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Abstract
We examine nonlinear topographic waves in barotropic, rigid lid models with a focus on how depth shapes
can or cannot support solitary waves. Comparisons between the full equations and the quasigeostrophic
system show that the conditions for vanishing nonlinearity are different and that the transition from cyclonic
to anticyclonic solitary waves does not happen for the same topographic shape. For these dynamics, how-
ever, such waves only exist for a channel geometry when the long waves can become non-dispersive. We
therefore examine wave groups since short waves can have an isolated cross-topographic structure. Group
solitary waves are found and analyzed with a hyperbolic tangent topography representing the transition from
the shelf to deep water.
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INTRODUCTION

Topographic Rossby waves, for which the back-
ground potential vorticity (PV) gradient is provided
by the bottom slope rather than the gradient in f ,
have been observed in a variety of oceanic regions.
On the New England continental slope, near the
Gulf Stream, Thompson (1971) and Thompson &
Luyten (1976) identified motions off Cape Hatteras
with appropriate space and time scales, and Pickart
(1995) traced these to forcing by eastward propagat-
ing meanders of the jet. Louis et al. (1982) observed
them off Nova Scotia. Other locations include
the Beaufort Gyre (Zhao & Timmermans 2018),
the South China Sea (Shu et al. 2016, Wang
et al. 2019), and east Australia (Garrett 1979). Fi-
nally, as appropriate for this collection, Oey & Lee

Submitted: 04-May-2022
Approved: 31-August-2022
Associate Editor: Curtis Collins

© 2022 The authors. This is an open access article distributed
under the terms of the Creative Commons license.

(2002) and Hamilton (2009) found them in the Gulf
of Mexico. Clarke (1971) demonstrated that the
shallow water equations could have solitary and
cnoidal wave solutions with a sloping bottom in a
channel. A zonal shear flow could also provide
the necessary potential vorticity gradient (see also
(Long 1964) and (Larsen 1965)). Malanotte-Rizzoli
& Hendershott (1980) and Malanotte-Rizzoli (1980),
Malanotte-Rizzoli (1982) followed up on the topo-
graphic case using the quasi-geostrophic (QG) ap-
proximation.

Solitary wave packets for beta-plane waves in a
channel, were studied by Yamagata (1980) again
in a channel with the QG simplification. These can
arise from whatever forcing creates waves in a lim-
ited region or from a modulational instability of a
sinusoidal wave. Since the group velocity depends
on the wavenumber and the packet has, of course,
a range of wavenumbers, the envelope will deform
under linear dynamics. As in the case of the solitary
wave, the nonlinearity can counteract this and result
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in a packet travelling without change of form.

In this paper, we explore both kinds of nonlinear
topographic Rossby waves. For the solitary waves,
we examine in some detail which topographies sup-
port cyclonic or anticyclonic waves. For the wave
packet, we pick a topography with a shelf, a slope,
and then a flat bottom further offshore. This can
support waves confined over the slope, especially
when the wavelength is small.

BAROTROPIC MODEL EQUATIONS

We will use the barotropic, rigid lid, shallow water
equations as the simplest model system for rep-
resenting topographic Rossby waves; the rigid lid
filters out the surface gravity waves. We are left
with conservation of potential vorticity and a slightly
more complex inversion relationship between the
PV and the mass-transport streamfunction.

∂

∂t
u+ (ζ + f )ẑ× u = −∇(p + 1

2
u2)

∇ · uH = 0 ⇒ u =
H0
H
(−ψy , ψx)

We write the potential vorticity as

Q = H0
ζ + f

H
− f0 =

H0
H
(ζ + f )− f0

with H0 = H(0, 0). The f0 just removes a potentialy
large constant.

Defining λ = H0/H and also h = H/H0 (so we
can use whichever is convenient) allows us to write
the potential vorticity (PV) equation as

∂

∂t
Q+ λJ(ψ,Q) = 0

with

Q = λ∇ · λ∇ψ + λf − f0
It is more convenient to introduce the operator L =
∇ · λ∇ and use the vorticity equation

∂

∂t
ζ + J(ψ, λf ) + J(ψ, λζ) = 0

or, written just in terms of the streamfunction,

∂

∂t
Lψ + J(ψ, λf ) + J(ψ, λLψ) = 0 (1)

The quasigeostrophic (QG) version replaces λ
by one in the definition of vorticity and in its ad-
vection; the second term gives the planetary and

topographic beta

J(ψ, λf ) = λJ(ψ, βy) + f J(ψ, λ− 1)
≃ J(ψ, βy) + f0J(ψ, λ− 1)

The QGPV is then

Qqg = ∇2ψ + βy + f0(λ− 1)

and satisfies
∂

∂t
Qqg + J(ψ,Qqg) = 0 (2)

If λ−1 is, as required, small (order δH/H0), then we
expand and drop all higher order terms. If we write
the QG system in terms of the topographic elevation
B(x) = H0 − H(x), λ becomes (1− B/H0)−1 and
the QG topographic beta is just f0B(x)/H0 (drop-
ping terms higher order in B/H0). The QGPV takes
the familiar form

Qqg = ∇2ψ + βy + f0
B

H0

We will use H = H(y) for the rest of the paper.

