Wave climate and power distribution around a rocky island: Alcatrazes, Brazil


  • Leonardo Silveira Takase Instituto Oceanográfico da USP
  • Luiza Paschoal Stein Instituto Oceanográfico da USP
  • Natasha Travenisk Hoff Instituto Oceanográfico da USP
  • Eduardo Siegle Instituto Oceanográfico da USP




We investigate the distribution of the wave power around the Alcatrazes island, a protected marine reserve in southeastern Brazil, located at 20 nautical miles from the coast of São Sebastião/SP. A 14-year wave time series (2005-2018) extracted from the global WaveWatch III model, was used to obtain the offshore wave climate. Based on the wave climate, a wave propagation model (Delft3D) was applied in order to obtain nearshore information. The most frequent waves are from the east, southeast and south, with heights between 1.0 and 2.0 m and periods of 7 to 10 s. Due to dominant wave direction incidence, the wave power is higher at the more exposed eastern side of the island, with its lee side becoming shadowed from the main wave trains. Magnitudes vary seasonally, with winter and autumn presenting more energetic southerly waves and consequent higher wave power along the rocky island. The wave power distribution is a consequence of the incident wave characteristics and the geomorphology of the island. Our findings are the first assessment of the local wave climate and wave power distribution along the rocky shores of Alcatrazes island, providing important background information for understanding different aspects of its functioning and management.


ALVES, J. H. G. M., RIBEIRO, E. O., MATHESON, G. S. G., LIMA, J. A. M. & RIBEIRO, C. E. P. 2009. Reconstituição do clima de ondas no sul-sudeste Brasileiro entre 1997 e 2005. Revista Brasileira de Geofísica, 27(3), 427-445, DOI: https://doi.org/10.1590/S0102-261X2009000300010

» https://doi.org/10.1590/S0102-261X2009000300010

AMBROSIO, B. G., SOUSA, P. H. G. O., GAGLIARDI, M. H. & SIEGLE, E. 2020. Wave energy distribution at inlet channel margins as a function of ebb tidal delta morphology: Cananéia Inlet, São Paulo, Brazil. Anais da Academia Brasileira de Ciências, 92(1), e20180677, DOI: https://doi.org/10.1590/0001-3765202020180677

» https://doi.org/10.1590/0001-3765202020180677

ANASTASIOU, S. & SYLAIOS, G. 2013. Nearshore wave field simulation at the lee of a large island. Ocean Engineering, 74, 61-71, DOI: https://doi.org/10.1016/j.oceaneng.2013.09.013

» https://doi.org/10.1016/j.oceaneng.2013.09.013

ANDRADE, T. S., SOUSA, P. H. G. O. & SIEGLE, E. 2019. Vulnerability to beach erosion based on a coastal processes approach. Applied Geography, 102, 12-19, DOI: https://doi.org/10.1016/j.apgeog.2018.11.003

» https://doi.org/10.1016/j.apgeog.2018.11.003

AUED, A. W., SMITH, F., QUIMBAYO, J. P., CÂNDIDO, D. V, LONGO, G. O., FERREIRA, C. E. L. C., WITMAN, J. D., FLOETER, S. R. & SEGAL, B. 2018. Patrones a gran escala de las comunidades bentónicas marinas en la Provincia de Brasil. Dryad Dataset, 1-15, DOI: https://doi.org/10.5061/dryad.f5s90

» https://doi.org/10.5061/dryad.f5s90

BENTO, A. R., MARTINHO, P. & SOARES, C. G. 2018. Wave energy assessement for Northern Spain from a 33-year hindcast. Renewable Energy, 127, 322-333, DOI: https://doi.org/10.1016/j.renene.2018.04.049

» https://doi.org/10.1016/j.renene.2018.04.049

BOOIJ, N., RIS, R. C. & HOLTHUIJSEN, L. H. 1999. A third-generation wave model for coastal regions 1. Model description and validation. Journal of Geophysical Research: Oceans, 104(C4), 7649-7666, DOI: https://doi.org/10.1029/98JC02622

» https://doi.org/10.1029/98JC02622

CASTRO, B. M., MIRANDA, L. B., SILVA, L. S., FONTES, R. F. C., PEREIRA, A. F. & COELHO, A. L. 2008. Processos físicos: hidrografia: circulação e transporte. In: PIRES-VANIN, A. M. S. (eds.). Oceanografia de um ecossistema subtropical - Plataforma de São Sebastião, SP São Paulo: EDUSP, v. 1, pp. 59-121.

