to the analogy carried on 
by the process (of factorization) used for the case of ordinary equations35. He expressed 
the rational functions of the roots as “general expressions” 

�
����

� �
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(with a, b, ... mod. p) and first proved that these pn “algebraic quantities” could be con-
sidered as the roots of 

xpn 

≡ x mod(p) 

Reciprocally, he argued that the roots of the latter equation “all depend on one con-
gruence of degree n”. [Galois, 1830b, p.399-402] 

The conclusion of the Note was devoted to the characterization of solvable primi-
tive equations of degree pn [Galois, 1830b, p.405]. The roots xk of such an equation 
could now be indexed by the solutions of the congruence 

kp
n 

≡ k(mod.p) 

Galois then claimed that if any function of the roots invariable by the substitutions 
of the form 

(k (ak + b)pr 

) 

                                                
33 Before Galois, higher congruences had been considered in the “missing section eight” of Gauss’s Disquitiones 
Arithmeticae, [Frei, 2007] as well as by Poinsot [Boucard, 2011a]. 
34 In modern parlance, a Galois field GF(pn) is both an additive group, which can be represented as an n-dimensional 
vector space on Fp, and a multiplicative cyclic group of pn−1 elements.  
35 On these issues, see [Durand-Richard, 1996], [Durand-Richard, 2008]. 
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has a rational value, then the equation is solvable, and reciprocally. The proof was pre-
sented as a direct consequence of the decomposition of linear substitutions into a pro-
duct of the two forms of cycles, i.e. in the form a′(k + b′)p

r

: “those who are accustomed 
to the theory of equations will have no trouble seeing this”. [Galois, 1830b, p.406] 

As has been seen above, the proof Galois alluded to in the Note was given in the 
Mémoire for the case n = 1 by appealing to the decomposition of the analytic repre-
sentation of substitutions. This statement was generalized in 1832 to the substitutions of 
primitive solvable equations of degree pn, which Galois claimed, have the linear form :
[Galois, 1832, p.410] 

xk,l,m,..., xak+bl+cm+...+h,a′k+b′k+c′m+...+h′, a′′k+..., 

Yet, Jordan would contradict this claim in the 1860s in proving that Galois’s state-
ment is a necessary condition but not a sufficient one: in the case of pn letters, it is com-
pulsary to decompose further the analytic representation of linear substitutions. 

 

[Galois, 1830b, p.406] 

 

[Galois, 1830b, p.406] 

3.9 Generalities and applications 

As said before, the introduction of Galois’s Mémoire had laid the emphasis on a 
distinction between the “general principles” of a theory and its three “applications” to 
special classes of equations. [Galois, 1831b, p.417] These applications were discussed 
in more details in the famous letter Galois wrote to Auguste Chevalier in 1832. During 
the 20th century, most commentators have focused on Galois’s general principles. In 
this section, I would like to highlight the crucial role played by the three analytic repre-
sentations involved in Galois’s applications: 
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• The linear form in one variable  

(k ak + b) 

associated to the criterion for solvable equations of prime degree 

• The general linear form in n variables 

(k, l, m... ; ak + bl + cm+.., a′k + b′l + c′m +..., a′′k + b′′l + c′′m +...) 

associated to the investigation of solvable equations of composite degree 

• binary fractional linear substitutions 

�� � �

�� � �
������������� � ��� � �  

associated to the modular equations of the transformations of elliptic functions. 

The three applications were intrinsically interlaced with one another in the 
evolution of Galois’s investigations. They were not limited to applications but played 
also the role of special model cases for the general principles of the Mémoire. Each ap-
plication modelled a special form of decomposition of a group. 

First, as Galois would make it clear in his letter to Chevalier, the “simplest 
decompositions are the ones of M. Gauss” by which the investigation of solvable transi-
tive equations of composite degree was reduced to the one of solvable primitive equa-
tions of prime power degree. But, wondered Galois, “what are the decompositions that 
can be practiced on an equation that Gauss’s method would not simplify?” [Galois, 
1832, p.409] As has been seen above, the decomposition of primitive equations of pn or 
p degrees was modelled on the decomposition of linear substitutions into the two forms 
of representation of cycles. Recall that there was no clear concept of factor group yet. In 
the reduction of (ak + b) into two cyclic substitutions, the two analytic forms (k k + 1) 
and (k gk) provided a model for the operations involved in composition series. It was on 
this model that Galois stated that the substitutions of primitive solvable equations of 
degree pn had to have the linear form 

��������� �� ��������������������������
�������. 

The “proper decomposition” had been modelled on the traditional use of auxiliary 
equations xp = a in issues of solvability by radicals (and therefore of the binomial 
equation xn

−1 = 0). This situation may be illustrated by propositions II and III of the 
Mémoire. The first described the proper decomposition of a group relative to the 
adjunction of a root to an equation. The second stated that if “one adjoins to an equation 
all the roots of an auxiliary equation, the groups of theorem II would have the additional 
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property of possessing the same substitutions”. [Galois, 1846, p.423-425] But this pro-

position had been previously stated differently. Its original formulation was that if one 

considers all the p − th roots of unity to have been adjoined to an equation, then the 

same decomposition of the original group would originate from the adjunction of any of 

the root of xp = a. In that case, the adjunction of a root would imply the adjunction of all 

roots, i.e. the situation to which the proposition III had been generalized afterward. 

Moreover, the issue of the reduction of the degree of the modular equations gave 

an example of improper decomposition, i.e. of non-normal subgroups of a group. 

[Galois, 1832, p.408] According to Galois, the difference between improper and proper 

decompositions was the difference between adjoining one root or all the roots of an au-

xiliary equation to an equation. Galois’s auxiliary equations could involve non-solvable 

equations on the model of the reduced modular equations. In 1832 Galois indeed 

claimed he had not focused all his attention on solvability by radicals but had also in-

vestigated “all possible transformation on an equation, whether it is solvable by radicals 

or not”. [Galois, 1832, p.408] 

The general quartic, and quintic had also played the role of model cases for 

Galois’s investigations. [Galois, 1846, p.428, 433] But it must be pointed out that all the 

“applications” were pointing to the legacy of Gauss, while general equations were 

related to the legacy of Lagrange. The two legacies of Gauss and Lagrange did not play 

the same role in the Mémoire. In short, and on the one hand, three forms of decom-

positions had been modelled on Gauss’s equations. On the other hand, Lagrange’s 

legacy was related to the consideration of the number of values of rational functions of 

the roots under the action of substitutions, a problem that would become one of the 

main lines of development of the theory of substitutions. We shall get back in more 

details to this issue in discussing Jordan’s 1860 thesis. 

In a word, we have seen that Galois’s general principles of decompositions of 

groups had been modelled on the decomposition of the three analytic forms of repre-

sentations associated to Galois’s three applications. Moreover, this model-role played 

by the polynomial decomposition was not limited to the investigations on equations. A 

same analytic representation can indeed be used for expressing various objects in dif-

ferent branches of mathematics, such as analysis, algebra, or arithmetics. Such repre-

sentations, and their associated operatory procedures can thus support some analogies 

between various issues. In the first page of his “Mémoire sur les fonctions elliptiques”, 

Galois appealed to the permanence of a same analytic form for transferring his works on 

equations to investigations on complex functions: 

In a memoir on the theory of equations I have shown how one can solve an 
algebraic equation of prime degree m whose roots are x0, x1, x2, ..., xm−1, 
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when one suppose known that the value of a function of the roots that 
remains invariable by substitutions of the form (xk, xak+b). But it happens, by 
a chance I did not expect, that the Method I proposed in my memoir can be 
successfully applied to the division of an elliptic function of the first class 
into a prime number of equal parts. [Galois, 1962] 

 

3.10 The analytic representation of substitutions and the various forms of receptions 

of Galois’s works 

This section aims at providing a brief overview of the different lines of develop-
ments of Galois’s works in the 19th century. 

The analytic representation of substitutions had circulated with both Galois’s 
applications and general principles. Even at the turn of the 20th century, in a textbook 
such as Weber’s Lehrbuch der Algebra – which as often been celebrated for the novelty 
of its presentation –, the two analytic forms of cycles still played a key role in the con-
clusion of the presentation of Galois theory. [Weber, 1896, p.637] 

Yet, apart from Enrico Betti’s and Jordan’s systematic comments on Galois’s 
works, the three applications were not usually presented together in the framework of a 
comprehensive theory. The three analytic representations associated to these appli-
cations thus provide some indications on the different lines of development in which 
Galois’s applications were involved. 

Actually, in contrast with works such as Cauchy’s 1844-46 papers on substitutions, 
[Cauchy, 1844] [Cauchy, 1845] the focus on the decomposition of analytic repre-
sentations was specific to the works which referred to Galois. Let us illustrate this si-
tuation by alluding briefly to the works of Betti and Hermite36. 

                                                
36 Unlike Galois’s decompositions, Cauchy composed the “conjugated system” of substitutions by the two forms of 
cycles (i.e. the linear group) but for the sole purpose of computing its order and with no interest in the analytic form 
of the resulting substitutions.
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In 1852, Betti had begun his commentary on Galois with representing substitutions 
(xk xφ(k)) by a bijective function φ (with the indices k either integer mod. p. or Galois 
imaginaries). As has been seen before, finding all the possible expressions of such func-
tions was later identified as the problem of the analytic representation of substitutions. 
Betti had nevertheless not given any specific expression to φ until he had discussed 
Galois’s notion of decomposition of a group. Following Galois in 1830 and preceding 
Jordan in 1860, Betti had then raised the issue of determining the “maximal multiplier 
of a group,” i.e. the last step of a decomposition. [Betti, 1852, p.45] For the case of a 
prime number of letters, this group was generated by cycles of form (xk xk+1) or (xk xgk), 
while the composition of both forms generated the linear form (xk xak+b). As in Galois’s 
criterion, Betti’s analytic representations were thus interlaced with some specific proce-
dures of decomposition of linear substitutions. 

