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INTRODUCTION
Coccolithophores are calcifying primary pro-

ducers within the phylum Haptophyta. The pres-
ence of calcium carbonate plates called cocco-
liths on their cell surfaces bolster their role in the 
downward transport of inorganic carbon through 
a ballast effect. They are cosmopolitan (Raven 

2012) with higher diversity and abundance in phy-
toplankton of low latitudes (O’Brien et al., 2016), 
though also forming extensive blooms at high 
latitudes (Cerino et al., 2017). They contribute 
ca. 10 % of marine phytoplankton biomass (Tyrell 
and Young, 2009) and between 5 % and 40 % of 
marine primary production (Poulton et al., 2007; 
2013). Coccolithophores have biogeochemical 
significance through production and contribution to 
downward transport of both organic and inorganic 
carbon, as well as release of CO2 during calcifica-
tion (Rost and Riesebell, 2004). Their contribution 
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The cosmopolitan coccolithophorid, Emiliania huxleyi form populations composed of different morphotypes 
distinguished based on coccolith ultrastructure. The relative abundance of these morphotypes varies along the 
gradients of several environmental factors, including temperature, pH and nutrients, with significant ecological and 
biogeochemical outcomes as morhotypes differ in the calcite content, hence in their contributions to the downward 
carbonate transport. A scanning electron microscope examination of Emiliania huxleyi cells and coccoliths was 
conducted on samples from an Emiliania huxleyi dominated coastal phytoplankton community formation captured 
on the 29th and 31th of May 2019, performing a morphological and morphometric analysis and an assessment 
of the environmental nutrient characteristics. The main aim of the study was to describe the morphotype from a 
highly important ecosystem with E. huxleyi blooms, the Dardanelles Strait, Turkey and contribute to the present 
scientific understanding of their ecological preferences. The satellite-derived chlorophyll a and particulate inorganic 
carbon concentrations data were also included to expand the spatio-temporal coverage of the study. The nutrient 
data suggested nitrogen limitation of the phytoplankton community in general and an additional silicate limitation 
of the diatoms. The microscopic observations of samples, coccosphere/coccolith counts and the morphologic 
and morphometric examination of the coccoliths showed the presence of an E. huxleyi bloom solely composed of 
morphotype A. Furthermore, the satellite data showed the coccolithopore bloom started in the interconnected basin 
of the Black Sea and progressed into the Dardanelles via the Sea of Marmara.
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to downward calcite flux varies between 60 – 80 
% in different parts of the ocean (Menschel et al., 
2016 and refs. therein). They are also an impor-
tant source of the volatile organic sulphur com-
pound dimethyl-sulfoniopropionate, the precursor 
of dimethly sulphide (DMS), cloud condensation 
nuclei in the atmosphere (Charlson et al., 1987) 
that hence contribute to the albedo effect (Holligan 
et al., 1993; Brown and Yoder, 1994; Tyrell et al., 
1999). Among the 200 extant coccolithophore 
species, only two species, Emiliania huxleyi 
(Lohmann) Hay and Mohler and Gephyrocapsa 
oceanica Kamptner, both in the Noelaerhabdaceae 
family, form frequent blooms, the former being the 
most abundant and cosmopolitan (ex. Winter and 
Siesser, 1994). Despite the wealth of scientific 
studies on E. huxleyi, there is no common agree-
ment on the environmental factors that trigger its 
blooms (Lessard et al., 2005; Tyrell and Merico, 
2004; Tyrell et al., 2008; Menschel et al., 2016; 
Hopkins et al., 2019). The existing findings sug-
gest presence of a stratified water column, high 
solar radiation levels, reduced grazing, low NO3

-

:PO4
3- ratios and silicate concentrations (ex.,Tyrell 

and Merico 2004 and refs therein) as well as high 
carbonate concentrations (Merico et al., 2006) as 
the possible factors favouring the formation of E. 
huxleyi blooms. The exceptionally good ability of 
E. huxleyi for the uptake of both organic and inor-
ganic forms of nitrogen and phosphorous as well 
as for iron, distinguishes it from other coccolitho-
phore species (Riegman et al., 2000; Benner and 
Passow 2010) and can help explain its success as 
the dominant and most ubiquitous coccolithophore 
species in the oceans.