Linear but also nonlinear solutions

Just as a single Rossby wave in the beta-plane
barotropic vorticity equation is a nonlinear solution,
we can ask when that also holds in the full equation
(1). A steadily propagating solution will have

∂

∂t
Q = −c ∂

∂x
Q = λJ(c

∫ y

h,Q) ≡ λJ(ψ+cR,Q)

with R =
∫ y
h. We let

Q(φ) = −K2φ

so that

∇ · λ∇ψ + f − f0h = −K2hψ − cK2hR

The x-dependent and x-independent parts must
balance separately

∇ · 1
h
∇ψ = −K2hψ

so that K2 is a total wavenumber, while

f

h
− f0 = f λ− f0 = −cK2R
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relates the propagation speed to the topography
and the wavenumber. Taking a y -derivative gives

∂

∂y
(f λ) = −cK2h = −cK2 f

f λ

so that the linear solution will satisfy the nonlinear
equations when the topography has the form

f λ
∂

∂y
(f λ) = f0f α

with α a constant. The dispersion relation is simply

c = −αf0
K2

Solving the equation for the topography gives

f λ =
√
f 20 + 2αf

2
0 y + αf0βy

2

(with the condition λ(0) = 1). In terms of the depth,
the topography must satisfy

H

H0
= h =

1 + βy/f0√
1 + 2α(y + βy2/2f0)

On the f -plane, this says our topography is

h = (1 + 2αy)−1/2 or λ = (1 + 2αy)1/2

Thus we have related the wave speed to the shape
and slope of the topography. In particular, if the
bottom elevation is

B = H0 −H = H0(1− h)
and

s =
∂

∂y
B = −H0α(1 + 2αy)−3/2 ⇒

s(0) = H0α

we find

c = − f0s(0)
H0

1

K2

This is exactly the QG result, but here the slope
is not constant, and the structure of the wave is
not sinusoidal in y . Note that this can only work
in a bounded region, since H will blow up for y =
−1/(2α). Therefore, we need at least one wall at
some y north of this point.

Solitary waves

For the rest of the paper, we will ignore the plane-
tary β; the y direction is now upslope and the x is
along the topography. The equations will be nondi-

mensionalized with the time scale 1/f0 and space
scale L characterizing the slope ( ∂H∂y ∼ H0/L). The
equations become

∂

∂t
ζ + β

∂

∂x
ψ + J(ψ, λζ) = 0

ζ = ∇ · λ∇ψ , β =
∂

∂y
λ

with the QG form having λ→ 1 and retaining only
the lowest order term in the expansion of the topo-
graphic β.

Clarke (1971) derived the solitary wave solutions
like those here; we are adding the KdV equation and
more discussion on the role of the topographic form
on the waves. Malanotte-Rizzoli & Hendershott
(1980) also studied the dynamics, but using the
quasi-geostrophic equations; qualitatively, these are
similar to the cases here with order one variation
in amplitude, but there are noticeable quantitative
differences.

If there are no closed streamlines in the co-
moving frame, then we just have

∇ · 1
h
∇ψ = hQ

(
R +

ψ

c

)
− hQ (R)

For velocities small compared with the phase speed,
we can Taylor-expand the r.h.s.

∇ · 1
h
∇ψ = 1

c
hQ′ψ + 1

2c2
hQ′′ψ2

and evaluate the Q′ by y -derivatives of

Q
(∫ y

0

h

)
=
1

h
− 1 = (λ− 1)

giving

hQ′ = ∂

∂y
λ ≡ β(y) and hQ′′ = 1

2

∂2

∂y2
λ2 ≡ γ(y)

If h decreases monotonically towards positive y

then λ increases with y . (In the limit of small depth
variations λ is nearly equal to a constant plus the
topography height divided by H0.)

