Evaluation of ocean chlorophyll-a remote sensing algorithms using in situ fluorescence data in Southern Brazilian Coastal Waters

Authors

  • Gabriel Serrato de Mendonça Silva Universidade Federal de Santa Catarina - UFSC
  • Carlos Alberto Eiras Garcia

DOI:

https://doi.org/10.1590/2675-2824069.20-014gsdms

Keywords:

Ocean color, MODIS, VIIRS, Southern Brazilian Coastal Waters, in situ fluorescence chlorophyll-a, moored measurements

Abstract

A performance evaluation of ocean color chlorophyll-a algorithms was conducted based on the in situ fluorescence chlorophyll concentration (Fchl) measured by a sensor on the buoy SiMCosta-SC01 in coastal waters of South Brazil. The operational algorithms are used in MODIS and VIIRS sensors to derive satellite chlorophyll concentration (Csat). Fchl values were successfully corrected for nonphotochemical quenching (NPQ) by an interpolation of sunrise and sunset daily measurements. A laboratory-derived calibration coefficient was applied to convert the unquenching Fchl values into chlorophyll concentration (Cflu). Overall, linear regression analysis between Cflu and Csat for both sensors showed good results, with the coefficient of determination (R2) varying between 0.88 and 0.96, slopes between 0.92 and 1.02 and intercepts between -0.17 and 0.13. The MODIS algorithm (R2 = 0.96, slope = 1.02, RMSE = 0.16 mg m-3, BIAS = 0.16 mg m-3, for N = 222 and time interval ±1 h) presented slightly better performance than VIIRS (R2 = 0.92, slope = 0.96, RMSE = 0.25 mg m-3, BIAS = -0.25 mg m-3, for N = 284 and time interval ±1 h). These results represent the most comprehensive satellite data analysis for this region, suggesting that the approach may be applicable to other SiMCosta buoys.

References

BAILEY, S. W. & WERDELL, P. J. 2006. A multi-sensor approach for the on-orbit validation of ocean color satellite data products. Remote Sensing of Environment, 102(1-2), 12-23, DOI: https://doi.org/10.1016/j.rse.2006.01.015

Links ]

BANKS, A. C., PRUNET, P., CHIMOT, J., PINA, P., DONNADILLE, J., JEANSOU, E., LUX, M., PETIHAKIS, G., KORRES, G., TRIANTAFYLLOU, G., FONTANA, C., ESTOURNEL, C., ULSES, C. & FERNANDEZ, L. 2012. A satellite ocean color observation operator system for eutrophication assessment in coastal waters. Journal of Marine Systems, 94(Suppl 1), S2-S15, DOI: https://doi.org/10.1016/j.jmarsys.2011.11.001

Links ]

BEHRENFELD, M. J., WESTBERRY, T., BOSS, E., O’MALLEY, R., SIEGEL, D., WIGGERT, J. D., FRANZ, B., FELDMAN, G., DONEY, S., MOORE, J., DALL’OLMO, G., MILLIGAN, A., LIMA, I. & MAHOWALD, N. 2009. Satellite-detected fluorescence reveals global physiology of ocean phytoplankton [online]. Biogeosciences, 6(5), 779-794. Available at: https://aquila.usm.edu/fac_pubs/1132 [Accessed: 05 Jun. 2019].

Links ]

BLONDEAU-PATISSIER, D., GOWER J. F. R., DEKKER, A. G., PHINN, S. R. & BRANDO, V. E. 2014. A review of ocean color remote sensing methods and statistical techniques for the detection, mapping and analysis of phytoplankton blooms in coastal and open oceans. Progress in Oceanography, 123, 123-144, DOI: https://doi.org/10.1016/j.pocean.2013.12.008

Links ]

BORDIN, L. H., MACHADO, E. C., CARVALHO, M., FREIRE, A. S. & FONSECA, A. L. D. O. 2019. Nutrient and carbon dynamics under the water mass seasonality on the continental shelf at the South Brazil Bight. Journal of Marine Systems, 189, 22-35, DOI: https://doi.org/10.1016/j.jmarsys.2018.09.006

Links ]

BRASIL. 1990. Decreto n° 99.142, de 12 de março de 1990. Cria, no Estado de Santa Catarina, a Reserva Biológica Marinha do Arvoredo, e dá outras providências. Diário Oficial da União, Brasília (DF), Seção 1, pp. 5005.