E. huxleyi exist as different morphotypes, dis-
tinguished by coccolith morphology, hence in the 
degree of calcification (Young and Westbroek, 
1991, Young et al., 2003). Initially five different E. 
huxleyi morphotypes called as A, B, C, B/C and 
R were identified by Young et al. (2003) and a 
further morphotype called ‘Type O’ was identified 
by Hagino et al. (2011). The morphotypes can be 
genotypes or/and ecotypes (Medlin et al., 1996, 
Iglesias-Rodriquez et al., 2006, Cook et al., 2011, 
Read et al., 2013). The relative abundance of each 
type varies along the gradients of environmental 
factors, most notably temperature, pH, salinity 

and nutrients which reflected in the global bio-
geography of different morphotypes (ex., Hagino 
et al., 2005, Henderiks et al., 2012, Malinverno 
et al., 2016, Poulton et al., 2011, Díaz-Rosas et 
al., 2021) with significant biogeochemical conse-
quences (Rigual-Hernandez et al., 2020). Data on 
the distribution of E. huxleyi and identification of 
morphotype composition of its populations from 
different marine environments contribute to the 
scientific understanding of its distributional pat-
terns and ecological niche (Tyrrell et al., 2008) also 
help to predict its contribution to downward carbon 
transport under variations of relevant environmen-
tal factors. However, there is still a scientific need 
for studies investigating the link between the distri-
bution and abundance of different E. huxleyi mor-
photypes and the environmental factors (ex., tem-
perature, pH, nutrients, salinity) particularly in the 
coastal ecosystems (Godrijan et al., 2018). Here, 
the electron microscope images of E. huxleyi coc-
cospheres, coccoliths and their morphological and 
morphometric analysis are presented along with 
a snapshot of environmental factors during an E. 
huxleyi dominated phytoplankton community for-
mation, captured on the 29th and 31th of May 2019 
at a coastal site located along the shoreline of the 
Dardanelles Strait. The remotely sensed chloro-
phyll a and particulate inorganic carbon data were 
also included to expand the spatio-temporal cover-
age of the study. The major goal of the study was 
to make morphotype characterisation of E. huxleyi 
and contribute to the present scientific understand-
ing of the ecological preferences of E. huxleyi in 
the Dardanelles Strait, a unique waterway in terms 
of its flow regime, as well being a highly important 
site of its blooms (ex., Turkoglu, 2008).

METHODS

Study site and sample collection
The interconnected basins of Dardanelles 

(Canakkale) Strait, the Sea of Marmara (SOM) 
and the Strait of Istanbul (SoI) form a hydrologi-
cal continuum, the Turkish Straits System (TSS), 
enabling exchange of water masses between 
the Mediterranean Sea (the Aegean Basin) and 
the Black Sea (ex. Oguz and Sur, 1989). The 
hydrology of TSS is primarily characterized by 
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a permanent two-layered counter flow system 
formed by the flow of brackish Black Sea water 
over salty Mediterranean water that enters the 
system at the southern end of the Dardanelles 
(Figure 1) (Kanarska and Maderich, 2008). The 
Dardanelles is a 74.1 km long water channel 
whose width varies between 1.3 km and 7.5 km. 
The maximum depth of the Dardanelles is 113 
m (Gokasan et al., 2008). Previous studies have 
shown that E. huxleyi blooms occur in the Black 
Sea and the TSS (ex., Cokacar et al., 2001, Aktan 
et al., 2003, Turkoglu, 2016, Kubryakova et al., 
2019). In the Dardanelles, E. huxleyi blooms were 
detected in late spring-early summer (Turkoglu, 

2008) and in winter periods (Turkoglu, 2010a), 
and can attain densities as high as 2.55x108 cells 
L-1 (Turkoglu, 2008). This is above the density of 
1.15 x 108 cells L-1 observed during an E. huxleyi 
bloom in a Norwegian fjord (Berge, 1962), which 
had been previously reported as the most intense 
bloom of this species (Tyrell and Merico, 2004). 

The sampling point is located along the 
southern (Anatolian/Asian) side of the Dardanelles 
Strait (Figure 1) ~5 m away from the shoreline 
(40°07’10.71” N - 26°24’34.87” E) and was ac-
cessed by walking on a wooden pier on the 29th 
and 31st of May 2019. Samples were collected in 
triplicate from the surface with a clean bucket tied 

Figure 1. (a) AQUA-MODIS image of study site showing the composite surface chlorophyll a 
concentration for the period between 2017 and 2021 (http://oceancolor.gsfc.nasa.gov) (b) the location 
of the sampling site.
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to a rope and carried back to the laboratory in 5 
L clean HDPE containers, placed in black plastic 
bags, within ~30 minutes of collection.