Hermite’s first public reference to Galois in 1851 occurred in a paper that suc-
ceeded Puiseux’s 1850 “Recherches sur les fonctions algébriques”. In both the 
framework of Cauchy’s complex analysis and of Hermite’s 1844 investigations of the 
division equation of abelian functions, Puiseux had considered algebraic functions 
f(z,w) = 0 on the complex plane37. He had shown that in the neighbourhood of any point 
z0 which is not a branch point, the roots w1,w2,...,wn can be expended as convergent 
power series in z−z0. If one makes z move on a closed circuit avoiding the branch 
points, the roots are permuted by a system of substitutions (i.e. the monodromy group of 
the equation), which Puiseux had investigated by appealing to Cauchy’s representation 
of cycles. [Puiseux, 1850, p.384] In 1851, Hermite responded to Puiseux by repre-
senting analytically the substitutions involved for stating a criterion of the solvability 
for equations with parameters, analogous to Galois’s criterion. Hermite indeed stated 
that for equations of a prime degree, “the necessary and sufficient condition for the sol-
vability by radicals is that all the functions of the roots invariant for the substitutions of 
the following special form 
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are rationally known”. [Hermite, 1851, p.461] On the model of the proof of Galois’s 
criterion, Hermite’s proof was based on the decomposition of the above form into pro-
ducts of 

��

����
 

                                                
37 The polynomial f(z,w) in w is irreducible in the field of rational functions of z. 
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Let us now caracterize the various lines of developments of Galois’s three appli-
cations 

3.10.1 The form (k ak + b) 

 

Serret’s Cours d’algèbre supérieure, 1866 

 

Netto’s 1882 textbook on substitutions 

References to Galois’s criterion have been one of the principal form of references 
to Galois’s works until the end of the 19th century. This situation is directly the conse-
quence of Liouville’s presentation of Galois’s achievements in 1846. As a matter of 
fact, references to the criterion eventually diseappeared when Liouville’s Avertissement 
was replaced by Picard’s introduction to the 1897 reprinting of Galois’s works. 

In the Avertissement to the 1846 edition of Galois’s works, Liouville had claimed 
that Galois had laid the grounds for a “general” theory of the solvability of equations by 
radicals. It is well known that he did not comment further on the content of such a gene-
ral theory. But Liouville had nevertheless celebrated “Galois’s method” through its 
“particular” use for the proof of the criterion. Following Liouville, the presentation of 
the criterion as a particular application of a general theory of equations dominated 
public discourse on Galois’s works until the mid-1890s. Liouville’s presentation of 
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Galois was in fact reproduced word for word in publications targeting larger audiences 
than specialized mathematical journals, e.g., the 1848 biography of Galois in the Maga-
sin encyclopédique or the many notices that would be published in several encyclopedic 
dictionaries. 

But the citation of Liouville citing Galois could also be found in Serret’s Cours 
d’algèbre supérieure. Despite the fact that the first edition of 1849 had made almost no 
use of Galois’s works, its introduction presented Galois’s criterion as the endpoint of a 
longue durée history of the “theory of equations” involving Cardano, Lagrange, Ruffini, 
and Abel among others. [Serret, 1849, p.1-4] In 1854, Serret’s second edition included 
two additional notes relative to the criterion. The first consisted of a translation of 
[Kronecker, 1853] involving a discussion on Galois’s theorem with regard to Abel’s ap-
proach. The second was a new proof of the criterion by Hermite. 

Serret would include a presentation of Galois’s general theory of equations in the 
third edition of his Cours in 1866. The criterion would then be presented as the con-
clusion of the theory. Apart from Jordan’s Traité and Klein’s Icosahedron, the solvable 
prime degree “Galois equations” – or “metacyclic equations” – would conclude most 
presentations of Galois theory until the turn of the century, e.g. [Netto, 1882, p.278], 
[Bolza, 1891], [Borel et [Drach, 1895, p.334], [Vogt, 1895, p.188],[Weber, 1896, p. 
597,648], [Picard, 1896, p.481], [Pierpont, 1900]. 

3.10.2 The form ������
����

 

 

[Hermite, 1859] 

Unlike textbooks, papers published in specialized journals rarely referred to the 
criterion. When Hermite first referred to Galois publicly in 1851, he already expressed 
his interest in the cases in which the degrees of the modular equations could be reduced, 
a problem Betti would investigate in 1853. In 1858-1859, Hermite would appeal to 
Galois’s works again at the occasion of the series of papers in which he would use the 
modular equation to provide an analytic expression of the roots of the general quintic 
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through elliptic functions.
38 The reduction of the degree of modular equations, as Her-

mite said, “depends on a deeper investigation of the substitutions”: [Hermite, 1859, 
p.58] 

����

����
. 

Following Hermite, Serret and Mathieu considered linear fractional substitutions 
with number-theoretic imaginaries as variables in 1859. 

From this point on, Galois’s third application was usually referred to in connection 
to the works of “Galois-Betti-Hermite.” This became one of the main types of reference 
to Galois in the second half of the century, both in periodical specialized publications 
and in treatises such as [Jordan, 1870], [Briot et Bouquet, 1875], [Klein, 1884] and 
[Klein et Fricke, 1890]. At the turn of the 1870s-1880s, the expression “Galois groups” 
was used by Klein and his followers for designating the groups associated to the three 
modular equations. Later on, at the Chicago congress of 1893, Joseph Perott still 
designated the group of order 660 of the modular equation of order 11 as the Galois 
group, while, as has been seen above, Moore aimed at generalizing the Galois groups by 
introducing abstract Galois fields. 

This situation highlights that the reception of Galois’s works has never been 
limited to the strictly algebraic framework of the theories of equations or substitutions. 
On the contrary, most early interpretations of Galois’s works were connected to issues 
in complex analysis (monodromy) and number theory (arithmetical properties of elliptic 
functions). In this context, Galois’s works have been especially connected to the 
investigation of the types of “irrational” quantities defined by classes of algebraic 
equations, which are non solvable by radicals. Recall that Abel’s proof of the impos-
sibility to solve the general quintic by radicals had not been considered by most authors 
as the conclusion of a long history, one that should give rise to the new algebraic 
perspectives of Galois theory. On the contrary, several mathematicians generalized the 
traditional problem of the expression of the roots of the general equations of degree 2, 3, 
or 4 to the one of finding the simplest functions that express the roots of higher degree 
equations. The works of Betti, Hermite, Kronecker, and Francesco Brioschi on the 
general quintic are representative on this situation, as well as Klein’s later approach on 
the icosahedron. Moreover, even Jordan’s Traité, which as often been celebrated as the 
starting point of an autonomous theory of groups, actually presented Galois’s general 

                                                
38 See [Goldstein, 2011]. 
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principles in a section entitled “On the irrationals” which developed applications to 
arithmetics, analysis, and geometry39. 

3.10.3 The general linear form in n variables 

 

Galois’s letter to Auguste Chevalier 

Galois’s treatment of primitive equation of degree pn had had few echoes until the 
mid-1860s. In 1852, Betti had followed Galois in extending his investigations to groups 
of prime power order and therefore to n-ary linear substitutions. In 1856, Alexandre 
Allégret had published two notes with the aim of generalizing Galois’s criterion to 
equations of composite degree. Referring to the works of Kronecker, Betti, and Pierre-
Laurent Wantzel, he had considered the “group of linear substitutions defined by 
Galois” in connection to congruences and cyclotomic equations. The interest Allégret 
had for groups was nevertheless not shared by most of the authors who dealt with subs-
titutions at the time. 

In the first note related to Galois that Jordan addressed to the Comptes rendus in 
1864, the latter reactivated the issue of the determination of solvable equations of prime 
power degree. His aim was to lay the emphasis on his “method” whose “essence” was 
to “reduce” a group into a “chain” of subgroups. Jordan indeed argued that the problem 
had to be reduced further than Galois’s two-step decomposition of solvable transitive 
equations, to primitive equations with linear substitutions. One thus had to devote spe-
cific attention to linear substitutions. In the following years, Jordan repeatedly pointed 
out the incorrectness of Galois’s generalization of his criterion to pn variables [Galois, 
1830b, p.406], i.e. that the condition of linearity was sufficient for characterizing sol-
vable primitive groups: 

Galois claimed that that there is a single type of primitive equations that are 
solvable by radicals [...]. The statements [I made] above show that one has to 
make an assertion almost opposite to [Galois’s] claim. [Jordan, 1868, p.113]. 

                                                
39 On this aspect of Jordan’s treatise, see [Brechenmacher, 2011].
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Most of the second section of Jordan’s 1870 Traité dealt with the problem of 
characterization and classification of subgroups of GLn(p), while most of the huge final 
fourth section investigated the roles played by general linear groups in the chain re-
duction of solvable transitive groups. 

Yet, the n-variable generality of Jordan’s approach on linear groups was not taken 
on by most later presentations of the theory of substitutions. [Netto, 1882], [Klein, 
1884], [Klein et Fricke, 1890], [Bolza, 1891], [Borel et Drach, 1895], [Weber, 1896], 
[Picard, 1896], [Pierpont, 1900] focused rather on the binary linear and fractional linear 
substitutions associated with solvable equations of prime degree and with modular 
equations. 

For the purpose of understanding how this approach eventually reappeared in con-
nection to Moore’s congress paper in 1893, we shall now look in greater details into 
Jordan’s works in the 1860s. 

4. Jordan’s general linear group 

The focus on general analytic representations in n variables is a strong 
specificity of Jordan’s works. As has been seen above, most of his con-
temporaries focused on linear forms in one variable (k ak + b) or linear 

fractional substitutions (k 
����

����

 ). Yet, Jordan had introduced the general 

linear group before he had started studying Galois’s works40. As we shall see 
in this section, Jordan had indeed inscribed his 1860 thesis in the legacy of 
Poinsot’s “theory of order.” 

4.1 The origin of the linear group 

One of the two theses Jordan had defended in 1860 was devoted to the problem of 
the number of values of functions. This problem is one of the roots of the theory of 
substitutions. It developed from some works in the 18th century that connected the sol-
vability by radicals of an algebraic equation of degree n to the number of values that can 
be obtained by a resolvent function of n variables (see annex 2 for a few examples). 
Recall that in the 19th century, substitutions were usually not studied autonomously but 
rather through the investigation of functions of n variables, such as Lagrange’s “fonc-
tions semblables” that are invariant for a substitutions group. These functions not only 

                                                
40 As a matter of fact, Jordan acknowledged in a footnote of his thesis in 1860 that he had “discovered recently in the 
works of Galois the statement of the theorem” that he had concluded his thesis with, i.e., the order of Gln (p).  
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played a key role in Galois’s general principles but also in a variety of other works such 
as Hermite’s theory of quadratic forms or Poincaré’s theory of fuchsian functions. 