Links ]

BRIGGS, N., PERRY, M. J., CETINIC, I., LEE, C., D’ASARO, E., GRAY, A. M. & REHM, E. 2011. High-resolution observations of aggregate flux during a sub-polar North Atlantic spring bloom, Deep Sea Research Part I: Oceanographic Research Papers, 58(10), 1031-1039, DOI: https://doi.org/10.1016/j.dsr.2011.07.007

Links ]

CAMPOS, P. C., MÖLLER, O. O., PIOLA, A. R. & PALMA, E. D. 2013. Seasonal variability and coastal upwelling near Cape Santa Marta (Brazil). Journal of Geophysical Research: Oceans, 118(3), 1420-1433, DOI: https://doi.org/10.1002/jgrc.20131

Links ]

CARBERRY, L., ROESLER, C. & DRAPEU, S. 2019. Correcting in situ chlorophyll fluorescence time-series observations for nonphotochemical quenching and tidal variability reveals nonconservative phytoplankton variability in coastal waters. Limnology and Oceanography: Methods, 17(8), 462-473, DOI: https://doi.org/10.1002/lom3.10325

Links ]

CARVALHO, J., SCHETTINI, C. & RIBAS, T. 2010. Estrutura termohalina do litoral centro-norte catarinense. Brazilian Journal of Aquatic Science and Technology, 2(1), 181-197.

Links ]

CASTRO FILHO, B. M. & MIRANDA, L. B. 1998. Physical oceanography of the western Atlantic continental shelf located between 4 N and 34 S: Coastal segment (4,W). In: ROBINSON, A. & BRINK, K. (eds.). The Sea. Oxford: John Wiley & Sons, v. 11, pp. 209-211.

Links ]

CHANG, N. B. & XUAN, Z. M. 2011. Exploring the nutrient inputs and cycles in Tampa Bay and coastal watersheds using MODIS images and data mining. In: GAO, W. & SHAW, D. R. (eds.). Remote sensing and modeling of ecosystems for sustainability VIII, 8156C. Bellingham: SPIE Digital Library (The International Society for Optics and Photonics), v. 5884, DOI: https://doi.org/10.1117/12.891871

Links ]

CIOTTI, A. M., GARCIA, C. A. E. & JORGE, D. S. F. 2010. Temporal and meridional variability of satellite-estimates of surface chlorophyll concentration over the Brazilian continental shelf. Pan-American Journal of Aquatic Sciences, 5(2), 236-253, DOI: https://panamjas.org/pdf_artigos/PANAMJAS_5(2)_236-253.pdf

Links ]

CLARKE, G. L., EWING, G. C. & LORENZEN, C. J. 1970. Spectra of backscattered light from the sea obtained from aircraft as a measure of chlorophyll concentration. American Association for the Advancement of Science, 167(3921), 1119-1121, DOI: https://www.jstor.org/stable/1728683

Links ]

CLOERN, J. E., FOSTER, S. Q., KLECKNER, A. E. 2014. Phytoplankton primary production in the world’s estuarine-coastal ecosystems. Biogeosciences, 11(9), 2477-2501, DOI: https://doi.org/10.5194/bg-11-2477-2014

Links ]

CULLEN, J. J. 1982. The deep chlorophyll maximum: comparing vertical profiles of chlorophyll a. Canadian Journal of Fisheries and Aquatic Sciences, 39(5), 791-803, DOI: https://doi.org/10.1139/f82-108

Links ]

CULLEN, J. J, CIOTTI, A. M., DAVIS, R. F. & LEWIS, M. R. 1997. Optical detection and assessment of algal blooms. Limnology and Oceanography, 42(5 Pt 2), 1223-1239, DOI: https://doi.org/10.4319/lo.1997.42.5_part_2.1223

Links ]

DALBOSCO, A. L. P., FRANCO, D., BARLETTA, R. C. & TREVISAN, A. B. 2020. Analysis of currents on the continental shelf off the Santa Catarina Island through measured data. Revista Brasileira de Recursos Hídricos, 25, e7, DOI: http://dx.doi.org/10.1590/2318-0331.252020180175

Links ]