CAVALCANTI, I. F. A. & KOUSKY, V. E. 2000. Climatology of South american cold fronts Cachoeira Paulista: CPTEC/INPE, pp. 4-5.

CORTE, G. N., SCHLACHER, T. A., CHECON, H. H., BARBOZA, C. A. M., SIEGLE, E., COELMAN, R. A. & AMARAL, A. C. Z. 2017. Storm effects on intertidal invertebrates: increased beta diversity of few individuals and species. PeerJ, 2017, 5, e3360, DOI: https://doi.org/10.7717/peerj.3360

» https://doi.org/10.7717/peerj.3360

DALBY, D. H., COWELL, E. B., SYRATT, W. J. & CROTHERS, J. H. 1978. An exposure scale for marine shores in western Norway. Journal of the Marine Biological Association of the United Kingdom, 58(4), 975-996, DOI: https://doi.org/10.1017/S0025315400056903

» https://doi.org/10.1017/S0025315400056903

FRIEDLANDER, A. M., BROWN, E. K., JOKIEL, P. L., SMITH, W. R. & RODGERS, K. S. 2003. Effects of habitat, wave exposure, and marine protected area status on coral reef fish assemblages in the Hawaiian archipelago. Coral Reefs, 22, 291-305, DOI: https://doi.org/10.1007/s00338-003-0317-2

» https://doi.org/10.1007/s00338-003-0317-2

FURTADO, V. V., RODRIGUES, M., CONTI, L. A. & BARCELLOS, R. L. 2008. História evolutiva da região de São Sebastião, em Oceanografia de um ecossistema subtropical. In: PIRES-VANIN, A. M. S. (eds.). Oceanografia de um ecossistema subtropical - Plataforma de São Sebastião, SPSão Paulo: EDUSP , v. 1, pp. 25-37.

GALLO, B. M. G., CAMPOS, F. P., CHAGAS, C. A. & BECKER, J. H. 2001. Levantamento preeliminar da ocorrência de tartarugas marinhas no Arquipélago dos Alcatrazes, litoral norte do Estado de São Paulo In: XIV Semana Nacional de Oceonografia, Rio Grande: Fundação Universidade Federal de Rio Grande, pp. 14.

GAYLORD, B. 1999. Detailing agents of physical disturbance: Wave-induced velocities and accelerations on a rocky shore. Journal of Experimental Marine Biology and Ecology, 239(1), 85-124, DOI: https://doi.org/10.1016/S0022-0981(99)00031-3

» https://doi.org/10.1016/S0022-0981(99)00031-3

GIBBONS, M. J. 1988. The impact of wave exposure on the meiofauna of Gelidium pristoides (Turner) Kuetzing (Gelidiales: Rhodophyta). Estuarine, Coastal and Shelf Science, 27(6), 581-593, DOI: https://doi.org/10.1016/0272-7714(88)90070-4

» https://doi.org/10.1016/0272-7714(88)90070-4

GIBRAN, F. Z. & MOURA, R. L. 2012. The structure of rocky reef fish assemblages across a nearshore to coastal islands’ gradient in Southeastern Brazil. Neotropical Ichthyology, 10(2), 369-82, DOI: https://doi.org/10.1590/S1679-62252012005000013

» https://doi.org/10.1590/S1679-62252012005000013

GONÇALVES, M., MARTINHO, P. & SOARES, C. G. 2020. Wave energy assessment based on a 33-year hindcast for the Canary Islands. Renewable Energy, 152, 259-269, DOI: https://doi.org/10.1016/j.renene.2020.01.011

» https://doi.org/10.1016/j.renene.2020.01.011

GRAMCIANINOV, C. B., CAMPOS, R. M., SOARES, C. G. & CAMARGO, R. 2020. Extreme waves generated by cyclonic winds in the western portion of the South Atlantic Ocean. Ocean Engineering , 213, 107745, DOI: https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.107745

» https://doi.org/https://doi.org/10.1016/j.oceaneng.2020.107745

HALL, A. M., HANSOM, J. D. & JARVIS, J. 2008. Patterns and rates of erosion produced by high energy wave processes on hard rock headlands: the Grind of the Navir, Shetland, Scotland. Marine Geology, 248(1-2), 28-46, DOI: https://doi.org/10.1016/j.margeo.2007.10.007