Physico-chemical and phytoplankton 
variables

Temperature, salinity and pH of the samples 
were measured with an alcohol thermometer, a 
hand-held refractometer (Atago S/ Mill-E, Japan) 
and a pH meter (Hanna HI 8314, Romania), 
respectively. 

Dissolved nutrients were analyzed using 
standard colorimetric analysis, with references 
and details of the methods found in Kocum 
(2020). 1 L of the samples was filtered through 
glass fiber filters (Whatman, GF/F, UK, ᴓ = 0.7 
µM) in triplicate for bulk pigment analysis. For 
the measurement of pigments in micro- and 
nano- phytoplankton size fractions, 1 L of the 
samples was filtered through 20 µm Nylon fil-
ters (Millipore, Ireland), then  through 2µm 
pore-sized nucleopore polycarbonate (PC) fil-
ters (Whatman, UK). The material collected on 
the Nylon and PC filters represents the micro- 
and nano-plankton size fractions, respectively. 
All filters were processed following the proto-
col given in Arar (1997) and concentrations of 
chlorophyll a (chl a), chlorophyll b (chl b) and 
chlorophyll c1+c2 (chl c1+c2) were calculated 
using the trichromatic equations of Jeffrey and 
Humphrey (1975). Absorbance was read on a 
double-beam UV–VIS spectrophotometer (PG 
T+80 model, UK) for the nutrient and pigment 
analysis. For broad taxonomic analysis of sam-
ples, whole samples and samples that were 
filtered through 20 μm (nano- + pico-plankton) 
and then through 2 μm (pico-plankton) PC filters 
were examined under an Olympus BX 51 model 
microscope on the day of sampling. Additionally, 
on each sampling day fixed volumes of whole 
and size-fractionated water samples were left 
to settle directly on to the surfaces glass micro-
scope slides that were horizontally placed next 
to each other in equal sized plastic containers, 
as described in Kocum (2020). The slides were 
then examined under the microscope after 2 
hours and then twice a day for another 48 hours. 

Scanning electron microscopy
For the scanning electron microscope (SEM) 

examination of samples; 1L of the sample was fil-
tered through 47 mm, 2 µm PC filter backed with 
a 12 µm PC filter to achieve an even distribution 
of cells on the filter surface. The 2 µm PC filter 
was air-dried and kept in a sealed petri dish in 
a fridge until analysis. A portion of the filter was 
cut and mounted on a stub with carbon tape, 
then sputter coated with Au-Pd. The filters were 
observed under SEM (JEOL SEM 7100-EDX, 
Japan) at the Science and Technology Application 
Center of Canakkale Onsekiz Mart University on 
11/07/2019. Morphometric measurements of coc-
cospheres and coccoliths were made on the SEM 
images using GIMP 2.10.22 image processing 
software. All measurements on coccoliths were 
made on flat lying, fully exposed coccoliths seen 
in distal view. The terms used to describe cocco-
lith morphology were adopted from Young et al., 
(1997). The measured morphometric characteris-
tics of coccoliths were; distal shield length (DSL), 
distal shield width (DSW), length (CAL) and the 
width (CAW) of the central area, number of distal 
shield elements (NDSE) on the coccoliths and the 
internal tube width (ITW), measured at both long 
(ITWLa) and the short axes (ITWSa) of the cocco-
lith, then averaged to give an average internal tube 
width, ITWa. The morphotype characterization of 
E. huxleyi samples followed methods in Young 
and Westbroek (1991) and Young et al., (2003). 
The shapes of the coccoliths were classified with 
respect to their axial ratio (AR), calculated by di-
viding the DSL by DSW (Young et al., 1997). A 
size-independent dimensionless parameter called 
relative tube width (RTW) was calculated as de-
scribed by Young et al., (2014) to estimate relative 
degree of calcification of the observed coccoliths. 

The density of E. huxleyi cells and detached 
coccoliths were calculated using SEM images. 
The formula ‘CD = A*N / a*v’ of Bollmann et al. 
(2002) was used in the calculations, where CD= 
cell/coccolith density (per liter of the sample), A= 
Effective filtration area, N= total number of cells/
coccoliths counted; a = analyzed area of the filter 
under the SEM; and v= volume of sample filtered 
(in liters). 
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In order to calculate the calcite content of the coc-
coliths, first the volume of the coccoliths was calculat-
ed using the ks model developed by Young and Ziveri 
(2000), where ks represents a shape specific factor 
for coccoliths. The suggested ks value of 0.02 for 
E. huxleyi morphotype A was multiplied by the cube 
of DSL of the coccoliths to obtain coccolith volume. 
Then, calcite content of each coccolith was calculat-
ed using its volume, the density (2.7 pg µm-3), and the 
molecular weight (100.09 g mol-1) of calcite following 
Poulton et al. (2011) and D’amario et al. (2018). The 
total number of attached and detached coccoliths per 
liter of the sample was multiplied by the average coc-
colith calcite content to obtain PIC concentration. To 
estimate the number of attached coccoliths, the num-
ber of coccoliths per coccosphere was calculated by 
counting the coccoliths on the visible side, then dou-
bling (Boeckel and Baumann, 2008). The average 
coccolith number per coccosphere was multiplied by 
the number of coccospheres per liter of the sample to 
obtain attached coccolith density.