FALKOWSKI, P. & KIEFER, D. A. 1985. Chlorophyll-a fluorescence in phytoplankton: relationship to photosynthesis and biomass. Journal of Plankton Research, 7(5), 715-731, DOI: https://doi.org/10.1093/plankt/7.5.715

Links ]

FENG, L. & HU, C. 2016. Cloud adjacency effects on top-of-atmosphere radiance and ocean color data products: a statistical assessment. Remote Sensing of Environment, 174, 301-313, DOI: https://doi.org/10.1016/j.rse.2015.12.020

Links ]

FIELD, C. B., BAHRENFIELD, M. J., RANDERSON, J. T. & FALKOWSKI, P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science, 281(5374), 237-240, DOI: https://science.sciencemag.org/content/281/5374/237

Links ]

FOCARDI, S., SPECCHIULLI, A., SPAGNOLI, F., FIESOLETTI, F. & ROSSI, C. 2009. A combinated approach to investigate the biochemistry and hydrography of a shallow bay in the South Adriatic Sea: The Gulf of Manfredonia (Italy). Environmental Monitoring and Assessment, 153, 209-220, DOI: https://doi.org/10.1007/s10661-008-0350-2

Links ]

GARCIA, C. A. E. & GARCIA, V. M. T. 2008. Variability of chlorophyll-a from ocean color images in the La Plata continental shelf region [online]. Continental Shelf Research, 28(13), 1568-1578. Available at: http://repositorio.furg.br/handle/1/3869 [Accessed: 10 Apr. 2018].

Links ]

GARCIA C. A. E., GARCIA, V. M. T. & MCCLAIN, C. R. 2005. Evaluation of SeaWiFS chlorophyll algorithms in the Southwestern Atlantic and Southern Oceans. Remote Sensing of Environment, 95(1), 125-137, DOI: https:doi.org/10.1016/j.rse.2004.12.006

Links ]

GARCIA, V. M. T., SIGNORINI, S., GARCIA, C. A. E. & MCCLAIN, C. R. 2006. Empirical and semi-analytical chlorophyll algorithms in the southwestern Atlantic coastal region (25-40 s and 60-45 w). International Journal of Remote Sensing, 27(8), 1539-1562, DOI: https://doi.org/10.1080/01431160500382857

Links ]

GIANNINI, M. F., GARCIA, A. E., TAVANO, V. & CIOTTI, A. M. 2013. Effects of low-salinity and high-turbidity waters on empirical ocean colour algorithms: an example for Southwestern Atlantic waters. Continental Shelf Research, 59, 84-96, DOI: https://doi.org/10.1016/j.csr.2013.04.013

Links ]

GIESKES, W. W. & KRAAY, G. W. 1983. Unknown chlorophyll a derivative in the North Sea and the tropical Atlantic ocean revealed by HPLC analysis. Limnology and Oceanography, 28(4), 757-766, DOI: https://doi.org/10.4319/lo.1983.28.4.0757

Links ]

GORDON, H. R. 2010. Some reflections on thirty-five years of ocean color remote sensing. In: BARALE, V., GOWER, J. F. R. & ALBEROTANZA, L. (eds.). Oceanography from space. New York: Springer-Verlag, pp. 289-306, DOI: https://doi.org/10.1007/978-90-481-8681-5_17

Links ]

GOWER, J. & KING, S. 2007. An Antarctic ice-related “superbloom” observed with the MERIS satellite imager. Geophysical Research Letters, 34(15), DOI: https://doi.org/10.1029/2007GL029638

Links ]

GRIMM, A. M. 2009. Variabilidade interanual do clima no Brasil. In: CAVALCANTI, I. F. A., FERREIRA, N. J., SILVA, M. G. A. J. & DIAS, M. A. F. S. (orgs.). Tempo e clima no Brasil. São Paulo: Oficina de Textos, pp. 353-374.