» https://doi.org/10.1016/j.margeo.2007.10.007

HOFF, N. T., FIGUEIRA, R. C. L. & ABESSA, D. M. S. 2015. Levels of metals, arsenic and phosphorus in sediments from two sectors of a Brazilian Marine Protected Area (Tupinambás Ecological Station). Marine Pollution Bulletin, 91(2), 403-409, DOI: https://doi.org/10.1016/j.marpolbul.2014.10.044

» https://doi.org/10.1016/j.marpolbul.2014.10.044

HOLTHUIJSEN, L. H. 2007. Waves in oceanic and coastal watersCambridge: Cambridge University Press, DOI: https://doi.org/10.1017/CBO9780511618536

» https://doi.org/10.1017/CBO9780511618536

HOLTHUIJSEN, L. H., BOOIJ, N. & RIS, R. C. 1993. A spectral wave model for the coastal zone. In: CHAIRMAN, O. T. M. (ed.). Ocean wave measurement and analysisNew York: ASCE (American Society of Civil Engineers).

ICMBIO (Instituto Chico Mendes de Conservação da Biodiversidade). 2012. Plano de ação nacional para a conservação da herpetofauna do sul do BrasilBrasília: ICMBIO.

ICMBIO (Instituto Chico Mendes de Conservação da Biodiversidade). 2017. Plano de manejo da Estação Ecológica Tupinambás e refúgio de vida silvestre do arquipélago de Alcatrazes Brasília: ICMBIO .

JONES, W. E. & DEMETROPOULOS, A. 1968. Exposure to wave action: measurements of an important ecological parameter on rocky shores on Anglesey. Journal of Experimental Marine Biology and Ecology, 2(1), 46-63, DOI: https://doi.org/10.1016/0022-0981(68)90013-0

» https://doi.org/10.1016/0022-0981(68)90013-0

LANNA, E., ROSSI, A. L., CAVALCANTI, F. F., HAJDU, E. & KLAUTAU, M. 2007. Calcareous sponges from São Paulo State, Brazil (Porifera: Calcarea: Calcinea) with the description of two new species. Journal of the Marine Biological Association of the United Kingdom, 87(6), 1553-1561, DOI: https://doi.org/10.1017/S0025315407056871

» https://doi.org/10.1017/S0025315407056871

LAVENÈRE-WANDERLEY, A. A. & SIEGLE, E. 2019. Wave-induced sediment mobility on a morphologically complex continental shelf: eastern Brazilian shelf. Geo-Marine Letters, 39, 349-361, DOI: https://doi.org/10.1007/s00367-019-00580-4

» https://doi.org/10.1007/s00367-019-00580-4

LEMKE, N., CALLIARI, L. J., FONTOURA, J. A. S. & AGUIAR, D. F. 2017. Wave directional measurement in Patos Lagoon, RS, Brazil. RBRH, 22(1), e1, DOI: https://doi.org/10.1590/2318-0331.011716053

» https://doi.org/10.1590/2318-0331.011716053

LI, N., CHEUNG, K. F., STOPA, J. E., HSIAO, F., CHEN, Y. L., VEGA, L. & CROSS, P. 2016. Thirty-four years of Hawaii wave hindcast from downscaling of climate forecast system reanalysis. Ocean Modelling, 100, 78-95, DOI: https://doi.org/10.1016/j.ocemod.2016.02.001

» https://doi.org/10.1016/j.ocemod.2016.02.001

LOSADA, I. J., TOIMIL, A., MUÑOZ, A., GARCIA-FLETCHER, A. P. & DIAZ-SIMAL, P. 2019. A planning strategy for the adaptation of coastal areas to climate change: the Spanish case. Ocean and Coastal Management, 182, 104983, DOI: https://doi.org/10.1016/j.ocecoaman.2019.104983

» https://doi.org/10.1016/j.ocecoaman.2019.104983

LUDKA, B. C., GUZA, R. T., O’REILLY, W. C., MERRIFIELD, M. A., FLICK, R. E., BAK, A. S., HESSER, T., BUCCIARELLI, R., OLFE, C., WOODWARD, B., BOYD, W., SMITH, K., OKIHIRO, M., GRENZEBACK, R., PARRY, L. & BOYD, G. 2019. Sixteen years of bathymetry and waves at San Diego beaches. Scientific Data, 6, 161, DOI: https://doi.org/10.1038/s41597-019-0167-6

» https://doi.org/10.1038/s41597-019-0167-6

MADIN, J. S. & CONNOLLY, S. R. 2006. Ecological consequences of major hydrodynamic disturbances on coral reefs. Nature, 444, 477-480, DOI: https://doi.org/10.1038/nature05328

» https://doi.org/10.1038/nature05328

MAHIQUES, M. M., SIEGLE, E., ALCÁNTARA-CARRIÓ, J., SILVA, F. G., SOUSA, P. H. G. O. & MARTINS, C. C. 2016. The beaches of the State of São Paulo. In: SHORT, A. D. & KLEIN, A. H. F. (orgs.). Brazilian beach systemsDordrecht: Springer, pp. 397-418.