Given a function φ(x1, x2, ..., xn) of n “letters,” a “value” of φ was a function ob-
tained by permuting the variables, i.e., for any σ ∈ Sym(n), φ(xσ(1), xσ(2), ..., xσ(n)) was a 
value of φ41. In general, φ can take up to n! distinct values. Yet, it may happen that some 
of these values are identical. Jordan’s thesis aimed at identifying the number of values 
associated to some classes of substitutions groups. 

In 1860, the problem of the number of values of functions had been chosen as the 
topic of the Grand prix des sciences de mathématiques de l’Académie des sciences de 
Paris. Two young mathematicians devoted their first research work to this problem: Jor-
dan and Mathieu. Both appealed to Cauchy’s approach to substitution theory, which had 
especially highlighted the notion of “conjugate systems,” i.e. the equivalent of a subs-
titution group. 

The main result of Jordan’s thesis was the introduction of a type of “conjugate 
systems” of n-ary linear substitutions (i.e. Gln(p)) by a “method of reduction” of a “per-
mutation group.” Jordan’s notion of "permutation group” amounted to the simultaneous 
consideration of blocks of imprimitivity and substitutions groups. Unlike Galois, 
though, Jordan appealed to a precise distinction between permutation groups and con-
jugate systems of substitutions. In the introduction of his thesis, Jordan had explicitly 
attributed the notion of group to Poinsot. When the number of values of a function was 
less than n!, he had considered that a “symmetry occurred within the function” as an 
application of “what Poinsot has distinguished from the rest of mathematics as the 
theory of order”. [Jordan, 1860, p.3] According to Jordan, other examples of appli-
cations of this theory were Cauchy’s determinants, Abel’s works on the general quintic, 
as well as Galois’s works on “the conditions of algebraic solvability, the whole theory 
of equations considered in its full generality, and the classification of algebraic irra-
tionals”. When he first referred to Galois, Jordan thus aimed at stressing the generality 

                                                
41 This problem is tantamount to finding the possible orders for subgroups of the symmetric group. If φ takes only 
one value, then it is symmetric and can therefore be expressed as a rational function of the elementary symmetric 
functions. If x1,..., xn are the roots of an equation with coefficients on a given “rational domain”, this means that φ can 
be expressed as a rational function on the rational domain. To intermediary cases between 1 and n!, normal subgroups 
of the symmetric group can potentially be associated to φ by considering the set of substitutions leaving φ invariant. 
If φ takes, for instance, ρ distinct values φ1,φ2,..., φρ, these values can be considered as the roots of an equation of 
degree ρ whose coefficients are the symmetric functions of the initial variables. See also annex 2. 
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of the theory of order as opposed to “most geometers who have considered this question 
[of the many valued functions] in the aim of applying it to the theory of equations”42. 

Some previous works, such as Cauchy’s (1815, 1844-1846), Joseph Bertrand’s 
(1845) or Serret’s (1849), had aimed at stating some boundaries for the number of 
values of certain general types of functions43 while others, such as Hermite’s and Krone-
cker’s had focused on some special functions, such as a function of six variables that 
take exactly six values. Jordan emphasized the specific of his own work in regard with 
the ones of his predecessors in claiming to have developed a “general approach” to the 
problem through its “successive reductions” to “sub-problems.” One may recognize in 
this claim the traditional definition of the “analysis” in mathematics. Yet, Jordan’s re-
ductions were not limited to a general heuristic for solving problems. His reductions 
consisted in decomposing simultaneously the sets of letters into blocks and the subs-
titutions groups into subgroups. Jordan’s reductions were thus intrinsically interlaced 
with some specific algebraic procedures of decomposition of analytic representations. 

Jordan’s thesis was organized on a two-step reduction of the general problem of the 
number of values of functions. First, a general transitive system of substitutions was re-
duced to a substitutions group T of pn letters (i.e. a primitive quotient group). The issue 
at stake was to index the letters by n sequences of p integers (1, 2, ..., p) in order to 
represent the substitutions analytically. The letters were thus reorganized into the “im-
primitive system,” represented below as a succession of lines (that we shall denote as 
Γ1, Γ2,...,Γm), and on which the substitutions operated by permuting either the letters in a 
same line or the lines themselves : 

a1 a2 ... ap  

b1 b2 ... bp  

c1 c2 ... cp  

.    .  …  . 

Second, the substitutions of T were decomposed into “primitive” systems, i.e. into 
the case in which it is not possible any more to decompose the system of letters into 
several lines Γ1, Γ2,...,Γm as above. Jordan’s key argument here was to show that the 
substitutions operating on imprimitive systems of letters can be decomposed into two 

                                                
42 Similar claims about the generality of a broad framework related to both symmetry and groups could be found in 
the contemporary writings of Théodore Despeyrous, [Despeyrous, 1861, p.417] another follower of Poinsot. Unlike 
Jordan, Despeyrous nevertheless never attributed any role to Galois as regards permutation groups. 
43 For instance, at the beginning of the century, Ruffini and Cauchy had stated that the number of values that a non-
symmetric rational function of 5 variables attains cannot be lesser than 5 unless it is 2.  
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“species” of substitutions, which correspond to the two analytic representations of 
cycles. 

• On the one hand, inside each block of imprimitivity Γi, the letters were 
cyclically substituted by first species of substitutions (x x + a) on the indices. 
In the general case of letters indexed by n indices ax,x′,x′′,... these substitutions 
take the form: 

ax+α mod.p, x′ +α′ mod.p, x′′ +α′′ mod.p, ... 

• On the other hand, the second specie (x,gx) of substitutions substituted 
cyclically the blocks Γ1, Γ2, ..., Γn themselves by operating on the indices by 
the multiplication of a primitive root g mod. p. In the general case of n in-
dices, these substitutions thus take the form 

ax+bx′ +cx′′ ...mod.p, a′ x+b′ x′ +c′ x′′ ...mod.p, a′′ x+b′′ x′ +c′′ x′′ ...mod.p. 

Thus, in exactly the same sense that powers of a primitive root composed each 
block Γ, the sequence Γ1, Γ2 ,..., Γm of the blocks could itself be considered as the cycle 
(or the orbit) of powers of Γ1. Each specie of substitution corresponded to one of the 
two forms of representation of cycles. Their products generated linear forms (x ax + b) 
with x ∈ Fpn , i.e. if x = (x, x′, x′′, ..., x(n)): 

Theorem 2 Jordan’s first theorem 

• The number of letters in primitive systems is the power of a prime number 
pn.  

• The analytic representation of the substitutions on these systems is linear: 

(x, x′, x′′...; ax + bx′ +cx′′ +...+d, a′x + b′x′ + c′x′′ +...+d′, a′′x + b′′x′ + c′′x′′ 

+…+ d′′,...)  

which can also be noted by: 
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Jordan named “linear group” the group “originating” from this procedure of 
reduction. In modern parlance, Jordan’s first theorem and its proofs boil down to 
showing that the linear group is the maximal group in which an elementary abelian 
group (the cyclic group Fp

∗ in the case n = 1 or a direct product of cyclic groups in ge-
neral) is a normal subgroup44. In this sense, it generalizes to pn the proof involved in 
Galois’s criterion for the case n = 145. 

                                                
44 In modern parlance, the “groups of permutations” correspond to a decomposition of the field into blocks of impri-
mitivity under the action of an imprimitive substitution group which is itself decomposed into a primitive quotient 
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4.2 Jordan’s reduction of analytic representations 

We have seen that the main result of Jordan’s thesis is a theorem from which the 
general linear group originates. As a matter of fact, this group was not defined by a list 
of axioms, as would be natural to mathematicians nowadays. On the contrary, the ge-
neral linear group originated from a chain of successive reductions of a general problem 
into sub-problems. Moreover, we have seen that linear substitutions were above all 
identified by their analytic representations. The reindexation of the letters based on the 
two different analytic representation of cycles played a key role in the procedure of re-
duction of linear groups, which was explicitly presented as modelled on Poinsot’s refor-
mulation of Gauss’s decomposition (see the numerical examples in annex 1). From the 
retrospective point of view of Jordan’s 1860 thesis, the Gauss-Poinsot method consisted 
in dividing the letters into groups, each of the same cardinal pn, while systems of 
substitutions T were simultaneously partitioned into a “combination of displacements 
between the groups” [i.e. blocks] “and of permutations of the letters within each of the 
groups” [i.e. blocks]. [Jordan, 1860, p.5] 

Jordan commented the reindexation underlying his reduction in analogy with the 
reduction of a helicoidal motion into motions of translation and rotation. This implicitly 
referred to Poinsot. Moreover, he eventually appealed to the legacies of Gauss and Abel 
to claim that what could be designated as the unscrewing of the method of reduction of 
groups was the “very essence” of his approach: 

One could see an image of this result in the theorem of mechanics that 
reduces the general motion of a solid body to a motion of translation com-
bined with a rotation around the center of gravity [...]. This principle of 
classification of letters in various groups is the same as the one Gauss and 
Abel showed the fertility in the theory of equations: to my opinion, this prin-
ciple is the very essence of the question, it lays the ground for all my analysis. 
[Jordan, 1860, p.5] 

The question of how Jordan accessed Poinsot’s works is open. But the echoes 
between Galois’s decomposition and Jordan’s early works might have been the con-
sequence of a perspective on Gauss and Lagrange that Poinsot, Galois, and Jordan had 

                                                                                                                                          
group. Let G be a transitive group operating on a set V. A subset V1 of V is called a block of imprimitivity if V1 ≠ ∅ 
and for every g ∈ G, either V1g=V1 or V1g ∩Vi =∅. If V1 is such a block and V1,V2, ..., Vm are the distinct sets V1g for g 
∈ G, then (V1, V2,..., Vm) is a partition of V. G is said to be imprimitive if there is no trivial proper block. G is 
primitive if it is not imprimitive. See [Neumann, 2006] for a discussion on primitivity in Galois’s works. On the roles 
played by primitivity in Jordan’s classification of solvable transitive groups, see [Brechenmacher, 2006, p.195-202]. 
45 Later on, Jordan would devote a key chapter of his 1870 Traité to the “origin” of the linear group. Yet, this origin 
would be presented differently than in Jordan’s 1860 thesis through a generalization of the proof of Galois’s criterion, 
i.e. as a response to the problem of finding the analytic form of the maximal group T in which the group of sub-
stitutions (k, k’, ... , k

(n) ; k + a, k’ + a’ ,...,k(n) + a(n)) (i.e., Fpn∗) is a normal subgroup. 
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shared. It was indeed in the framework of the reduction of imprimitive groups to primi-
tive groups on the model of Gauss’s decomposition that the general linear group had 
originated from the two forms of representations of cycles in the works of both Galois 
and Jordan. 