Links ]

HENSON, S. A., DUNNE, J. P. & SARMIENTO, J. L. 2009. Decadal variability in North Atlantic phytoplankton blooms. Journal of Geophysical Research: Oceans, 114(C4), C04013, DOI: https://doi.org/10.1029/2008JC005139

Links ]

HENSON, S. A., SARMIENTO, J. L., DUNNE, J. P., BOPP, L., LIMA, I., DONEY, S. C., JOHN, J. & BEAULIEU, C. 2010. Detection of anthropogenic climate change in satellite records of ocean chlorophyll and productivity. Biogeoscience, 7(2), 621-640, DOI: https://doi.org/10.5194/bg-7-621-2010

Links ]

HOOKER, S. B., ESAIAS, W. E., FELDMAN, G. C., GREGG, W. W. & MCCLAIN, C. R. 1992. An overview of SeaWiFS and ocean color. NASA Technical Memorandum 104566. Greenbelt: NASA (National Aeronautics and Space Administration).

Links ]

HU, C., LEE, Z. & FRANZ, B. 2012. Chlorophyll alpha-algorithms for oligotrophic oceans: a novel approach based on three-band reflectance difference. Journal of Geophysical Research: Oceans, 117(C1), C01011, DOI: https://doi.org/10.1029/2011JC007395

Links ]

IOCCG (International Ocean-Colour Coordinating Group). 2000. Remote sensing of ocean colour in Coastal, and other optically-complex, waters. In: SATHYENDRANATH, S. (ed.). Reports number 3 of the International Ocean-Colour Coordenating Group. Dartmouth: IOCCG, pp. 1-140, DOI: http://dx.doi.org/10.25607/OBP-95

Links ]

IOCCG (International Ocean-Colour Coordinating Group). 2013. In-flight calibration of satellite ocean-colour sensors. In: FROUIN, R. (ed.). Reports number 14 of the International Ocean-Colour Coordinating Group. Darthmouth: IOCCG, pp. 1-106, DOI: http://dx.doi.org/10.25607/OBP-105

Links ]

IOCCG (International Ocean-Colour Coordinating Group). 2017. Manual for real-time quality control of ocean optics data version 1.1: a guide to quality control and quality assurance of coastal and oceanic optics observations. Silver Spring: IOCCG, DOI: https://doi.org/10.25923/v9p8-ft24

Links ]

IWASAKI, N., KAJII, M., TANGE, Y., MIYACHI, Y., TANAKA, T., SATO, R. & INOUE, K. 1992. Status of ADEOS mission sensors. Acta Astronautica, 28, 139-146, DOI: https://doi.org/10.1016/0094-5765(92)90019-F

Links ]

JIANG, L. & WANG, M. 2013. Identification of pixels with stray light and cloud shadow contaminations in the satellite ocean color data processing. Applied Optcis, 52(27), 6757-6770, DOI: https://doi.org/10.1364/AO.52.006757

Links ]

KAHRU, M., BROTAS, V., MANZANO-SARABIA, M. & MITCHELL, B. G. 2010. Are phytoplankton blooms occurring earlier in the Arctic? Global Change Biology, 17(4), 1733-1739, DOI: https://doi.org/10.1111/j.1365-2486.2010.02312.x

Links ]

KLEMAS, V. 2011. Remote sensing techniques for studying coastal ecosystems: an overview. Journal of Coastal Research, 27(1), 2-17, DOI: https://doi.org/10.2112/JCOASTRES-D-10-00103.1

Links ]

KÖPPEN, W. & GEIGER, R. 1954. Klima der Erde (Climate of the earth). Wall Map 1:16 Mill. Gotha: Klett-Perthes.

Links ]

MAArE (Monitoramento Ambiental da Reserva Biológica Marinha do Arvoredo e Entorno). 2017. Relatório Técnico Final - Volume 2: Parâmetros Oceanográficos: Análise de parâmetros ambientais da coluna d ́água, plâncton e sedimentos [online]. Florianópolis: MAArE. Available at: http://www.maare.ufsc.br/wp-content/uploads/2018/06/Relatorio_Workshop_MAArE_2015.pdf [Accessed: 11 Oct. 2019].

Links ]

MÖLLER, O., PIOLA, A. R., FREITAS, A. C. & CAMPOS, E. J. D. 2008. The effects of river discharge and seasonal winds on the shelf off southeastern South America. Continental Shelf Research, 28(13), 1607-1624, DOI: https://doi.org/10.1016/j.csr.2008.03.012

Links ]

MOREL, A. 1974. Optical properties of pure water and pure sea water. In: JERLOV, N. G. & STEEMAN-NIELSEN, E. (eds.). Optical aspects of oceanography. London: Academic Press.