Satellite data acquisition
A synoptic view of the sea surface chlorophyll-

a and PIC concentrations at the study zone was 
obtained from the Visible and Infrared Imager/
Radiometer Suite (VIIRS), an instrument on 
the Suomi-National Polar Orbiting Partnership 
Spacecraft (SNNP). In 8-day intervals, composite 
observations were obtained corresponding to the 
time period between 23/04/2019 and 08/06/2019 
for the Black Sea and TSS (Available from the 
Distributed Active Archive Center, DAAC, at the 
National Aeronautics and Space Administration 
(NASA) Goddard Space Flight Center (at https://
oceancolor.gsfc.nasa.gov/showimages/VIIRS/
IMAGES/). 

The NASA SeaDAS 8.0 software package 
(Baith et al., 2001) was used to capture and dis-
play the images. The PIC concentrations obtained 
were used to infer the contribution of coccolitho-
phores to the chl a signal of phytoplankton bio-
mass, as this parameter is a reliable indicator 
of the abundance and distribution of coccolitho-
phores in surface waters (ex., Hopkins et al., 2015; 
Mikaelyan, 2020).

Data analysis
Pearson bi-variate correlation analysis was 

used to test the significance of relation among 
measured morphometric variables after log (x +1) 
transformation of the data. The coefficient of varia-
tions (C.V.) of the morphometric parameters were 
calculated as a measure of variability and reported 
as a percentage (Zar, 1984).

RESULTS

Physico-chemical and phytoplankton 
data

The values of temperature, pH, salinity, concen-
trations of dissolved inorganic nutrients and pigments 
measured on two sampling days are displayed in 
Table 1, using mean ± standard error (s.e.) values 
for the latter two. NO3

- formed the > 70 % of DIN 
pool on both sampling days. The pattern of tempo-
ral change in nutrients and pigments was a marked 
decrease over two days (Table 1). The decreases in 
NO3

-, NH4
+, PO4

3- and Si(OH)4 were equal to 51.26 
%, 23.53 %, 14.29 % and 33.33 % of their first sam-
pling day concentrations, respectively. The molar 
DIN:PO4

3- ratios were below the Redfield N:P ratio 
of 16:1 on both sampling days. There were also de-
creases in DIN:PO4

3- and Si(OH)4:PO4
3- ratios (by 

~33 % and ~19 %, respectively). Si(OH)4:DIN ratios 
were well below the 1:1 ratio required by diatoms on 
both sampling dates, increasing by ~23 % over two 
days. The low availability of Si(OH)4 were also re-
flected in the negative Si* values (Table 1), which are 
the difference between the molar concentrations of 
Si(OH)4  and NO3

-, used to infer the nitrate utilization 
efficiency of diatoms (Ragueneau et al., 2000; Bibby 
and Moore, 2011). The phytoplankton biomass mea-
sured as bulk chl a concentration was 6.98 µg chl a 
L-1 on 29/05/2021 and dropped by ~79 % to 1.49 µg 
chl a L-1 on the second sampling date. There were 
comparable declines in the bulk chl b (by ~82 %) and 
chl c1+c2 (by ~70 %) concentrations, as well (Table 1). 
The decreases in pigments measured in nanoplank-
ton size fraction were much lower (~76 % in chl a, 
~61 % in chl b, ~49 % in chl c1+c2) than those that 
occurred in microplankton (94 % in chl a, 86 % in chl 
b, ~89 % in chl c1+c2) fractions. 
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Table 1. Physico-chemical and phytoplankton variables measured in the study site on two sampling dates as 
mean+s.e. values (n=3) for the nutrient and pigment concentrations (DIN=dissolved inorganic nitrogen, the sum 
of NH4

+, NO3
-, NO2

- concentrations, s.e.=standard error of the mean).