Jordan first commented on Galois in the seven-page supplement he added to his 
thesis in the memoir he sent to the Académie for the Grand Prix of 1860. He immedia-
tely focused on Galois’s distinction between imprimitive and primitive equations. More 
importantly, he began to consider later steps of reduction that would thus resort to other 
forms of decomposition (i.e. into normal subgroups). Jordan’s deep investigations on 
the decompositions of the general linear groups into subgroup would culminate in his 
Traité of 1870. The procedures of reductions of the analytic representations of linear 
substitutions played a key role in these investigations. They actually gave rise to a very 
general practice of reduction of a problem into a chain of sub-problems that Jordan 
applied to various issues, such as crystallography, complex analysis, geometry, or dif-
ferential equations. 

4.3 The Jordan canonical form theorem 

The statement of the Jordan canonical form theorem between 1868 and 1870 
exemplifies the crucial role played by reductions of the analytic representations of subs-
titutions in Jordan’s works. This theorem also highlights once again the model-role 
played by the decomposition of the linear form into the two analytic representations of 
cycles. In his investigations of the general linear groups, Jordan aimed at reducing any 
linear substitution on Fpn into an analytic “form as simple as possible”. We have seen 
that in the case of one variable, the substitution (x ax + b) can be easily decomposed 
into two cycles (x gx) et (xx+1). Yet, such a decomposition cannot be directly gene-
ralized to the case of n variables. In modern parlance, a matrix of n lines and n columns 
can only be decomposed to a sequence of operations of the type (x gx) if this matrix can 
be diagonalized. 

Let first consider the special case of linear substitutions on p2 letters (i.e. in 2 
variables) that Jordan investigated in details in 1868 (thereby following Galois’s second 
memoir). The determination of the simplest analytical forms was based on the poly-
nomial decomposition of an equation of degree 2 (the characteristic equation of a 
matrix, in modern parlance). If this equation has two distinct roots, the letters can be 
reindexed in two blocks in such a way that the substitution is simply acting as a 
multiplication on each block46, i.e. by multiplying the indices by α and β if the two roots 

                                                
46 In modern parlance, one decomposes a vector space of dimension 2 into two subspaces each of dimension 1. 
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are real, or by α + βi, α+βip (with i2 
≡ 1mod(p)) if the roots are two conjugated imaginary 

numbers: 

� ��

� �� �
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� ��� �����
 

Yet, if the characteristic equation has a double root, the substitution cannot be 
reduced to operations of multiplication as above, unless it is a trivial homothety. In the 
general case, the canonical form involves a combination of multiplications and ad-
ditions: 

�  �

�  � �  �  

In Jordan’s Traité, the canonical form was generalized to n variables in Livre II and 
was used in Livre IV for reducing n-ary linear groups on the model of the groups of 
order n = p2. Later on, Jordan would appeal frequently to reductions of substitutions (in 
GF(pn) or �) in his works on groups, differential equations, algebraic forms, etc. 

Theorem 3 Jordan’s canonical form theorem 

This simple form 
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to which one can reduce the substitution à A by an adequate choice of indices, 

will be designated 

as its canonical form. [Jordan, 1870, p.127] 

4.4 The architecture of Jordan’s Traité 

Let us now sketch a brief overview of the architecture of Jordan’s Traité. We shall 
see that, even though Jordan’s first theorem is scattered into pieces in the four sections 
of the treatise, the practice of reduction that lied beneath this theorem plays a transversal 
structuring role in the whole Traité. This practice actually supports a chain of suc-
cessive generalizations that runs through the first three sections of the Traité until the 
“fundamental theorem” on the solvability of algebraic equation that opens Livre IV. 
This theorem then allows reversing this chain of generalizations into a method of 
successive reductions of general linear groups. 
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4.4.1  Livre I. On congruences 

The Traité begins with a presentation of the notions related to congruences that 
permit the indexation of letters and thus the analytic representation of substitutions. 
After a general pre- sentation of binomial congruences Xp 

−1 ≡ 0 mod.p in connection to 
the indexations of systems of p letters, Jordan turned to what he designated as the 
“Galois theory”. This designation does not correspond to the modern Galois theory but 
to the theory of Galois’s number theoretic imaginaries, which allows indexing systems 
of pn letters. Jordan’s presentation of this theory was modelled closely on the cyclotomy 
of the indexing of the primitive roots of Gauss’s binomal congruence, which he ge-
neralized to congruences Xpn 

− 1 ≡ 0 mod.p. Livre I thus introduces a special case of ana-
lytic representation of substitutions, that of the cycles (x x + a) et (x gx). 

4.4.2 Livre II. Des substitutions 

When they return in Livre II, Galois imaginaries play the role of a model case for 
later gener- alisations of the problem of the analytic representation of substitutions. The 
generation of the linear group is indeed presented as a generalisation of the special type 
of substitution underlying the indexing methods of Livre I, i.e. (x x + 1) or (x gx). 

Following a first chapter devoted to a general synthesis of previous works on 
substitutions (such as Cauchy’s, Serret’s, Bertrand’s or Mathieu’s), the second chapter 
on linear groups rep- resents the main part of Livre II. It opens with the problem of the 
analytic representation of substitutions, which “generates the linear group”. There, one 
may recognize an upside down presentation of Jordan’s first theorem: while, in 1860, 
the linear group originated from successive reductions of a general problem, in 1870 the 
same group was generated by a direct generalization of Galois’s criterion, i.e., from the 
problem of finding the analytic form of all the substitutions that leave invariant the 
following analytic form 

�� ���� � � � �� �� � ����  

In modern parlance, the above substitutions correspond to direct products of cycles 
(i.e., elementary abelian groups). The problem is thus tantamount to finding the analytic 
form of the substitutions g that turn such products of cycles c into another product of 
cycles c′: 

gcg−1 = c′ : 

g thus have to take the following “linear form”: 
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The proof is a direct generalization of the one given by Galois to his criterion. On 
this occasion, Jordan insisted that, in modern parlance, GF(pn) could either be 
represented as Fp(j) with j a root of xpn−1 

≡ 0, or as a direct product of copies of Fp (i.e. as 
a vector space over Fp). In the first case, GF(pn) is immediately associated to a mul-
tiplicative cyclic group generated by the substitution (x jx). 

4.4.3 Livre III. On irrationnalities 

The opening chapter of Livre III presents what would be nowadays considered as 
Galois Theory. However, the association between groups and equations is inscribed in 
the broader framework of a “General theory of irrationalities”. While the “Algebraic 
applications” (chap. II) to Galois’s theory of equations represents only a small part of 
Livre III, the emphasis is on “Geometric applications” (chap, III) and on “Applications 
to the theory of transcendental functions” (chap. IV). [Brechenmacher, 2011] In the 
present paper, I shall nevertheless focus on the chapter of “algebraic applications.” 

Jordan had first considered the “commutative groups” associated with Abel’s 
equations, whose roots are rational functions of one of them. Primitive abelian equa-
tions actually corresponded to cyclic groups, and Jordan quickly focused on the bino-
mial equations xn = 1 and the associated cyclotomic equation of degree n = pα (p an odd 
prime). All the roots can then be expressed by a primitive root ω, ω2,..., ωpα−1 

. The group 
of the equation is thus cyclic and generated by (x x + 1). But the roots can also be 
reordered by the use of a primitive root g of the congruence ��� � �� ���� i.e. by the 

following sequence corresponding to (x gx): �������� �� ����
���

�. 

Second “Galois equations” are introduced as generalizing Abel’s in three different 
ways. First, they are irreducible equations of prime degree p all of whose roots can be 
expressed rationally by two of them, an obvious generalization of the equations con-
sidered by Abel. Second, their groups are constituted of substitutions od the form (x ax 
+ b), i.e. those originating from the cycles of abelian equations. Third, a special case of 
Galois is given by xp

-A = 0, i.e. an obvious generalization of binomial equations. 

Galois’s equations could thus be understood as the result of a chain of genera-
lizations based onthe relations between number-theoretic imaginaries, cyclic groups, 
and linear groups. But from the standpoint of Livre III, the chain could now be con-
sidered the other way round. Indeed, the relation between abelian and Galois equations 
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provided an application of the reduction of a group by the “adjunction of irrationals to 
the [associated] equation”. Given a Galois equation, let φ1 be a function of the roots 
invariant by (x x+b). Recall that such substitutions form a normal subgroup of the group 
(x ax+b) (origin of the linear group). Let then φ1 be adjoined to the Galois equation: the 
group of the equation is then reduced to a cyclic group and the equation itself into an 
abelian equation; as for the group of the equation in φ1, it is composed of substitutions 
(x ax) and is then a commutative group too. The initial Galois equation has eventually 
been reduced to two abelian equations and its linear groups to two commutative simple 
groups. 