Links ]

MOREL, A. & PRIEUR, L. 1977. Analysis of variations in ocean color. Limnology and Oceanogr, 22(4), 709-722.

Links ]

O’REILLY, J. E., MARITORENA, S., MITCHELL, B. G., SIEGEL, D. A. M., CARDER, K. L., GARVER, S. A., KAHRU, M. & MCCLAIN, C. 1998. Ocean color chlorophyll algorithms for SeaWiFS. Journal of Geophysical Research: Oceans, 103(C11), 24937-24953.

Links ]

PANDOLFO, C., BRAGA, H. J., SILVA JÚNIOR, V. P., MASSIGNAN, A. M., PEREIRA, E. S. & THOMÉ, V. M. R. 2002. Atlas climatológico digital do Estado de Santa Catarina [online]. Florianópolis: Epagri. Available at: http://www.ciram.epagri.sc.gov.br/index.phpoption=com_contenteview=articleeid=708eItemid=483 [Accessed: 17 Jul 2016].

Links ]

PAQUETTE, M. 2016. Spatial patterns of benthic foraminifera as a support to the oceanographic characterization of Arvoredo biological marine reserve (South Atlantic, Brazil). Marine Environmental Research, 114, 40-50.

Links ]

PARK, J. 2010. Variability of seawifs chlorophyll-a in the southwest Atlantic sector of the Southern Ocean: strong topographic effects and weak seasonality. Deep Sea Research Part I: Oceanographic Research Papers, 57(4), 604-620.

Links ]

PEÑAFLOR, E. L. 2007. Detection of monsoonal phytoplankton blooms in Luzon Strait with MODIS data. Remote Sensing of Environment, 109, 443-450.

Links ]

PEREIRA, E. S. & GARCIA, C. A. E. 2018. Evaluation of satellite-derived MODIS chlorophyll algorithms in the northern Antarctic Peninsula. Deep-Sea Research Part II: Topical Studies in Oceanography, 149, 124-137, DOI: https://doi.org/10.1016/j.dsr2.2017.12.018

Links ]

PIOLA, A. R., MATANO, R. P., PALMA, E. D., MÖLLER JUNIOR, O. O. & CAMPOS, E. J. D. 2005. The influence of the Plata River discharge on the western South Atlantic shelf. Geophysical Research Letters, 32(1), L01603, DOI: https://doi.org/10.1029/2004GL021638

Links ]

PREISENDORFER, R. W. 1976. Hydrologic optics. Honolulu: National Technical Information Service.

Links ]

RAST, M. & BEZY, J. L. 1999. The ESA Medium Resolution Imaging Spectrometer MERIS: a review of the instrument and its mission. International Journal of Remote Sensing, 20(9), 1681-1702.

Links ]

ROESLER, C., UITZ, J., CLAUSTRE, H., BOSS, E., XING, X., ORGANELLI, E., BRIGGS, N., BRICAUD, A., SCHMECHTING, C., POTEAU, A., D’ORTENZIO, F., RAS, J., DRAPEAU, S., HAËNTJENS, N. & BARBIDEUX, M. 2017. Recommendations for obtaining unbiased chlorophyll estimates from in situ chlorophyll fluorometers: a global analysis of WET Labs ECO sensors. Limnology and Oceanography: Methods, 15(6), 572-585, DOI: https://doi.org/10.1002/lom3.10185

Links ]

RÖRIG, L. R. 2018. Phytoplankton patterns and processes in a tropical-subtropical transition region: Santa Catarina coast, southern Brazil. Plankton Ecology of the Southwestern Atlantic, 1, 269-288.

Links ]

SACKMANN, B. S., PERRY, M. J. & ERIKSEN, C. C. 2008. Seaglider observations of variability in daytime fluorescence quenching of chlorophyll-a in Northeastern Pacific coastal waters. Biogeosciences, 5, 2839-2865, DOI: https://doi.org/10.5194/bgd-5-2839-2008

Links ]

SALOMONSON, V. V., BARNES, W. L., MAYMON, P. W., MONTGOMERY, H. E. & OSTROW, H. 1989. MODIS: advanced facility instrument for studies of the Earth as a system. IEEE Transactions on Geoscience and Remote Sensing, 27(2), 145-153, DOI: https://doi.org/10.1109/36.20292

Links ]

SCHETTINI, C. A. F., CARVALHO, J. L. B. & JABOR, P. 1996. Comparative hydrology and suspended matter distribution of four estuaries in Santa Catarina State - Southern Brazil. In: Proceedings of the Workshop on Comparative Studies of Temperate Coast Estuaries. Bahia Blanca: UNS/IADO/NSF/IAI, pp. 29-32.