Variables 1 2 
Temperature (oC) 24 21
pH 8.42 8.08
Salinity (ppt) 21 22
NH4

+ (µM) 0.59 ± 0.24 0.45 ± 0.03
NO3

- (µM) 3.97 ± 0.64 1.93 ± 0.12
NO2

- (µM) 0.33 ± 0.12 0.27 ± 0.12
PO4

3- (µM) 0.39 ± 0.05 0.33 ± 0.03
Si(OH)4 (µM) 0.17 ± 0.05 0.11 ± 0.03
DIN: PO4

3- 12.66 ± 0.73 8.07 ± 0.60
Si(OH)4:DIN 0.03 ± 0.01 0.04 ± 0.01
Si(OH)4: PO4

3- 0.42 ± 0.08 0.34 ± 0.08
Bulk chl a (µg/L) 6.98 ± 0.03 1.49 ± 0.05
Bulk chl b (µg/L) 1.57 ± 0.12 0.28 ± 0.04
Bulk chl c1+c2 (µg/L) 1.10 ± 0.07 0.33 ± 0.03
Microplankton chl a (µg/L) 5.94 ± 0.01 0.34 ± 0.01
Microplankton chl b (µg/L) 0.57 ± 0.05 0.08 ± 0.01
Microplankton chl c1+c2 (µg/L) 0.66 ± 0.04 0.07 ± 0.03
Nanoplankton chl a (µg/L) 1.95 ± 0.05 0.47 ± 0.02
Nanoplankton chl b (µg/L) 0.48 ± 0.06 0.19 ± 0.04
Nanoplankton chl c1+c2 (µg/L) 0.49 ± 0.08 0.25 ± 0.023

Microscopic and morphometric exami-
nation of the samples

The light microscope and SEM analysis of 
samples showed that coccospheres and de-
tached coccoliths of E. huxleyi dominated the 
samples on both sampling dates. The diameter 
of the coccospheres varied between 5 µm to 
6.22 µm with a mean value of 5.62 ± 0.16 µm 
(Figure 2). All the observed coccolith specimens 
confirmed the morphological features of the E. 
huxleyi morphotype A, with slits between the dis-
tal shield elements, rod-like, curved central area 
elements and larger distal shields than proximal 
shields (Figure 3). The DSL and DSW varied be-
tween 2.18 – 3.38 µm (mean ± s.e. = 2.92 ± 0.08, 
n=23) and 1.94 and 2.76 µm (mean ± s.e. = 2.40 ± 
0.05, n=23), respectively. The mean length (CAL) 
and width (CAW) of the central area were 1.44 ± 
0.04 µm (0.95 µm – 1.69 µm, n=23) and 0.92 ± 
0.03 µm (0.70 µm – 1.33 µm, n=23), respectively. 

The mean AR of the observed coccoliths was 
1.21 ± 0.01 (range: 1.07 – 1.39 n=23) and the 
majority of the observed coccoliths (18 out of 
23) confirmed a “broadly-elliptical” shape. The 
RTW and ITWa:DL values varied between 0.11 
and 0.24 (mean ± s.e. = 0.17 ± 0.008, n=23) and 
between 0.047 and 0.098 (mean ± s.e. = 0.069 
± 0.003, n=23), respectively. The NDSE on ob-
served coccoliths were between 25 and 40 (mean 
± s.e. = 32.15 ± 0.74, n=21). The variation in the 
measured/calculated coccolith morphometric 
parameters were smallest in the AR (C.V.= 6.47 
%) and highest in INTWs (C.V.= 29 %). The DSL 
values correlated to DSW, CAL, CAW, AR, ITWa 
and NDSE while CAL also correlated to CAW, AR 
and NDSE. There was also a good agreement 
between AR and the CAL:CAW ratio (Table2).

The coccosphere and detached coccolith con-
centrations were 1.24 x 106 L-1 and 2.75 x 107 L-1, 
respectively. The average calcite mass of a single 
coccolith mass was 1.41 ± 0.10 pg (n=23) while 
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Figure 2. (a) light and (b) scanning electron microscope images of samples (scale bar = 1 μm).

the PIC (calcite) concentration was calculated as 
0.79 µmol L-1.