4.4.4 Livre IV. On solutions by radicals 

But the general theory of Livre III was itself a special model case for the next step 
of generalisation. Livre IV opens with two theorems, the first stating that abelian equa-
tions of prime degree are solvable by radicals, the second, that “an equation is solvable 
by radicals if and only if its solution can be reduced to the one of a sequence of abelian 
equations of prime degrees”. [Jordan, 1870, p.386] The reduction of Galois equations 
into abelian equations had thus incidentally proved Galois’s criterion. But Jordan did 
not state the criterion explicitly. The special case of the reduction of linear groups to 
commutative groups did not aim at imitating Galois’s criterion, but instead at the 
following theorem, which concerned any chain of normal subgroups with quotient 
groups that are abelian and that Jordan designated as “the criterion of solvability”: 

Theorem 4 Jordan’s fundamental theorem 

A group L is solvable if and only if it is possible to form a sequence of 
groups 1, F, G, H,..., L, such that, 1◦ each of these groups is included in the 
previous one and permutable to its the substitutions of L; 2◦any two of its 
substitutions are exchangeable one with another, up to the substitutions of the 
previous group. [Jordan, 1870, p.395] 

Jordan claimed his theorem laid the ground for a method by which one would “rise 
progressively to the knowledge of [solvable] groups,” i.e. the problem to which all the 
rest of the treatise would be devoted. By the use of this method, “each new step toward 
the solution will make the field of research narrower”47. [Jordan, 1870, p.396] 

Let us now come to some conclusions about the structure of the Traité. Recall that 
Jordan introduced the linear group as a generalisation of the special case of the cyclic 
substitutions associated with number-theoretic imaginaries. Later on, when the notion of 

                                                
47 Jordan distinguished between three types of problems: A. The reduction from maximal solvable transitive groups 
to maximal solvable primitive groups and thereby to B. Maximal solvable groups in Gln(p), which included the 
particular cases of C. Maximal solvable groups in Sp2n(p) or O+ (2) and 0− (2). See [Dieudonné, 1962].  
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a group of an equation had been introduced, the origin of the linear group could be con-
sidered as a model for the generalisation of cyclotomic equations to Galois equations. 
Special cases were both models for the general theory and applications of it. Each link 
in the resulting chain of generalisation was providing a “higher point of view” toward 
the previous links. In Livre IV, the relation between linear substitutions (x ax + b) on 
the one hand, and the two forms of representations of cycles (x x + 1) and (x gx) on the 
other hand, would eventually provide a model for the fundamental theorem. In a sense, 
this theorem crystallized the chain of generalisations that structured the Traité, and 
which could thus be reversed in turning special model cases into applications. For ins-
tance, Livre II’s origin of the linear group now appeared as a crucial step for the deter-
mination of solvable transitive groups. After having reduced the problem from solvable 
transitive groups to solvable primitive groups, Jordan indeed showed that a minimal 
normal subgroup A of a solvable primitive group G is commutative and isomorphic to 
sums of cyclic groups (i.e. of type (1, 1,..., 1) in modern parlance). But G is actually 
acting on A by linear substitutions: it therefore corresponds to the general linear group, 
originating from A. On thus recognize here a new presentation of the method of re-
duction underlying Jordan’s first theorem. 

The fundamental theorem indeed supported a chain of reductions from the most ge-
neral groups to the most special ones: transitive, primitive, linear, symplectic groups 
etc., until the simple cyclic groups. Most of Livre IV was actually devoted to this chain 
of reduction. 

The essence of my method consists in determining successively the partial 
groups F, G, H,.... [Jordan, 1864, p.963] 

The linear group played a crucial role in this chain of reduction. It was indeed the 
most general group the substitutions of which had an analytic representation. Moreover, 
Livre IV made constant use of procedures of decompositions of the analytic form of 
linear substitutions. 

5. A shared algebraic culture 

Let us now come back to the issues raised in the second section of this paper as re-
gard to Moore’s works on Galois fields from 1893 to 1896. We have seen that even 
though he obviously aimed at paying tribute to Klein, Moore had collided in 1893 with 
the tacit collective dimensions of a constellation of papers published in France in the 
19th century. We have seen also that Moore and his student Dickson had struggled to 
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access these collective dimensions, especially by appealing toJordan’s 1870 Traité. Yet, 
we are now able to develop a finer analysis of the situation than the one that is sug-
gested by national frames. Indeed, we have seen that Galois’s number theoretic ima-
ginaries had followed different lines of developments in France and abroad, in con-
nection with different uses of the analytic representation of substitutions. Let us re-
capitulate the various forms of interactions between number-theoretic imaginaries and 
substitutions we have analysed in this paper. 

5.1 Number-theoretic imaginaries and substitutions 

At the turn of the 1850s-1860s, Galois’s imaginaries were used as a way to extend 
analytic forms of substitutions from p to pn variables. Most texts actually dealt with bi-
nary linear fractional substitutions ([Hermite, 1859], [Serret, 1859], [Serret, 1865], 
[Serret, 1866]], [Mathieu, 1860], [Mathieu, 1861b], [Mathieu, 1861a]). Jordan never-
theless investigated general linear substitutions on n variables. 

On the one hand, authors such as Hermite had focused on the special substitutions 
attached to special equations, such as the one-variable linear representation (k ak+b) 
associated to Galois’s criterion, and more importantly the linear fractional represen-

tation (k
����

����

 ) attached to modular equations. Hermite eventually generalized his inves-

tigations on modular equations in 1863 in stating a necessary and sufficient condition 
for an analytic function to represent a substitution on pn letters. This approach laid the 
groundwork for most later presentations of the problem of the analytic representation 
until the turn of the century48 . (e.g. [Serret, 1866, p.383], [Jordan, 1870, p.88], 
[Netto,1882, p.140], [Borel et Drach,1895,p.306], [Dickson,1901,p.59]) Yet, it is clear 
that Hermite’s main interest remained focused on special equations. Recall that his 1863 
paper had systematically stated all the reduced forms of analytic expressions of substi-
tutions on 5, and 7 letters, a problem that Hermite had explored in 1858-1859 in connec-
tion to his investigations of the modular equations of order 5 and 7. Later on, most 
treatises presented the problem of the analytic representation of substitutions just before 
they introduced linear substitutions (i.e. the form generated by the two forms of cycles). 
Moreover, this presentation usually played the role of an intermediary between 
substitutions and equations. Following Hermite, all treatises, except Jordan’s, therefore 

limited themselves to the considerations of the substitutions (k ak + b) and (k 
����

����

 ) re-

lated to solvable equations of prime degree and to modular equations. 

                                                
48 In the introduction of his 1882 thesis, Edmond Maillet attributed to Hermite the introduction of the analytical 
notation (xk xφ(k)) itself [Maillet, 1892, p. 2].  
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On the other hand, we have seen that Jordan had developed a specific approach to 
general classes of solvable equations by dealing with general linear groups. The higher 
level of generality of Jordan’s groups was nevertheless problematic. A “general” de-
velopment was indeed supposed to be valid for all the objects under consideration, such 
as in Hermite’s 1863 paper that both stated a truly general result on the analytic repre-
sentation of substitutions in n variables and investigated special cases. On the contrary, 
Jordan’s n-ary linear substitutions did not provide any general solution to the problem 
of the number of values of functions for which they had been introduced. 

In the 1870s, Jordan’s general linear groups were explicitly criticized by Kronecker 
for their false generality and formal nature. [Brechenmacher, 2007] Indeed, Kronecker 
accused Jordan of having mixed up tools relative to the orientation he had given to his 
investigations (i. e. n-ary linear substitutions) with the inherent significations of “ob-
jects of investigation” (e.g. the number of values of functions, the analytic forms of all 
substitutions on 5 letters etc.). Following Kronecker, in his 1882 treatise on substi-
tutions, Eugen Netto did not consider general linear groups as a special type of group 
(in contrast with cyclic, abelian, metacyclic, and modular groups): they were limited to 
the object of investigation of the problem of the analytic representation of substitutions. 
[Netto, 1882, p.128-139] 

For decades Galois’s legacy opposed two approaches which both aimed at reaching 
the “essence” of mathematics. On the one hand, some authors, following Hermite and 
Kronecker, aimed at characterizing the special nature of general equations of a given 
degree. On the other hand, some others, following Jordan, focused on the relations 
between classes of solvable equations (or groups) of a general degree n. The two ap-
proaches were nevertheless both presented in Jordan’s Traité. The first approach was 
indeed included in the synthesis of the Traité’s Livre III on the types of irrational quan-
tities associated to types of equations. [Brechenmacher, 2011] The second went with 
Jordan’s specific practice of reduction. It structured the Traité in a complex chain of 
generalizations of special model cases. This approach had almost no circulation until it 
was developed in the 1890s in the Galois fields network. 

Recall that Moore’s 1893 investigations on linear fractional substitutions (k 
����

����

 ) 

were initially stemming from the first of the two above approaches, which Moore had 
learned from the Klein and Fricke textbook. Yet, in aiming at generalizing the groups 
attached to modular equations of order 5, 7, and 11 to n variables, his paper collided 
with the specificity of Jordan’s general linear groups. 
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5.2 Number-theoretic imaginaries as an autonomous theory 

We have seen that even though number-theoretic imaginaries were tightly linked to 
substitutions in Galois’s works, the latter presented his 1830 Note as an autonomous 
topic in number theory. In the 1854 edition of Serret’s Cours, Galois’s imaginaries were 
presented as the conclusion of a series of three lectures devoted to the theory of con-
gruences. Unlike the notion of primitive root of binomial congruences, they were not 
connected to cyclotomic (and abelian) equations or to the additional notes of Hermite 
and Kronecker on Galois’s criterion of solvability. Apart from a short note of [Allegret, 
1856], Galois imaginaries were not used again in connection with equations until the 
works of Jordan in the mid-1860s. When Dedekind started to develop his approach on 
higher congruences in 1857, he alluded to both the presentations of Theodor Schöne-
mann in the legacy of Gauss and Abel, and those of Serret in the legacy of Galois. 

In the third edition of the Cours in 1866, Serret went further, inscribing number-
theoretic imaginaries in a comprehensive theory of congruences. The presentation in-
cluded a development on integer polynomials modulo a “modular function,” [Serret, 
1865], [Serret, 1866] thereby following Cauchy’s approach to congruences rather than 
Galois’s. Serret’s approach was endorsed later by treatises such as [Jordan, 1870], [Bo-
rel et Drach, 1895], and [Vogt, 1895]. 