With these definitions, our Taylor-expanded
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equation1, is

∇ · λ∇ψ = β

c
ψ +

γ

2c2
ψ2 (3)

Although the steps below can be taken in general,
we note that there is a particular topography for
which the Taylor-series truncates exactly; i.e., Q is
a quadratic function of its argument:

Q(φ) =
(a
3
φ+ 1

)2
− 1 ⇒ h = (1 + ay)−2/3

In that case, which we will call “quadratic topogra-
phy”, the wave satisfies (3) exactly with

β =
2a

3
h1/2 , γ =

2a2

9
h

There is no restriction on the amplitude; when, how-
ever, there are closed streamlines, Q need not be
the same on interior streamlines as it is on the ones
extending to infinity. This does not mean that the so-
lution is invalid, but rather that there are many other
solutions with different Q(R + ψ/c) interior func-
tions. Examples of such multi-valued Q functions
are “modons” (Stern 1975, Flierl et al. 1980) and
potential vorticity patches (Moore & Saffman 1971);
cases with topography include Wang (1992), Baker-
Yeboah et al. (2010) Zhang et al. (2011).

We just summarize Clarke’s (1971) procedure:
look for an approximate solution of the form

ψ = ϵ2A(ϵx)g(y) + ϵ4ψ1

At the lowest order

D0(g) ≡
∂

∂y
λ
∂

∂y
g =

β

c0
g (4)

This determines the meridional structure and, with
appropriate boundary conditions, the lowest order
phase speed c0.

The second order equation is

D0(ψ1)−
β

c0
ψ1 + gλ

∂2

∂x2
A = −c1βg

c20
A+

γg2

2c20
A2

We multiply by g and integrate (with the integral
notated as

〈
•
〉
), using the fact that the operator

1The QG form will be the same except ζ = ∇2ψ and γ =
∂2λ/∂y2; for the sample topographies in table 1, the values
can be quite different from our finite-topography case

D0 − β/c0 is self-adjoint. The result is〈
λg2

〉 ∂2
∂x2

A = −Ac1
c20

〈
g2β

〉
+

〈
g3γ

〉
2c20

A2

For an isolated disturbance Axx will have the same
sign as A so that we can have decaying expo-
nentials when A is small. Taking into account
Q′ > 0 ⇒ β > 0, this condition requires c1 < 0.
As is characteristic of solitary waves, it will travel
faster than the fastest long wave. (This is implicit in
the QG dispersion relation c = c0/(1 + k2/ℓ2) but
with k2 negative.) To match between the decaying
solutions to the right and left, there must be a re-
gion where the amplitude is large enough so that
the second term dominates and makes the second
derivative of A be opposite in sign from A. This
requires A

〈
g2γ

〉
< 0 where g is the gravest mode

across the channel and is chosen to be positive. If
h−2 has positive [negative] curvature, the eddy will
be cyclonic [anticyclonic].

The usual solution for the x-structure of the wave

A A0 sech
2(Kx)

with

c1 = −4K2c20

〈
λg2

〉〈
βg2

〉
A0 = −12K2c20

〈
λg2

〉〈
γg3

〉
indeed shows that c1 < 0 and, for positive γ, that
the wave is cyclonic with a low in the streamfunction,
A0 < 0.

KdV

To demonstrate that these are “solitons”, we shall
show that the time-dependent equation for the am-
plitude is indeed the Kortweg-deVries equation, so
that faster eddies will pass through slower ones
with only a phase shift, and arbitrary, localized dis-
turbance of the right sign will break up into a set
of solitons and a weak dispersive field. See the
literature on “inverse scattering”, e.g., Ablowitz &
Segur (1981).

In the vorticity equation

∂

∂t
ζ + J(ψ, λ) + J(ψ, λζ) = 0
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with

ζ = ζ(x − c0t, y , t) ⇒
∂

∂t
ζ +

∂

∂x
(ψβ − c0ζ) + J(ψ, λζ) = 0

we introduce a long scale for x , a slow time, and
small amplitude waves

ζ = ϵζ(ϵx, y , ϵ2t) , ζ = D0ψ + ϵ2λ
∂2ψ

∂x2

The order ϵ equation is just

∂

∂x
(ψ0β − c0D0ψ0) = 0

which has the solution

ψ0 = A(ϵx, ϵ
2t)g(y)

The translation rate c0 is the long wave speed – the
gravest eigenvalue of

D0g =
g

c0
β(y) with g(y0) = g(y1) = 0

The order ϵ3 equation includes the order ϵ2 correc-
tion to ψ0 and terms with the large-scale derivatives
in x and t