The satellite data
The satellite derived surface chl a concentra-

tions were 2- 3 µg chl a L-1 over the first two 8-day 
intervals (Figure 4 a, b). The PIC signals were < 
0.3 µmol L-1 over the same time intervals in TSS 
with a patchy spatial distribution (Figure 4 g, h). 
The decrease in chl a signals occurred in the 
TSS between 09-16/05/2019, followed by a pe-
riod of increase (to 2-3 µg chl a L-1 range in the 
Dardanelles) over the next 8-day interval (Figure 
4 c, d). This change was accompanied by a > 
10-fold increase in PIC concentrations from < 0.1 
µmol L-1 to > 1 µmol L-1 (Figure 4 i, j). The satellite 
derived PIC signals further increased to > 2 µmol 
L-1 and a slight decline occurred in chl a (to 1.5- 2 
µg chl a L-1 range) between 25th of May and 1st of 
June (Figure 4 e, k). Both chl a and PIC declined 
slightly over the following 8-day interval in the TSS 
(Figure 4 f, l).

DISCUSSION
The high density of E. huxleyi cells and de-

tached coccolith density (> 1 x 106 cells L-1) and 
the temporal pattern of change in satellite- derived 

PIC concentrations clearly showed the sampling 
coincided with the late phase of an E. huxleyi 
bloom. Although the measured PIC concentration 
was much lower than the satellite derived 8-day 
composite concentration that includes the sam-
pling dates it was still indicative of a coccolitho-
phore bloom (Terrats et al., 2020).

The size of the observed coccospheres were 
typical for E. huxleyi diploid, coccolith bearing 
C-cells of morphotype A (Paasche, 2002 and refs. 
therein), similar to ones observed in the Black Sea 
during an E. huxleyi bloom that occurred in May 
2013 (Stelmakh and Gorbunova, 2018), in the 
Aegean Sea (Triantaphyllou et al., 2010), in the 
Benguela coastal upwelling system (Henderiks et 
al., 2012). The size was also comparable to the 
most common coccosphere size observed in the 
northwestern Mediterranean (Cros and Fortuno, 
2002), but smaller than the ones observed in the 
Black Sea during June- July 2004 (Mikaelyan et 
al., 2005). However, much greater coccospheres 
sizes were observed on two occasions in the 
Dardanelles during a summer (9.05 ± 1.05 µm) 
and a winter (11.20 ± 1.38 µm) E. huxleyi bloom 
(Turkoglu, 2010a). These differences could be 
due to the variations in the growth phase (Young 
and Westbroek, 1991, Gibbs et al., 2013) or in the 
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Figure 3. Detached coccoliths of Emiliania huxleyi type A morphotype seen in both the distal and 
proximal view; showing the T-shaped distal shield elements with slits between them and the central area 
formed by the curved rods (scale bar = 1 μm).

Table 2. Pearson correlation coefficients among environmental and phytoplankton variables at two sampling sites.        
(Only significant correlations were displayed, (*p<0.05, **p<0.01, the abbreviations are as explained in the text).

DSL DSW CAL CAW ITWavr NDSE AR CAL/CAV RTW
DSL 1
DSW 0.88** 1
CAL 0.91** 0.81** 1
CAW 0.62** 0.67** 0.77** 1
ITWavr 0.42* 1
NDSE 0.85** 0.85** 0.83** 0.68** 1
AR 0.61** 0.53* 1
CAL:CAW -0.48* 0.46* 1
RTW 0.92** 1
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Figure 4. The spatio-temporal distributions of satellite derived chl a and 
particulate inorganic carbon concentrations in the Black Sea and the TSS. (The 
arrow indicates the Dardanelles).

dominating morphotype of the sampled popula-
tions (Poulton et al., 2011). The environmental 
factors also contribute to the size variation of the 
E. huxleyi cells and the coccoliths. For example, 

an inverse relation between the seawater temper-
ature and the coccosphere size was observed in 
the Aegean Sea (Triantaphyllou et al., 2010). In 
the same study the DSL, DSW, RTW, INTW values 
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measured on E. huxleyi morphotype A coccoliths, 
collected in August were comparable to those of 
the present study suggesting a similarity in the de-
gree of calcification.

The variation in the morphometric features of 
coccoliths is a good indicator of that in their calcite 
content. Among the different coccolith morphomet-
ric variables, the RTW provides a more direct and 
comparable assessment of the degree of calcifica-
tion in E. huxleyi coccoliths (Young et al., 2014) 
which is significant on the magnitude of downward 
flux of calcite in any given marine locality (Poulton 
et al., 2007). Nonetheless a recent study showed 
that the variations in RTW (called ‘CT:L ratio’) was 
a poor indicator of E. huxleyi Type A calcite con-
tent (Linge and Bollmann, 2020).