Yet, we have seen that Jordan’s presentation included Galois’s original approach in 
addition to Serret’s. Moreover, in Jordan’s Traité, Galois’s imaginaries could not be 
dissociated from substitutions theory: as in Galois’s works, both topics were interlaced 
through the issue of the indexing of letters and of the analytic representation of substi-
tutions, which gave rise to the investigations on the general linear group as originating 
from direct products of cyclic groups. Further, contrary to Serret’s approach, Jordan ap-
pealed to a traditional way of legitimizing the use of imaginaries by resorting to the ana-
logies carried on by “instruments of computation”: 

The consideration of the imaginary roots of irreducible congruencies intro-
duces itself naturally in my analysis, which would have certainly not been 
successful should have I hesited to adopt them. I would be pleased to have 
contributed by these examples to show the power of this new instrument of 
analysis, that some eminent geometers are still apparently considering with 
mistrust. [Jordan, 1867b, p.269] 

It is well known that Kronecker contested the legitimacy of such traditional presen-
tations of algebraic imaginaries. In his influential 1882 Grundzüge, he developed an ef-
fective presentation of the problem in the tradition of congruences of polynomial forms, 
as developed by Cauchy and Serret in France. 
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Despite Kronecker’s opposition, Jordan’s traditional perspective on Galois imagi-
naries continued to circulate, especially from Jordan to [Gierster, 1881], [Klein et 
Fricke, 1890], [Moore, 1893], and [[Burnside, 1894]. Moore’s 1893 congress paper es-
pecially illustrates that both Serret’s Cours and Jordan’s Traité were alternative refe-
rence to Kronecker’s theory in the 1890s. In the framework of Kronecker’s 1882 
Grundzüge, Serret’s “fonctions modulaires” should have been understood by Moore as 
“modular systems” on “domains of rationality”. As a matter of fact, Hölder resorted in 
1893 to Kronecker’s framework to formulate Galois imaginaries. [Hölder, 1893] In 
contrast with Kronecker’s legacy, the influence of Jordan’s approach can be seen in the 
parallel evolution of the works of Moore (and later Dickson) and Burnside. As shall be 
seen in the next section, both Moore and Burnside indeed investigated the same groups 
(i.e. PSl2(p), PSl3(p), PSlm(p), and eventually Gln(p)). Moreover, both stated indepen-
dently the same theorems. 

5.3 Jordan’s Traité as a Chicagoan textbook 

We shall now question how, in the context of the institutionalization of group theo-
ry in 1890s, Jordan’s Traité could have supported the discontinuous circulation of some 
specific algebraic practices from Paris in the late 1860s to Chicago at the turn of the 
20th century. 

We have seen that Moore had resorted to Klein’s mediation of a longstanding French 
tradition. But as for the circulation of either linear fractional substitutions or number-
theoretic imaginaries, Serret’s Cours played initially a much more important role than 
Jordan’s Traité. We shall see that this situation changed in the years following the Chi-
cago congress. 

In 1894-1895, Moore published two papers closely related to his 1893 lecture. The 
first connected the groups of automorphisms of an abelian group of order 23 and of type 
(1,1,1) to the simple linear group of 168 elements (i.e. PSl3(F2)). [Moore, 1894, p.65] 
As was already the case with Galois fields, Moore’s approach can be understood as 
shedding new light on older works. We have indeed seen that linear groups had been 
presented as originating from abelian groups of type (1, 1,..., 1) in Jordan’s Traité. 

This traditional dimension of the problem sheds light on the parallel works deve-
loped almost simultaneously by Moore and Burnside. About nine months before Moore, 
Burnside had indeed proven the more general result that the group of automorphisms of 
the abelian group of pn elements of type (1, 1,…,1) is isomorphic to GLn(p)49. [Burnside, 

                                                
49 Neither Moore nor Burnside referred to one another at that time and it is unclear if their works were independent or 
were actually competing. The introduction of [Burnside, 1896] seems to have aimed at contradicting [Moore, 1895] 
and [Moore, 1896] in claiming that the notion of the group of automorphisms of a group was not a new concept. In 
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1894, p.139] Exactly the same theorem constituted the core of Moore’s 1895 “Con-
cerning Jordan’s Linear Groups.” This paper was presented as a demonstration of the 
efficiency of Galois fields in group theory; it concluded with tables of primitive ele-
ments of Galois imaginaries that had been computed by Moore’s students. Amongst 
them, Dickson might have been already in charge of investigating the works of Mathieu. 
He had indeed identified that a group of substitutions on pn letters introduced in 
[Mathieu, 1861b] was isomorphic to GLn(p). Moore concluded, “this seems to be the 
source from which Mr Jordan’s linear groups were drawn”. [Moore, 1895] 

Dickson’s thesis would then especially investigate the relations between the works 
of Mathieu and Jordan. It ended with a proof that GLn(p) is isomorphic to the Betti-
Mathieu group, i.e., the set of all “quantics” (polynomials) of an analytic form φ(k) as 
follows that represent a substitution on GF(pmn) (considered as a vector space on 
GF(pn)): 

� � � ���
��

���

���

 

for each ai ∈ GF (pn) 

As a result, Dickson’s investigations raised some new interest in Mathieu’s works 
on multiply transitive groups on Galois fields. These groups indeed provided classes of 
simple groups and it was through their investigations that the notion of Galois field cir-
culated to the works of Miller and, from there, to the works of Séguier (1901-1904, see 
esp. [Séguier, 1904a]) and Frobenius (1902, 1904, see esp. [Frobenius, 1902]). 

Moreover, Dickson’s very close reading of Jordan’s Traité resulted in a flood of 
papers that systematically generalized results from linear substitutions on Fp to GF (pn 

)50. [Parshall, 2004, p.265] 

In Dickson’s 1901 monograph on linear groups, the theorem on the Betti-Mathieu 
group was the hinge between the first section on Galois fields, based on Hermite’s 1863 
approach on “substitution quantics,” i.e. the investigation of the analytic representation 
of substitutions of less than 11 variables, and the second section on Jordan’s n-ary linear 
groups. This new synthesis between the approaches of Hermite and Jordan acted as an 

                                                                                                                                          
1896 Moore sent to the London mathematical society a paper on the abstract definition of the symmetric group. Burn-
side introduced the paper he published on the same topic by claiming he had asked the Council of the society per-
mission to withdraw his communication given the “more complete” results stated by Moore. [Burnside, 1897a] Burn-
side would not refer to either Moore or Dickson in his 1897 treatise and the other way round with [Dickson, 1901]. 
50 The very close reading of Jordan by Dickson is illustrated by the latter’s adoption of terminologies which had al-
ready been much criticised such as the one of “abelian group” for what Hermann Weyl would designate as “sym-
plectic groups”.  
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impulse for the development of the Galois fields network both within the framework of 
the Chicago school and for other close readers of the Traité, especially in France. 

5.4 Linear groups in Galois fields : a shared algebraic culture 

Let us now get back to the issue of the collective dimensions of the Galois fields 
network. This network can now be understood as a shared algebraic culture. On the one 
hand, this culture was based on Serret’s presentation of Galois’s number theoretic ima-
ginaries as an autonomous topic and on Hermite’s approach to the problem of the ana-
lytic representation of substitutions. On the other hand, it was rooted on Jordan’s inter-
twining of Galois’s imaginaries with the reduction of the analytic representation of n-
ary linear substitutions. 

Jordan’s approach especially played a key role in the specificy of this algebraic 
culture as regard to some other contemporary works. It’s legacy can not only be traced 
in France in the works of authors such as Poincaré, Autonne, Maillet, Séguier, etc., 
[Brechenmacher, 2012a] but it also circulated in the U.S.A. after Dickson’s 1896 thesis. 

It was because they shared this culture that some French and American authors 
were able to interact with each others, even though most of them did not have any direct 
contact and did not share any social framework, as is exemplified by such different 
figures as de Séguier, an aristocrat jesuit abbot, and Schottenfels, one of the first women 
to graduate in mathematics at Chicago, or as Dickson, who had met with Jordan in 
person during his one-year student trip in Europe, and other Americans who had not 
developed a close reading of the Traité, such as Miller. 

Communication was nevertheless partial and was actually mostly limited to the 
shared algebraic practices mentioned above. Yet, this shared algebraic culture was suf-
ficient for texts to circulate between France and the U.S.A., to respond to each other, 
and even for controversies to detonate. A telling example is the new formulation that 
was given repeatedly and independently to Jordan’s “origin” of the linear group as the 
theorem stating that the group of automorphisms of an elementary abelian group A is 
the general linear group Gl(Fpn ). 

This theorem was, for instance, stated by Le Vavasseur in 1895. Given a root x of 
the congruence 

f(x) ≡ 0 

Levavasseur considered the Galois number theoretic imaginary 

j = α1 + α2x + α3x2 + ... + αnxn−1 

and formed the group of the n distinct operations 
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α1, α2, ..., αn 

as generated by a unique operation a: 
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This analytic formulation of the problem was sufficient for Miller to react promptly 
to Le Vavasseur’s note in claiming his priority by sending a note to the Académie de 
Paris. The discussion between the two went on with two other notes. Yet, this theorem 
had also been stated a few months earlier by Burnside and Moore. And it would be 
stated again a few months later by Dickson and Séguier. As has been seen in the pre-
vious section, the issue at stake had a long background in the context of the problem of 
the number of values of functions. Authors such as Le Vavasseur, Miller, Moore, Dick-
son or Séguier shared a same basis of sources even though they also had divergent in-
dividual agendas and belonged to various social spaces. 

5.5 A space of circulation of specific practices of reductions of analytic 

representations 

The network of texts that revolved around “Jordan’s linear groups in Galois field” 
at the turn of the 20th century had thus underlying it a shared algebraic culture. In this 
section, we shall discuss further the procedures of reductions of the analytic forms of 
substitutions that were at the root of this shared culture. 

The growing importance of linear groups was a large-scale trend at the turn of the 
20th century. Yet, in the early 1890s, “linear groups” usually designated the groups of 
binary or ternary unimodular fractional linear substitutions Klein and his followers had 
investigated (i.e. PSL2(p) and PSL3(p)). Even though Klein’s linear groups would still 
play an important role at the turn of the century, [Wiman, 1900] some collective interest 
in Jordan’s general linear groups in Galois fields emerged by that time. A telling exam-
ple is the adoption of the term “special linear groups” for designating what used to be 
“linear groups” in the early 1890s. 