Links ]

SEEGERS, B. N., STUMPF, R. P., SCHAEFFER, B. A., LOFTIN, K. A. & WERDELL, P. J. 2018. Performance metrics for the assessment of satellite data products: an ocean color case study. Optics Express, 26(6), 7404-7422, DOI: https://doi.org/10.1364/OE.26.007404

Links ]

SHI, W. & WANG, M. 2007. Observations of a Hurricane Katrina-induced phytoplankton bloom in the Gulf of Mexico. Geophysical Research Letters, 34(11), l21603.

Links ]

SMITH, C. R. & BAKER, K. S. 1978. The bio-optical state of ocean waters and remote sensing. Limnology and Oceanography, 23(2), 247-259, DOI: https://doi.org/10.4319/lo.1978.23.2.0247

Links ]

SONG, H., JI, R., STOCK, C. & WANG, Z. 2010. Phenology of phytoplankton blooms in the Nova Scotian shelf Gulf of Marine region: remote sensing and modeling analysis. Journal of Plankton Research, 32(11), 1485-1499.

Links ]

STERCKX, S., KNAEPS, E. & RUDDICK, K. 1960. Detection and correction of adjacency effects in hyperspectral airborne data of coastal and inland waters: The use of the near infrared similarity spectrum. International Journal of Remote Sensing, 32(21), 6479-6505.

Links ]

STRICKLAND, J. D. H. 1960. Measuring the production of marine phytoplankton. Virginia: Fisheries Research Board of Canada.

Links ]

WANG, M., LIU, X., TAN, L., JIANG, L., SON, S., SHI, W., RAUSCH, K. & VOSS, K. 2013. Impacts of VIIRS SDR performance on ocean color products. Journal of Geophysical Research: Atmospheres, 118(18), 10-347, DOI: https://doi.org/10.1002/jgrd.50793

Links ]

WELSCH, C., SWENSON, H., COTA, S. A., DELUCCIA, F., HAAS, J. M., SCHUELER, C., DURHAM, R. M., CLEMENT, J. E. & ARDANUY, P. E. 2001. “VIIRS (Visible Infrared Imager Radiometer Suite): a next-generation operational environmental sensor for NPOESS. In: IEEE 2001 International Geoscience and Remote Sensing Symposium (IGARSS), 9-13 Jul. 2001, Sydney, NSW, Australia. Sydney: IGARSS, v. 3, pp. 1020-1022, DOI: https://doi.org/10.1109/IGARSS.2001.976733

Links ]

WELSCHMEYER, N. A. 1994. Fluorometric analysis of chlorophyll a in the presence of chlorophyll b and pheopigments. Limnology and Oceanography, 39(8), 1985-1992.

Links ]

WERDELL, P. J. & BAILEY, S. W. 2005. An improved bio-optical data set for ocean color algorithm development and satellite data product validation. Remote Sensing of Environment, 98, 122-140.

Links ]

XING, X., BRIGGS, N., BOSS, E. & CLAUSTRE, H. 2018. Improved correction for non-photochemical quenching of in situ chlorophyll fluorescence based on a synchronous irradiance profile. Optics Express, 26(19), 24734-24751.

Links ]

ZHAO, H., TANG, D. & WANG, Y. 2008. Comparison of phytoplankton blooms triggered by two typhoons with different intensities and translation speeds in the South China Sea. Marine Ecology Progress Series, 365, 57-65.

Links ]

Downloads

Published

2021-06-15

Issue

Section

Original Article

How to Cite

Evaluation of ocean chlorophyll-a remote sensing algorithms using in situ fluorescence data in Southern Brazilian Coastal Waters. (2021). Ocean and Coastal Research, 69, 19. https://doi.org/10.1590/2675-2824069.20-014gsdms