∂A

∂t
D0g +

∂

∂x
(ψ1β − c0Dψ1)− c0λ

∂3A

∂x3
g

+ A
∂A

∂x

(
g
∂

∂y
λDg − ∂g

∂y
λDg

)
= 0

Multiplying by g and integrating over y gives〈
βg2

〉
c0

∂A

∂t
− c0

∂3A

∂x3
〈
λg

〉
+ A

∂A

∂x

〈
g2
∂

∂y
λDg − g ∂g

∂y
λDg

〉
= 0

Substituting D0g = gβ/c0 leads to

∂A

∂t
− c20

〈
λg2

〉〈
βg2

〉 ∂3A
∂x3

+ A
∂A

∂x

〈
γg3

〉〈
βg2

〉 = 0
This is a form of the KdV equation; therefore the
long waves will indeed behave like solitons as long
as they all have the same y -structure.

Topographic shape

The shape used for the topography determines the
sign of the solitary waves; however, some choices
can also be convenient in that the lowest order equa-

tion for the y -structure has a simple form. Fig. 1
shows sample plots of the depth profiles, with char-
acteristic properties listed in table 1. The case

h =
1

(1 + ay)n
or λ = (1 + ay)n

gives a simple expression for γ = a2n(2n − 1)(1 +
ay)2n−2 showing that it will be negative for 0 <
n < 0.5 (anticyclones) and positive for n > 0.5
(cyclones). The latter includes our quadratic topog-
raphy with n = 2/3. The n = 1/2 case, not sur-
prisingly, has γ = 0 so that nonlinear steepening
cannot balance dispersion. The n = 1/4 topogra-
phy, which supports anticyclones has a long, fairly
flat shelf with a rapid drop-off (Fig. 1). The linear
slope, n = 1, used in QG models as an equivalent
β no longer has γ = 0 so that nonlinear effects will
enter at long times.

For ψ = λ−1/2φ, the vorticity operator becomes

ζ = λ1/2

[
∇2 − λ−1/2 ∂

2λ1/2

∂y2

]
φ

and our steadily-propagating equation becomes[
∇2 − 1

λ1/2
∂2λ1/2

∂y2

]
φ =

β

λc
φ+

γ

2c2λ3/2
φ2

The north-south structure equation with g =

λ−1/2G(y) is

∂2

∂y2
G − ΓG = 1

c0

β

λ
G with Γ =

1

λ1/2
∂2λ1/2

∂y2

In table 2, we use this to present forms of the topog-
raphy which will have analytical solutions for G in
the domain 1/2 ≤ y ≤ 1/2.

The values of B and k will be set by the posi-
tions of the walls such that G vanishes. We will have
c < 0 so that k is real. Special cases of the Bessel
functions are included in the table. Higher order
Bessel function or spherical Bessel function solu-
tions will exist for integer or half integer n values,
respectively. The sign of k also has to be chosen
so that the solutions are oscillatory in the domain;
for the Airy functions we need kz1/2 < 0 so that the
minus sign is required.

Two-D solitary waves

The solitary wave solutions are not entirely satisfac-
tory; one would like to consider a topography which,
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Table 1. Example profiles
λ β γ

exp(ay) a exp(ay) 2a2 exp(2ay)
(1 + ay)n na(1 + ay)n−1 n(2n − 1)a2(1 + ay)2n−2
(1 + ay) a a2

(1 + ay)1/2 1
2
a(1 + ay)−1/2 0

(1 + ay)2/3 (2/3)a(1 + ay)−1/3 (2/9)a2(1 + ay)−2/3

(1− a′y)−1 (n = −1, a = −a′) a′(1− a′y)−2 3a′2(1− a′y)−4

Figure 1. Depth profiles −h(y) for λ = eay and (1 + ay)n with n = 1, 2/3 (cyc.), 1/2 (no solitary waves), 1/4
(anticyc.). The corresponding values of γ(0)/a2 are 2, 1, 2/9, 0,−1/8. a is chosen so that the depth range is 10H0 in
the interval −1/2 < y < 1/2. The n = −1 case corresponds to a constant slope and has a = −18/11 with γ/a2 = 3
(cyc.).