The label linear groups was thus far from pointing to a unified category at the turn 
of the 20th century. For instance, Weber’s influential Lehrbuch der Algebra introduced 
homogeneous linear groups of n variables by appealing to the analytic form of n-ary 
linear substitutions. But it nevertheless only stated a few general properties before fo-
cusing on special groups such as PSL2(p). In contrast, Dickson’s 1896 thesis followed 
Jordan in introducing Gln(p) as the maximal group in which an abelian group of type 
(1,1,..,1) would be a normal subgroup. The second part of the thesis was then devoted to 
generalizations of Jordan’s results from Fp to GF (pn ). 
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Moreover, various ways of dealing with linear substitutions had parallel circu-
lations until the constitution of linear algebra as a discipline in the 1930s. [Brechen-
macher, 2010] Amongst these, the most influential approach was based on Frobenius’s 
1877-1879 presentation of the theory of bilinear forms. This approach appealed to 
symbolic methods and to computations of invariants by determinants such as Weier-
strass’s elementary divisors. [Hawkins, 1977] It incorporated the notion of matrix in the 
1890s, and played a key role in Frobenius’s representation theory. [Brechenmacher, 
2006, p.279-461] 

But the main protagonists of the Galois fields network shared an alternative ap-
proach based on Jordan’s reduction of a linear substitution to its canonical form. This 
collective attitude has to be regarded as an important specific feature of the Galois fields 
network. Jordan’s canonical form did indeed embody the method of reduction we have 
seen to be specific to Jordan’s relation to Galois. It especially resorted to the unscrewing 
into the two forms of actions of cycles (k gk) and (k k + a) which it assimilated to issues 
involving n variables. Yet, Jordan’s canonical form theorem had almost disappeared 
from the public scene since it had been strongly criticized by Kronecker a few years 
after it had been stated. [Brechenmacher, 2007] Kronecker not only rejected the formal 
generality of Jordan’s linear groups, but also criticized the non-effectiveness of the ca-
nonical reduction, which required the determination of the roots of arbitrary algebraic 
equations. Moreover, Frobenius not only presented Jordan’s canonical form as a corol-
lary of Weierstrass’s elementary divisor theorem, but also insisted that the validity of 
Jordan’s form was limited to the case when one would allow the use of “irrationals” 
such as “Galois’s imaginary numbers.”[Frobenius, 1879, p.544] In contrast, the refor-
mulation Kronecker had given to Weierstrass’s theorem in 1874 was based on a rational 
method of computations of invariants in any “domain of rationality” (i.e. the invariant 
factors of matrices in a principal ideal domain). 

During the 1880s and 1890s, Jordan’s canonical form had an underground circu-
lation in the works of authors such as Poincaré or Élie Cartan, where it was neither con-
sidered as a theorem nor attributed to Jordan. [Brechenmacher, 2012a] On the contrary, 
it circulated in plain sight at the turn of the century. Much work would be devoted to 
making some procedures of matrix decomposition explicit that had never been con-
sidered as mathematical methods per se until then ([Burnside, 1899], [Dickson, 1900], 
[Dickson, 1902], [Séguier, 1902], [Autonne, 1905], [Séguier, 1908]). Moreover, Séguier 
and Dickson would both publicly challenge the traditional structure of the theory of bili-
near forms ([Séguier, 1907], [Dickson, 1928]). Later on in the 1930s, decompositions to 
canonical forms would lay the ground for expositions of the theory of matrices, such as 
the ones of Cyrus Colton Mac Duffee a student of Dickson. [Mac Duffee, 1933] 
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Poincaré1884   Autonne 1905  Dickson 1901 

In a word, the Galois fields network had underlying it a shared algebraic culture 
based on the space of circulation of key algebraic practices of Jordan’s Traité. The use 
of the terminology “practice” here aims at highlighting the fact that reducing a substi-
tution to its canonical form was not limited to a computational process. Unlike the static 
nature of the invariants of the Frobenius theory, this approach was based on dynamic 
decompositions of the analytic representations of matrices (or “Tableaux” as the French 
used to say at the time). Moreover, Kronecker’s criticisms of canonical forms in 1874 
resorted to issues involving the nature of the essence of mathematics, which the latter 
had laid on the special objects of investigations of arithmetic (forms, especially) as 
opposed to the general relations shown by groups in algebra. 

The extent of the space of circulation of algebraic practices such as Jordan’s was 
neither directly the consequence of the efficiency of the underlying procedures or of a 
preexisting social framework. It is therefore difficult to determine the respective roles 
played by shared perspectives on the Traité on the one hand, and preexisting spaces of 
circulation on the other hand. Such issues shall thus be left open in the present paper. 
They would require further investigations on algebra and number theory at the turn of 
the 20th century, with a closer attention to actors, such as Le Vavasseur, Séguier, or 
Miller, who did not have key positions in the main centers of production of mathe-
matical knowledge. The question of the time-period during which the Galois fields net-
work functioned will also be left open in this paper. To begin with, the fact that the 
expression “champs de Galois” was used for a long time in France in parallel to the use 
of the term “corps fini” should be studied further51. Second, the linear algebraic identity 
of the network is associated with other developments over the course of 19th century. 
For instance, some of the procedures of decomposition underlying Jordan’s canonical 
form circulated from Cauchy’s “calcul des Tableaux” to Cambridge in the 1840s, were 
incorporated into Cayley and Sylvester’s matrices in the 1850s, and circulated with 

                                                
51 After 1905 the intertextual relationships seemed to change as well as the topics studied. On the one hand, the use of 
the reference to Galois field would be more widely used in the U.S.A. On the other hand, the works of Dickson as 
well as the ones of Séguier would focus on the invariants of quadratic forms and their geometric interpretations.
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matrices to the U.S.A. where they would meet again with the “Tableaux” in the Galois 
fields network. [Brechenmacher, 2010] 

Conclusion 

The introduction of Galois fields in Chicago in 1893 might have appeared some-
what chaotic at first sight. But, on the one hand, Moore’s approach unveiled a long tra-
dition dealing with substitutions and number-theoretic imaginaries. On the other hand, 
Moore’s move was coherent with some other contemporary reorganizations of the lega-
cies of Klein and Kronecker in finite group theory. Indeed, in that same year of 1893, 
Weber appealed to Dedekind’s Körper to lay new grounds for “Galois’s theory of ge-
neral equations”. As a conclusion of this paper, I shall discuss the impact of Jordan’s 
legacy in regard with the one of Dedekind. Both approaches had indeed been blamed by 
Kronecker in the 1870s-1880s. Moreover, in the mid-1890s, Jordan’s approach was 
being developed in the U.S.A. at the same time as Dedekind’s legacy was being incor-
porated in algebraic number theory in Germany: in this framework, number-theoretic 
imaginaries were presented as a special case of Endlicher Körper: the Congruenz 
Körper. [Weber, 1893, p.534] 

In the 1896 edition of his congress paper, Moore noted the equivalence of the terms 
“Field” and “Endlicher Körper”. Yet, we saw that the algebraic number aspect of Galois 
theory as developed by Kronecker who rejected Jordan’s approach – had not played any 
role in Moore’s approach. Moreover, the notion of Galois field did not have the same 
evolution as that of Körper. As a matter of fact, Moore repeatedly insisted that the 
“purely abstract form” of Galois fields “would seem to fit best for immediate use 
wherever it can with advantage be introduced”, [Moore, 1896, p.212] i.e. the inves-
tigation of “Jordan’s linear groups”. [Moore 1895, p. 38] When he eventually referred 
to Kronecker in 1897, [Moore, 1897] Moore presented modular systems as a “concrete 
purely arithmetic phrasing” of abstract Galois fields. [Moore, 1898, p.281] In 1898, the 
bibliography of Dickson’s Report on linear groups included the works of Schönemann 
(as well as the ones of Auguste Pellet in the 1880s), thereby illustrating the efforts that 
had been done for making the collective dimensions of both Galois fields and linear 
groups precise. But Dickson’s Report nevertheless insisted on the autonomy of abstract 
Galois fields in linear group theory in connection with number theory. In the legacy of 
the essence Jordan attributed to the theory of order, Galois fields came to represent an 
abstract algebraic alternative to Weber-Hilbert’s arithmetic-algebraic Körper. 
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Linear groups in Galois fields eventually reorganized lines of development in a no 
less radical way than Weber and Hilbert did when they celebrated Dedekind’s approach. 
References to Galois played a key role in the reorganizations based on both the notions 
of field and Körper. Both had jumped over Kronecker on behalf of two alter egos, Jor-
dan and Dedekind. In Moore’s 1893 congress paper, Dickson’s 1898 Report, or the lat-
ter’s 1901 Linear Groups, the reference to Jordan-Galois played a role analogous to the 
reference to Dedekind-Galois in Weber’s 1893 “Die allgemeinen Grundlagen der Ga-
lois’schen Gleichungstheorie” the 1895 Lehrbuch, or Hilbert’s 1897 Zahlbericht. 

Let end the present paper with some considerations on the type of collective 
dimensions of mathematics we have investigated. We have seen that the history of al-
gebra is not limited to issues related to the origins of diffusions of some abstract notions 
or structures. On the contrary, the circulations of some specific algebraic practices and 
forms of representations played a key role in shaping some collective dimensions of 
mathematics that did not correspond to any discipline, nation, or institution. The 
example of the quite unexpected circulation of Jordan’s specific approach in Chicago, 
despite a very strong German influence, highlights how complex some algebraic cul-
tures can be. The identification of such cultures not only requires the micro-historical 
identification of some specific procedures. It also necessitates the analysis of the 
circulation of these procedures, in appealing to scale-games between the local and the 
global, the short-term and the long run. The history of algebra especially requires a 
careful attention to practices of writings. As we have seen, modalities of representations 
are often interlaced with some specific procedures, as well as with both cultural and 
epistemic values of generality or simplicity. We have seen also that the systematic 
investigation of traces of intertextual relations sheds light on some implicit collective 
forms of references, such as the one that lied beneath expressions such as the “analytic 
representation of substitutions” or “linear groups in Galois fields”. This situation high-
lights the crucial role played by some networks of texts for the identification of some 
collective dimensions of mathematics at a time when “algebra” was not yet referring to 
an object-oriented discipline. 

One should nevertheless keep in mind that each individual actor was involved in 
several networks of texts at the same time, as well in several social spaces. Recall that 
the starting point of the network we have analysed in this paper was the choice of a 
point of reference, i.e., Moore’s 1893 congress paper. It is from this point of reference 
that intertextual references have been worked out systematically. The choice of another 
point of reference, such as Burnside’s works, would have resulted in a different collec-
tion of texts, with a much stronger presence of some works on matrices published in the 
U.K. Moreover, at the beginning of our investigations, a specific problem has been 
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posed, that is the one of the collective dimension of a group of texts published from 
1893 to 1907. It is this collective dimension on the short term we have identified as a 
shared algebraic culture. In this purpose, we have investigated a collection of texts in 
the long run of the 19th century. Yet, the coherence of this corpus results from the re-
trospective point of view of the turn of the century, especially in the sense that some of 
these texts were considered altogether by the Chicagoans as “French” mathematics. But 
this whole collection did no correspond to any objective collective dimension per se. On 
the contrary, its texts belonged to various collective dimensions. The “theory of order” 
in which Jordan inscribed his early works was for instance very different from the 
context in which Hermite’s works on the analytic representation of substitutions took 
place. 