The RTW values observed in this study were 
similar to those measured in lightly calcified mor-
photypes collected at two different sites (39° 15.00’ 
N - 25° 26.76’ E and 39° 06.48’ N - 25° 26.10’ E) in 
the Aegean Sea (Karatsolis et al., 2017). However 
the RTW values were greater than those mea-
sured (mean ± s.e. = 0.07 ± 0.01, n=30) on type 
A coccoliths collected in samples at a coastal site 
near Canary Islands (Linge and Bollmann, 2020). 
However, both ITWLa and ITWSa values were 
smaller than those observed in the Aegean Sea 
samples collected during the cold season but simi-
lar to those observed in samples collected in the 
warm season at the same location (Triantaphyllou 
et al., 2010). The coccolith morphology and mor-
phometric characteristics of E. huxleyi populations 
result from the dominating morphotype and mainly 
reflect the prevailing temperature, salinity, nutrient 
and carbonate chemistry of the seawater (Poulton, 
2011 and refs. therein, Von Dasow et al., 2018). 
Besides, within the same morphotype, the degree 
of calcification may also vary along the gradients 
of several environmental factors (D’Amario et al., 
2018). Therefore the differences between the 
measured calcification parameters, and those in 
other studies, could be due to the variations in 
several environmental factors, such as tempera-
ture (Sorrosa et al., 2005, Poulton et al., 2011), 
salinity (Bollmann and Herrle 2007), nutrients (ex., 
Paasche et al., 1994, Batvik et al., 1997, Muller 
et al., 2012, 2015), or carbonate chemistry (ex., 
Bach et al., 2015, Rigual-Hernandez et al., 2020). 

The nutrient concentrations and ratios mea-
sured in the present study were indicative of a ni-
trogen limitation of the phytoplankton community 
in general and an additional limitation by silicate 
for diatoms which were further supported by nega-
tive Si* values, pointing to the inability of efficient 
utilization of nitrate by diatoms (Raguneau 2000; 
Brzezinski et al., 2003). Negative Si* values have 
been observed during coccolithophore blooms in 
other parts of the world (Smith et al., 2017) and 
were suggested as giving coccolithophores a com-
petitive edge over large-celled diatoms (Balch, 
2014). Lower NO3

-and PO4
3-, higher Si(OH)4 con-

centrations and Si(OH)4:DIN, Si(OH)4: PO4
3- ratios, 

and similar N:P ratios were measured (at surface 
layer) at a site located in the Dardanelles (40°09’ 
N - 26°24’ E) during an early summer (07/06/2007-
11/07/2007) mixed bloom of E. huxleyi with 3 di-
noflagellate species (Turkoglu, 2008). This bloom 
was reported to be preceded by a diatom bloom 
in Turkoglu (2008) and by a Noctiluca scintillans 
bloom in Turkoglu (2013). In the Black Sea, N:P 
ratios were identified as the cause behind the 
switch between a diatom- or E. huxleyi-dominated 
phytoplankton community, low (<16:1) ratios being 
associated with the dominance by the latter (Silkin 
et al., 2014; Oguz and Merico, 2006). Hence N- 
and Si-limited conditions are commonly observed 
nutrient characteristics observed during E. hux-
leyi blooms both in the TSS and the Black Sea. 
However the same species is also able to gain 
dominance under high nitrate-low phosphate con-
centrations (Tyrrell and Taylor, 1996) or under N or 
P/deficiency (Lessard et al., 20005). 

The chl a concentrations measured on the first 
sampling day were higher than those reported by 
previous research in the Dardanelles during the 
late spring-early summer period, under non-bloom 
conditions, which were mostly below 3 µg chl a 
L-1 ( ex., Turkoglu et al., 2004; Turkoglu 2010b; 
Buyukates and Inanmaz, 2009; Buyukates et al., 
2017; Kocum and Sutcu, 2014; Kocum, 2020). 
However, the chl a concentrations of the second 
sampling day were more similar to those reported 
in the same studies and to the values measured at 
a nearby site (40° 8’31.00”N - 26°23’54.39”E) on 
the 17th (2.18 ± 0.06 µg chl a L-1) and 24th (2.00 ± 
0.03 µg chl a L-1) of April, 2019 (data unpublished), 
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implying that the sampling coincided with the late 
phase of a phytoplankton bloom. The sharp de-
creases observed in pigment concentrations co-
incided with the decreases in the nutrients, which 
were not equal in magnitude. These implied that 
the losses might be due to differential utilization 
of nutrients by the phytoplankton. The increase in 
Si*, a sign of preferential loss of NO3