Table 2. Topography with analytic solutions
λ Γ βλ−1 γλ−3/2

exp(ay) a2/4 a 2a2 exp(ay/2)

(1 + ay)n a2

4
n(n − 2)(1 + ay)2 na(1 + ay)−1 n(2n − 1)a2(1 + ay)n/2−2

(1− ay)−1 (3/4)a2(1− ay)−2 a(1− ay)−1 3a2(1− ay)−5/2

λ G notes c0

exp(−ay) cos(πy) −a/(π2 + a2/4)
(1 + ay)n z1/2Cν(kz1/2) + Bz1/2C−ν(kz1/2) z = (1 + ay) > 0,

(Bessel functions) ν = |1− n|,
k = ±

√
−4n/ac0

n (Bessel cases) ν functions C±ν
-1, a < 0 2 ordinary Bessel functions J2, Y2
0 1 J1, Y1
1/2 1/2 spherical Bessel functions j0, y0
2/3 1/3 Airy functions Ai, Bi
1 0 J0, Y0

like the continental slope, has a limited extent con-
necting two flat regions. But using a representative
topographic model λ = 1 + d tanh(y) indicates the
problem. The solutions in the flat regions just have
∂2ψ/∂y2 = 0 so that solutions will not decay. In-

deed, if we look at the QG form, the y -structure
problem

∂2g

∂y2
=
d sech2(y)

Lc
g

Ocean and Coastal Research 2022, v70(suppl 1):e22037 6
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has one solution g = tanh(y) with c = −d/2. The
second solution is linear in y away from the topog-
raphy

g = ey sech(y)− (y + 1) tanh(y)

While this suggests we need a two-scale approach
with y -variation on scales comparable to the length
of the solitary wave, we suspect this will still not
lead to solutions. The difficulty is that the linear
wave solutions which are bounded in y are not non-
dispersive in the long wave limit, but, as shown in
the next section, have c ∼ −d/k . So the standard
approach of starting with a large scale structure
with weak dispersion and weak nonlinearity will not
work.

Large amplitude solitons can have closed
streamlines, in which case Q(R+ψ/c) is not deter-
mined by the value on the open streamlines. Adding
PV anomalies in the interior may give solutions
which decay in the flat areas (as would a point
vortex), but would not prevent loss of energy by
radiation since the speed would still resonate with
some waves; c.f, Flierl & Haines (1994).

However, we can expect there will be isolated
dipole solutions (“modons”) moving eastward. This
is apparent if we take d small so that we can use
QG and an examine a dipole centered at y = 0 with
small enough scale that λ−1 ≃ dy . The modons in
the barotropic vorticity equation (Larichev & Reznik
1976, Flierl et al. 1980) will be good approximations
to solutions.

ENVELOPE SOLITARY WAVES

We will use the hyperbolic tangent inverse topogra-
phy which has a sloping bottom joining a shallow
shelf to the deep ocean

λ = 1 + d tanh(y) ⇒
β = d sech2(y)

γ = d sech2(y)[3d sech2(y)− 2 tanh(y)− 2d ]

as shown in Fig. 2. We will be using a multi-scale
expansion of the basic equation

∂

∂t
Lψ + β ∂

∂x
ψ + J(ψ, λLψ) = 0

Figure 2. Characteristics of the shelf-slope topography
for λ = H(0)/H = 1 + d tanh(y). The bathymetry is
shown as −H(y)/H(−∞).

assuming the packet is long in the x-direction com-
pared to the carrier wave and that the amplitude is
small.

Linear solution

The linear problem has solutions

ψ = Ae ık(x−ct)g(y) + c.c.

The y -structure is defined by the eigenvectors of

D1g ≡
[
∂

∂y
λ
∂

∂y
− λk2

]
g =

β

c
g (5)

The operator D1 and its relatives

Dn =
∂

∂y
λ
∂

∂y
− λn2k2

will appear in solving for the harmonics of the carrier
wave. (We have already seen D0 in section 3.)

The QG form simply replaces λ with 1; the solu-
tions are

g(y) = sechk(y) , c = − d

k2 + k

[dimensionally, c = −(df /L)/(k2 + k/L) with L

the topographic width and df /L acting as β]. The
eigenfunctions g(y) of the full (non-QG) equa-
tion (4), found numerically, are not symmetrical,
being peaked in slightly deeper water and showing
a more rapid decay offshore than onshore (Fig. 3).
This is most noticeable when the ratio of the shelf
and offshore depths (1− d)/(1 + d) is small. This

Ocean and Coastal Research 2022, v70(suppl 1):e22037 7
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Figure 3. g(y) for k = 0.5 and d = 0.2 or 0.8 for the
full equations and the QG approximation.

Figure 4. c(k) d = 0.2 and 0.8 for the full equations
and the QG approximation (dashed).

suggests that QG may be acceptable, given the
simplifications aleady in the setup: the neglect of
stratification and variations in slope and orientation
of the topography. However, we will continue to use
numerics.