To be sure, networks of texts should nevertheless not be reified as an abstract 
notion. Yet, investigating intertextual references nevertheless provides a heuristic me-
thod for identifying various collective spaces in which mathematics have evolved. 
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Annex 1. Indexations and the analytic representations of cycles 

It is well known that the cubic roots of unity can be either expressed by radicals:  

��
�� � � �

�
�
�� � � �

�

or by the exponential notation :

�� �
���

�
� �
����

�
 

The above form of representation highlights that all the roots can be expressed by 
the sequence (0, 1, 2) of the powers of one of them, i.e., a primitive root such as 
� � �

���

 
���Indeed, ��

� �
����

 
, ��

� � � �
�
�etc. The three cubic roots are thus indexed 

by the additive group ��� : a root is turned into the successive one by the cycle that is 
represented analytically by (x x + 1). 

But the sequence of the roots can also be reindexed by using another analytic repre-
sentation of a cycle: (x gx). For instance, the cycle, (x 2x) generates the multiplicative 
group �����  : ω, ω2, ω4 = ω etc. 

This double indexation is crucial. It allows to decompose simultaneously the set of 
the roots of unity into subsets, or blocks, and cyclic groups into subgroups. 

Let us consider in more details the example of the seventh roots of unity, asso-
ciated to the additive group ����. These roots can be represented as points on a a 
circle: 

 

Let g = 3. Starting with the primitive root � � ��� �� 

�
��corresponding to the point 

B, the operation (x3x) provides all the roots of unity, less the unity itself (represented by 
the point A): 

• ω3, corresponds to the point D 
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• ω32 

, corresponds to the point C because 32 
≡ 2 mod(7)  

• ω33 

, corresponds to the point G because 33 
≡ 6 mod(7)  

• ω34 

, corresponds to the point E because 34 
≡ 4 mod(7)  

• ω35 

, corresponds to the point F because 35 
≡ 5 mod(7)  

• ω36 

, corresponds to the point B because 36 
≡ 1 mod(7) 

The cycle (x 3x) thus generates the cyclic group������. 

But let us now consider the operation (x g2x), i.e., (x 2x) ( because 32 
≡ 2 mod(7)). 

Starting with ω, one only gets the three roots corresponding to the points (B, C et E): 

• ω2, corresponds to the point C 

• ω22 

, corresponds to the point E because 22 
≡ 4 mod(7)  

• ω23 

, corresponds to the point B because 23 
≡ 1 mod(7) 

The set of the roots has thus been decomposed into the two blocks corresponding to 
(B, C et E) on the one hand, and (D, F et G) on the other hand. 

This procedure of decomposition allows proving that cyclotomic equations can be 
solved by radicals. For expressing by radicals the seventh roots of unity, it is com-
pulsory to solve an equation of the sixth degree. Yet, the decomposition of the roots into 
two blocks allows to reduce the problem to the one of the resolution of two equations, 
one of the second degree and the other of the third degree. Indeed, if one sums the ele-
ments in each of the blocks, the two resulting expressions: 

� � �
�
� �

�
 

and 

�
�������

 

are the roots of an equation of the second degree. 

It is important to note that one can pass from one block of roots to the other by 
multiplying the indices by g3 

≡ 6 mod.7. Indeed: 

2 × 6 = 12 ≡ 5 mod(7) 

4 × 6 = 24 ≡3 mod(7) 

1 × 6 = 6 
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Geometrically, the operation (x 6x) can be understood as a rotation of the circle on 
itself, of angle���

�
, and that turns B,C,E on D,F,G. 

On the other hand, the permutation (x x + 2) allows circulating between the roots of 
the same block: it can be understood as a translation that turns each root into the fol-
lowing one. 

In sum, the cycle (x gx) allows to decompose the roots into blocks, that can be 
turned one into the other by rotations of the circle, while the operation (x x + a) permits 
to translate the roots within the same block. 

Let us now detail the case of the binomial equation of degree p = 19, i.e. of the 
cyclotomic equation of degree p − 1 = 18. The 18 cyclotomic roots: 

ω, ω2, ..., ω18 

can be decomposed into 6 blocks (i.e. Gauss’s periods) of 3 roots because 18 = 3.6. The 
equation then factors into two equations of degree 3 and 6. For instance, the block of 3 
roots η1,η2,η3 of the equation 

x3 + x2 
− 6x − 7 = 0 

corresponds to the following sums: 

η1 = ω + ω7 +ω8 + ω11 + ω12 + ω18 

η2 = ω2 + ω3 + ω5 + ω14 + ω16 + ω17 

η3 = ω4 + ω6 + ω9 + ω10 + ω13 + ω15 

Each sequence of exponents in each of the sum above is indexed by the successive 
powers of a primitive root mod.19, such as g = 2 (because 218 = 262144 = 1 + 19.13797). 
The indexation (1, 7, 8, 11, 12, 18) of the powers of the ω that composes each of the 
above ηi corresponds to the 3 cycles of 6 powers of 23 mod.19: 

(23)0 
≡ 1mod(19) 

(23)1 
≡ 8mod(19) 

(23)2 
≡ 7mod(19) 

(23)3 
≡ 18mod(19) 

(23)4 
≡ 11mod(19) 

(23)5 
≡ 12mod(19) 
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The exponents of the second sequence (2, 3, 5, 14, 16, 17) are given by the mul-
tiplication of the above sequence by g ≡ 2 mod(19): 

1 × 2 ≡ 2mod(19) 

7 × 2 ≡ 14 mod(19) 

8 × 2 ≡ 16 mod(19) 

11 × 2 ≡ 3 mod(19) 

12 × 2 ≡ 5 mod(19) 

18 × 2 ≡ 17 mod(19) 

Similarly, the multiplication by g2 
≡ 4 mod(19) provides the exponents (4, 6, 9, 10, 

13, 15) of the third sequence: 

1 × 4 ≡ 4mod(19) 

7 × 4 ≡ 9mod(19) 

8 × 4 ≡ 13mod(19) 

11 × 4 ≡ 6mod(19) 

12 × 4 ≡ 10mod(19) 

18 × 4 ≡ 15mod(19) 
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Annex 2. The number of values of functions and the resolution of 

equations by radicals 

The quadratic equation 

Let us start with the case of the quadratic equation on the field of rational numbers: 

x2 
− c1x + c2 = 0 

The coefficients c1 and c2 are symmetric functions of the roots x1 and x2. They are 
thus functions that take only a single value by permutations of the roots: 

c1 = x1 + x2 ; c2 = x1x2 

The other way round, any function that take a single value can be expressed ra-
tionally in the number field to which the coefficients c1 and c2 belong. On the contrary,  

x1 − x2 

takes two values by permutation of the roots and is therefore not rationally known on Q. 
One can look for the group of substitutions that leaves this function invariant. This 
group thus leaves also the root x1 invariant. Thus, x1 and x1 − x2 can be expressed ratio-
nally one with the other: 

�� �
�� � �� � ��

�
 

Thus, if one adjoins to the initial number field the number x1 −x2, one also gets the 
number x1: in the 19th century, functions of many values - or resolvents- were used for 
dealing with what would be nowadays understood as fields and fields extensions. 

Let us now come back to the quadratic equation. The discriminant ∆ is a function 
of a single value and can thus be expressed rationally with c1 and c2 : 

∆ = (x1 −x2)2 = (x1 +x2)2 
−4x1x2  = c2

1 −4c2 

The function � is a two-valued function, as well as the roots x1 and x2 themselves. 
These functions can thus be expressed rationally one with the other by the well known 
formulas that give the resolution by radicals of the quadratic equation. 
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The general cubic 

In the case of the cubic 

x3 
−c1x2 +c2x − c3 =0 

The resolution necessitates the determination of three functions x1, x2, x3 that take 
three values by permutations, i.e. the determination of one function that take 3! = 6 
values. Let a1, a2, a3 be three parameters, the function ξ = a1x1 +a2x2 +a3x3 is precisely a 
function of 3! = 6 values. Following Enrico Betti, such a function was called a “Galois 
resolvent” in the 19th century. If one expresses the roots of the cubic by radicals, then ξ 
will also be expressed by radicals, and reciprocally. 

In a way, the problem of the algebraic resolution of equations thus consists in pass-
ing from three functions of a single value, c1, c2, c3, to a function of six values, ξ. 

Like in the case of the quadratic equation, the root of the discriminant provides a 
two-values function by which any two-valued function can be expressed rationally. 
Thus, to solve the cubic, one has to find a function of the roots, of which a certain 
power takes two values. Such is the case of the cube of the Lagrange resolvent: 

� � �� � �
�
�� � ��� 

where ω is a primitive root of unity (ω3 = 1). 

One can thus express φ rationally thanks to �: 

�� �
�

�
���

�
� ����� � � �� � � ���  

from which one can deduce Cardano’s famous formulas. 

In general 

To solve an equation of degree n necessitates the consideration of a resolvent func-
tion that takes n! distinct values. It was through the consideration of all the substitutions 
leaving such a function invariant that Galois defined the group of an equation (that is, in 
modern parlance, the group that let stable the fields of the roots). One then has to 
investigate the groups of substitutions that leave invariant the factors into which the 
initial equation break when one adds some roots to the initial fields of coefficients. 

A Galois resolvent is a function of n! values. It is therefore invariant only for the 
trivial group, i.e. the group reduced to the permutation identity. On the opposite, a sym-
metric function is invariant for all the substitutions of the symmetric group. Adjoining 
roots to an equation, as we did above with �, implies breaking the Galois resolvent 
into factors. To each of these factors, one associate the substitution group that leaves it 
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invariant. For instance, for n = 4, the following function can be understood as ex-
pressing the relations between the roots of an irreducible equation of the fourth degree: 

φ = x1x2 + x3x4. 

This function takes three values for all the 4! = 24 permutations of Σ(4):  

x1x2 + x3x4, x1x3 + x2x4, x1x4 + x2x3 

The group G associated to the function φ is composed of the eight substitutions that 
leave φ invariant: 

G = I, (x1x2), (x3x4), (x1x2)(x3x4), (x1x3)(x2x4), (x1x4)(x2x3), (x1x3x2x4), (x1x4, x2x3). 
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