De Platão a Weil e além: Genericidade através da história da matemática

Autores

  • Renato Reis Leme Universidade Estadual de Campinas (UNICAMP)
  • Giorgio Venturi Universidade Estadual de Campinas (UNICAMP)

DOI:

https://doi.org/10.11606/issn.2447-2158.i10p140-158

Palavras-chave:

Genericidade, História da Geometria Algébrica, Fundamentos da Matemática, História da Matemática

Resumo

No final do século XIX, a genericidade deu um grande salto no caminho da análise matemática com os desenvolvimentos promovidos pela Escola Italiana de Geometria Algébrica. Suas origens, no entanto, podem ser encontradas na matemática antiga em  trabalhos de importantes filósofos e matemáticos, tais como Platão e Euclides. Neste artigo, tentaremos mostrar como uma noção-chave na virada estruturalista da geometria algébrica evoluiu a partir de um vago fenômeno linguístico para um conceito matemático preciso e frutífero.

Downloads

Não há dados estatísticos.

Referências

BELL, Eric Temple. The development of mathematics. 1992. New York: McGraw-Hill, 1945. p. 169.

BORGA, Marco et al. Logic and foundations of mathematics in Peano's school. Modern Logic, v. 3, n. 1, p. 18-44, 1992. p. 23.

BRILL, Alexander; NOETHER, Max. Ueber die algebraischen Functionen und ihre Anwendung in der Geometrie. Mathematische Annalen, v. 7, n. 2, p. 269-310, 1874.

CASTELNUOVO, Guido. Sui multipli di una serie lineare di gruppi di punti appartenente ad una curva algebrica. Rendiconti del circolo Matematico di Palermo, v. 7, n. 1, p. 89-110, 1893.

DIEUDONNÉ, Jean. History Algebraic Geometry: An Outline of the History and Development of Algebraic Geometry. 1985. Chapman & Hall. p. 1.

DIEUDONNÉ, Jean. The historical development of algebraic geometry. The American Mathematical Monthly, v. 79, n. 8, 1972. p. 67, 827-866.

FANO, Gino. Sulle varietà algebriche dello spazio a quattro dimensioni con un gruppo conti-nuo integrabile di trasformazioni proiettive in sé, Atti del R. Istituto Veneto di Scienze, Lettere e Arti, s. 7, 7, 1896, pp. 1069-1103.

FERREIRÓS, José. The architecture of modern mathematics. Oxford University Press, 2006. p. 4.

GOMBRICH, Ernst Han. The story of art. London: Phaidon, 1995.

GUILBAUD, S. Bourbaki et la fondation des maths modernes. 2015. Available in: <https://lejournal.cnrs.fr/articles/bourbaki-et-la-fondation-des-maths-modernes>. Accessed in: Oct. 29, 2020.

HEATH, Thomas Little. A History of Greek Mathematics, Volume I, From Thales to Euclid (first published in 1921 by the Clarendon Press, Oxford), 1981. Dover. New York. p. 176.

HEATH, Thomas Little. The thirteen books of Euclid's Elements. Cambridge University Press, 1968.

KRANTZ, Steven G. An episodic history of mathematics: Mathematical culture through problem solving. 2010. Maa. 2010. p. 151

LEBRUYN, L. Mumford’s treasure map. 2008. Available in: <http://www.neverendingbooks.org/mumfords-treasure-map>. Accessed in: Oct. 29, 2020.

LUCIANO, Erika; ROERO, Clara Silvia. Corrado Segre and his disciples: the Construction of an Inter-national Identity for the Italian School of Algebraic Geometry. From Classical to Modern Algebraic Geome-try. p. 93-241. Birkhäuser, Cham, 2016. p. 135.

MUMFORD, David. The red book of varieties and schemes. Lecture notes in mathematics, v. 1358, p. 14-01, 1996.

PLATO. Meno and Other Dialogues. 2005. Oxford University Press, 2005. pp. 115-121

SEVERI, Francesco. Intorno ai punti doppi impropri di una superficie generale dello spazio a quattro dimensioni, e a’suoi punti tripli apparenti. Rendiconti del Circolo Matematico di Palermo, v. 15, n. 1, p. 33-51, 1901.

SEVERI, Francesco. Sul principio della conservazione del numero. Rendiconti del Circolo Matematico di Palermo (1884-1940), v. 33, n. 1, p. 313-327, 1912.

THULLEN, Peter. Determinazione della serie di equivalenza individuata dal gruppo dei punti doppi impropri d’una superficie dell’S 4. Rendiconti del Circolo Matematico di Palermo (1884-1940), v. 59, n. 1, p. 256-260, 1935.

TURING, Alan M. The reform of mathematical notation and phraseology. The collected works of AM Turing: Mathematical logic, pp. 211-222, 1944. p. 211.

VAN DER WAERDEN, Bartel L. The foundation of algebraic geometry from Severi to André Weil. Archive for History of Exact Sciences, p. 171-180, 1971. p. 171.

VERONESE, Giuseppe. Fondamenti di geometria a più dimensioni ea più specie di unità rettilinee esposti in forma elementare: lezioni per la scuola di magistero in matematica. 1891. Tipografía del Seminario. Torino, 1891.

WEIL, André. Foundations of algebraic geometry. American Mathematical Soc., 1946.

Downloads

Publicado

2020-12-30

Como Citar

Leme, R. R., & Venturi, G. (2020). De Platão a Weil e além: Genericidade através da história da matemática. Khronos, (10), 140-158. https://doi.org/10.11606/issn.2447-2158.i10p140-158

Dados de financiamento