The phase speed, c , is also quite simlar to the
QG result (Fig. 4); like β-plane Rossby waves, these
move westward, and the speed decays as 1/k2 for
short waves. Long waves, however, have a cross-
topography structure which widens with the wave-
length, so that the average topographic β decreases
and c ∼ −1/k .

Figure 5. cg(k) d = 0.2 and 0.8 for the full equations
and the QG approximation (dashed).

Wave packets
A packet will travel at the group velocity; this is
eastward and varies with the primary wavenumber
(Fig. 5).
But the envelope itself will change with time un-
der linear dynamics since the packet has a peaked
spectrum, and the different waves have slightly dif-
ferent cg values. This evolution occurs on a time-
scale on the order of the time scale for the waves
(1/ω) times the square of the ratio of packet to car-
rier wave scale.

The nonlinearity can enter in several ways: the
linear solution does not exactly satisfy the nonlinear
equations:

J(ψ, λLψ) = J(ψ, βλ
c
ψ) = ψ

∂ψ

∂x

∂

∂y
(βλ)

=
1

2
γ(y)

∂

∂x
ψ2 ̸= 0

and this term will generate both harmonics and a
packet-scale flow. These interact with the primary
wave to alter the group propagation speed and its
shape.

In the multi-scale approach, we define ϵ to be the
ratio of the carrier wave scale to the packet width;
then the streamfunction can be written as

ψ → ϵψ(x − ct, ϵ(x − cgt), ϵ2t)→ ϵψ(x, X, T )

and the various derivatives become
∂

∂t
→ −c ∂

∂x
−ϵcg

∂

∂X
+ϵ2

∂

∂T
,

∂

∂x
→ ∂

∂x
+ϵ

∂

∂X

with the→ indicating that these replacements are

Ocean and Coastal Research 2022, v70(suppl 1):e22037 8
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used in our dynamical equation (1) (divided by ϵ).
Then ψ is expanded in powers of ϵ, and we end up
with a sequence of equations

−c ∂
∂x
L0ψ0 + β

∂

∂x
ψ0 = 0 (6)

−c ∂
∂x
L0ψ1 + β

∂

∂x
ψ1 = cg

∂

∂X
L0ψ0 − β

∂

∂X
ψ0

+c
∂

∂x
L1ψ0 − J(ψ0, λL0ψ0) (7)

−c ∂
∂x
L0ψ2 + β

∂

∂x
ψ2 = cg

∂

∂X
L1ψ0 + cg

∂

∂X
L0ψ1

−β ∂

∂X
ψ1 + c

∂

∂x
L2ψ0 + c

∂

∂x
L1ψ1

− ∂

∂T
L0ψ0 − JX(ψ0, λL0ψ0)

−J(ψ0, λL1ψ0) − J(ψ1, λL0ψ0)
− −J(ψ0, λL0ψ1) (8)

with the definitions

L0 = ∇ · λ∇ , L1 = 2λ
∂2

∂x∂X
, L2 = λ

∂2

∂X2

J(a, b) = axby − aybx , JX(a, b) = aXby − aybX

ZEROTH ORDER: Equation (6) has the linear
solution but with a spatially and temporarily varying
amplitude

ψ0 = A(X,T ) e
ık[x−ct]g(y) + c.c.

resulting in the eigenvalue/eigenfunction equation
above (5) and the characteristics portrayed in Fig. 6.

FIRST ORDER: The solvability equation,
formed by multiplying (7) by the adjoint solution
exp(−ıkx)g(y), averaging over x , and integrating
over y , eliminates the left side.2 From the right side,
we have

∂A

∂X

[cg
c

〈
βg2

〉
−

〈
βg2

〉
− 2ck2

〈
λg2

〉]
= 0 ⇒

cg = c + 2c
2k2

〈
λg2

〉〈
βg2

〉
with

〈
F
〉
=

∫∞
−∞ F (y)dy . We can verify that the

group velocity matches the usual definition

cg =
∂

∂k
kc = c + k

∂c

∂k

2Which is a solution to the zeroth order problem since−cL0+β
is self-adjoint.

by differentiating the equation (5) for the dispersion
relation with respect to k

[cD1 − β]
∂g

∂k
= −

[
∂c

∂k
D1g − 2cλkg

]
= −

[
1

c

∂c

∂k
βg − 2cλkg

]

Again, projecting with g leads to

∂c

∂k

〈
βg2

〉
= 2c2k

〈
λg2

〉
which is consistent with the expression above. Note
that, as expected from the dispersion relation figure,
the group velocity is positive so that the packet
propagates in the opposite direction as the peaks
and troughs.