- over Si(OH)4, 
also supported this possibility and together with 
the results of microscopic analysis emphasized 
the role of coccolithophores in the observed de-
clines in nutrients, rather than that of diatoms. 
The decreases in pigments measured in the mi-
croplankton fraction was greater than those in the 
nanoplankton, raising its relative abundance in the 
phytoplankton (Table 1). Previous research has 
shown the significance of autotrophic nanoplank-
ton and their overall impact on the phytoplankton 
biomass size structure in the Dardanelles, where 
they tend to dominate phytoplankton in the late 
spring-summer period (Kocum, 2020). This co-
incides with the timing of frequently occurring E. 
huxleyi blooms in the Black Sea (ex., Cokacar 
et al., 2001; Eker-Develi et al., 2003), and in the 
Dardanelles (Turkoglu, 2008). Therefore, the role 
of an E. huxleyi dominated nanoplankton size frac-
tion on the observed phytoplankton dynamics can 
be significant in this study. The observed concen-
trations of E. huxleyi cells and coccoliths further 
supports this possibility.

The temporal changes in the satellite derived 
sea surface chl a and PIC signals were not syn-
chronized. The strong chl a signals detected be-
tween 23th and 30th of April were not due to cocco-
lithophore development, whereas the increase in 
chl a signals that occurred during 17-24/05/2019 
was accompanied by a conspicuous increase in 
the satellite derived PIC signals. A further rise in 
PIC signals to peak levels detected during 25th of 
May and 1st of June corresponded to a slight de-
crease in chl a. Considering the small size and low 
chl a content of E. huxleyi cells (ex., Hopkins et al., 
2015), chl a signals are less reliable compared to 
PIC signals in tracing its spatio-temporal dynam-
ics. Besides, detached coccoliths also contribute 
to the PIC signals and remain high even after a 
coccolithophore bloom (Lehahn et al., 2014). The 
density of detached coccoliths in comparison to 

that of coccosphere cells and the temporal change 
in the measured pigment and nutrient concentra-
tions suggest the samples examined in this study 
came from the late phase of an E. huxleyi bloom. 
Furthermore, the overall spatio-temporal distribu-
tion of satellite-derived surface chl a and PIC sig-
nals indicated the development of a coccolithopore 
dominated phytoplankton community in the TSS 
by the middle of May that persisted into the begin-
ning of June, 2019. As specified by the temporal 
change in the spatial distribution of PIC signals, 
the bloom started to form in the Black Sea and 
progressed into the SOM (via Strait of Istanbul) 
then into the Dardanelles. The bloom formation 
of Emiliania huxleyi during May-July period is a 
common phenomenon in the Black Sea (Cokacar 
et al., 2001; 2004; Mikaelyan et al., 2011) and re-
ported to be carried into the North Eastern Aegean 
Sea via Dardanelles (Karatsolis et al., 2017). 

CONCLUSIONS
The dependence of the distribution and abun-

dance of E. huxleyi morphotypes and their degree 
of calcification on the environmental factors en-
ables prediction of change in the contribution of 
different morphotypes to the E. huxleyi popula-
tions. This, in turn, enables prediction hence cal-
cite production by them under ongoing and pro-
jected changes in the seawater temperature, pH 
and nutrient content caused by anthropogenic cli-
mate change (von Dassow et al., 2018). Research 
on the identification and distribution of different E. 
huxleyi morphotypes and how these relate to en-
vironmental characteristics in various marine eco-
systems is necessary in making such predictions. 
Although highly limited in its temporal and spatial 
coverage, this study demonstrated the morphot-
ype composition and morphometric analysis of the 
E. huxleyi samples along with the nutrient char-
acteristics during an E. huxleyi bloom observed 
in a coastal station of the Dardanelles Strait, for 
the first time. This study identified a bloom com-
posed solely of morphotype A, supporting the pre-
vious studies that show morphotype A as the most 
abundant type in the Mediterranean (D’amario 
et al., 2018) as well as in various other oceanic 
regions (Poulton et al., 2011). This prevalence is 
probably owing to its being the more generalist E. 
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huxleyi morphotype, with a larger niche breadth 
(Diaz-Rosas et al., 2021). Overall, the study con-
tributes to the understanding of the ecological 
preferences of E. huxleyi in a highly important eco-
system for these blooms. This study also provided 
an account of the formation and progression of the 
E. huxleyi bloom in the interconnected basins of 
the Black Sea and the TSS over a time interval 
of 7 weeks through an analysis of the spatio-tem-
poral dynamics of satellite derived chl a and PIC 
concentrations.
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