The first order stream function takes the form

ψ1 = A0(X,T )g0(y) + A1(X,T )e
ıkxg1(y) + c.c.

+ A2(X,T )e
ı2kxg2(y) + c.c.

The Jacobian, J(ψ0, λL0ψ0) gives only second har-
monic terms; these lead to

A2 =
1

2c2
A2 ,

[
D2 −

β

c

]
g2 = γg

2 (9)

The A1 term arises because there is a non-resonant
residual after substituting the expression for cg in
the linear terms; this gives

A1 =
ı

kc
AX ,

[
D1 −

β

c

]
g1 =

[cg
c
β−β−2ck2λ

]
g

(10)
Finally the A0, which is the packet-scale flow, repre-
sents an x-independent solution to the left side. Its
amplitude and structure comes from the next order.

SECOND ORDER: The right side of (8) will have
terms which do not depend on x ; these produce an
equation for A0g0:

A0 = |A|2

(cgD0 − β)g0 =
γ

c
g2 − 1

c2
∂

∂y
(βλgg1)

+
1

c

∂

∂y
(gλD1g1) + k2

∂

∂y
(λ2g2)

We again project (8) by the adjoint to end up with
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Figure 6. y -structures g, g1, g2, ∂g0/∂y for k = 1.
The function g0 limits to linear slopes, positive (negative)
for y << 0, y >>: 0. We plot the ∂g0/∂y because that’s
all that enters into the coefficients below.

Figure 7. Amplitude-dependent packet K/A =
√
f3/2f2

setting the inverse size and Ω/A2 setting the frequency
shift.

the equation satisfied by the envelope

f1AT + ıkf2AXX + ıkf3|A|2A = 0 (11)

with

f1 =
〈
βg2

〉
/c

f2 = −cg − c
c2k2

〈
βgg1

〉
+ 2

〈
λgg1

〉
− (2cg + c)

〈
λg2

〉
f3 =

1

2c3
〈
g2g2γ

〉
− 1
c

〈
βλg2

∂g0
∂y

〉
−

〈
2g
∂g

∂y
λD0g0

〉
The calculations are tedious, and details are rele-
gated to Appendix A.

Solitary packet
Equation (11) is the nonlinear Schrödinger equa-
tion and has solitary solutions in which the packet
dispersion is balanced by nonlinear steepening or
flattening.

A = A sech(KX)e ıΩT , Ω = k
f2
f1
K2 , A2 = 2f2

f3
K2

with the condition that f2/f3 > 0. Fig. 7 shows K
and Ω which determine the scale and change in
propagation of the packet. We can regard the latter
as a change in the carrier wave, which now looks
like

A exp(ıkx − ıωt + ıϵ2Ωt)

Since both −ω and Ω are positive, the carrier wave
moves slightly faster to the west, while the packet
is propagating to the east.

Larger amplitude waves will both be associated
with a shorter packet and a larger speed-up of the
carrier wave. Unlike the solitary Rossby waves in
a channel (Malanotte-Rizzoli 1980) which exist for
the long waves with westward group velocity (and
in the regime where the carrier wave is unstable
to modulational perturbations, Plumb, 1977), these
travel in the opposite direction as the carrier wave.
But, from the non-linear Schrödinger equation, mod-
ulation instability can indeed occur when f2/f3 > 0,
so the isolated packets can form from an longer
wave train.

DISCUSSION

We have shown that the topographic beta-effect
can support either cyclonic solitons or, for topogra-
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phies with ∂2(1/h2)/∂y2 negative, anticyclones. In
the example, this topography has weak slope until
near the outer boundary where it drops suddenly.
However, the need for boundaries seems to make
these solutions less useful than they might other-
wise be.3 A model with stratification, on the other
hand, could lead to more relevant solutions; unlike
the barotropic model here, the long waves with lim-
ited cross-topography structure can become nondis-
persive (Allen 1975), opening up the possibility of
interesting solitary solutions, However, it is likely
that the barotropic mode will be excited on flat ar-
eas, so that multiple scales will appear in y ; we are
currently studying this problem.

The nonlinear barotropic wave packets, on the
other hand, have the nice feature that they can be
confined over the topographic slope. Unlike beta-
plane analogues, the group velocity is opposite in
direction to the phase speed, This may depend on
the specifics of the topography, which can, as we
saw in the solitary wave discussion, change the
sign of the group velocity. But for the topography
with a limited region of slope joining flat regions,
energy will be moving with the shallow region to its
left (in the northern hemisphere), with the phase
translating in the opposite direction.

Although we have used various topographic
shapes, the qualitative results will not be terribly
sensitive to the exact structure. There are two re-
quirements for these nonlinear solutions to exist.
First the linear problem (∇ · λ∇ψ = βψ/c with
either just the cross-topographic derivatives for soli-
tary waves or both for the groups) must have a
well-behaved solution. Secondly, for solitary waves,
the projection of the nonlinear terms on the lowest
order cross-topographic structure must be non-zero.
For groups, the requirement f1/f2 > 0 is more diffi-
cult to evaluate.

Nonlinearity will be important when the steep-
ness |u|/c is not very small. Observations, (e.g.,
(Johns & Watts 1986)) suggest this ratio is indeed
order one. It seems likely that the western boundary
currents and associated eddies could provide a dis-
turbance, but the solitary wave could be disrupted

3Although a solution with just a boundary at the coast would
be of interest.

by encountering changes in the topographic slope
or direction as well as by additional forcing before
it really settles. However the calculations herein
suggest that linear wave theory is only part of the
story.
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APPENDIX A: ALGEBRAIC DETAILS
Here, we give the term-by-term decomposition of
the right-hand side of the second order equation (8)[

cL0 − β
]
ψ2,x = −cL1ψ1,x − cL2ψ0,x − cgL0ψ1,X

− cgL1ψ0,X + βψ1,X +
1

c
JX(ψ0λβψ0)

+
1

c
J(ψ1, λβψ0) + J(ψ0, λL0ψ1)

+ J(ψ0, λL1ψ0) +
β

c
ψ0,T

(with subscripts indication partial derivatives). We
can split each term into the contribution to e ıkx or the
x-independent part. The former terms will be res-
onant and their sum, projected on exp(−ıkx)g(y)
gives the solvability condition, while the latter will
determine A0.

−cL1ψ1,x = ı2kAXXλg1e
ıkx

−cL2ψ0,x = −ıkcAXXλge ıkx

−cgL0ψ1,X = −ı cg
ck
AXXD1g1e ıkx − cg |A|2XD0g0

−cgL1ψ0,X = −2ıkcgAXXλge ıkx

+βψ1,X = ı
1

ck
AXXβg1e

ıkx + |A|2Xβg0

+
1

c
JX(ψ0λβψ0) =

1

c
|A|2X(λβ)yg2

+
1

c
J(ψ1, λβψ0) =

ık

c
|A|2A

[
1

c2
(βλgg2)y − βλgg0,y

]
e ıkx

− 1
c2
|A|2X(βλgg1)y

+J(ψ0, λL0ψ1) =
ık

2c2
|A|2A [−g(λD2g2)y − 2gyλD2g2

+ 2c2g(λD0g0)y

]
e ıkx +

1

c
|A|2X(gλD1g1)y

+J(ψ0, λL1ψ0) = 2k2|A|2X(λ2g2)y
β

c
ψ0,T =

1

c
ATβge

ıkx

The zero mode terms are all proportional to |A|2X
and determine g0

−cgD0g0 + βg0 +
γ

c
g2 − 1

c2
(βλgg1)y

+
1

c
(gλD1g1)y + 2k2(λ2g2)y = 0
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Multiplying the e ıkx terms by the adjoint and inte-
grating leads to

AT

〈
βg2

〉
c
+ ıkAXX

[
2
〈
gλg1

〉
− c

〈
λg2

〉
− cg
ck2

〈
gD1g1

〉
− 2

〈
λg2

〉
+
1

ck2
〈
βgg1

〉]
+
ık

c
|A|2A

[
1

c2
〈
g(βλgg2)y

〉
−
〈
βλgg0,y

〉
− 1
2c

〈
g2(λD2g2)y

〉
− 1
c

〈
ggyλD2g2

〉
+c

〈
g2(λD0g0)y

〉]
= 0

We can do a few integrations by parts (noting that〈
∂
∂y F

〉
= 0) and find

AT

〈
βg2

〉
c
+ ıkAXX

[
2
〈
gλg1

〉
− c

〈
λg2

〉
− cg
c2k2

〈
gβg1

〉
−2cg

〈
λg2

〉
+
1

ck2
〈
βgg1

〉]
+
ık

c
|A|2A

[
1

2c2
〈
γg2g2

〉
−
〈
βλg2g0,y

〉
− 2c

〈
ggyλD0g0

〉]
= 0

Expressing this as

f1AT + ıkf2AXX + ıkf3|A|2A = 0

gives the values of fj in the text and leads to the
sech solution.
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