MAHIQUES, M. M., SOUSA, S. H. M., BURONE, L., NAGAI, R. H., SILVEIRA, I. C. A., FIGUEIRA, R. C. L., SOUTELINO, R. G., PONSONI, L. & KLEIN, D. A. 2011. Radiocarbon geochronology of the sediments of the São Paulo Bight (southern Brazilian upper margin). Anais da Academia Brasileira de Ciências, 83(3), 817-834, DOI: https://doi.org/10.1590/S0001-37652011005000028

» https://doi.org/10.1590/S0001-37652011005000028

MAHIQUES, M. M., TASSINARI, C. C. G., MARCOLINI, S., VIOLANTE, R. A., FIGUEIRA, R. C. L., SILVEIRA, I. C. A., BURONE, L. & MELLO E SOUSA, S. H. 2008. Nd and Pb isotope signatures on the Southeastern South American upper margin: Implications for sediment transport and source rocks. Marine Geology, 250(1-2), 51-63, DOI: https://doi.org/10.1016/j.margeo.2007.11.007

» https://doi.org/10.1016/j.margeo.2007.11.007

MARTINS, L., GARCIA, M. G. M. & REVERTE, F. C. 2014. Geologia do arquipélago de Alcatrazes, litoral norte do Estado de São Paulo . In: Anais do 47o Congresso Brasileiro de Geologia, 21-26 Set. 2015, Salvador, BA, pp. 290.

MUSCAT, E., SAVIOLLI, J. Y., COSTA, A., CHAGAS, C. A., EUGÊNIO, M., ROTENBERG, E. L. & OLMOS, F. 2014. Birds of the Alcatrazes archipelago and surrounding waters, São Paulo, southeastern Brazil. Check List, 10(4), 729-739, DOI: https://doi.org/10.15560/10.4.729

» https://doi.org/10.15560/10.4.729

NOGUEIRA, J. M. M., STEINER, T. M. & AMARAL, A. C. Z. 2001. Descriptions of two new species of Eunice Cuvier, 1817 (Polychaeta: Eunicidae) from coastal islands of the State of São Paulo, Brazil. Scientia Marine, 65(1), 47-57.

ORTEGA-SÁNCHEZ, M., FACHIN, S., SANCHO, F. & LOSADA, M. A. 2008. Relation between beachface morphology and wave climate at Trafalgar beach (Cádiz, Spain). Geomorphology, 99(1-4), 171-185, DOI: https://doi.org/10.1016/j.geomorph.2007.10.013

» https://doi.org/10.1016/j.geomorph.2007.10.013

PAMPUCH, L. A. & AMBRIZZI, T. 2015. Sistemas Frontais sobre a América do Sul Parte I: Climatologia e intervalo de passagem em dados de Reanálise I do NCEP/NCAR. Ciência e Natura, 38, 105-110.

PEGORELLI, C., DOTTORI, M. & FORTES, J. F. 2018. Evaluating the gravity wave energy potential off the Brazilian coast. Brazilian Journal of Oceanography, 66(2), 220-233, DOI: https://doi.org/10.1590/s1679-87592018011706602

» https://doi.org/10.1590/s1679-87592018011706602

PIANCA, C., MAZZINI, P. L. F. & SIEGLE, E. 2010. Brazilian offshore wave climate based on NWW3 reanalysis. Brazilian Journal Oceanography, 58(1), 53-70, DOI: https://doi.org/10.1590/s1679-87592010000100006

» https://doi.org/10.1590/s1679-87592010000100006

PIRES-VANIN, A. M. S., ROSSI-WONGTSCHOWSKI, C. L. D. B., AIDAR, E., MESQUITA, H. S. L., SOARES, L. S. H., KATSURAGAWA, M. & MATSUURA, Y. 1993. Estrutura e função do ecossistema de plataforma continental do Atlântico sul brasileiro: síntese dos resultados. Publicação Especial do Instituto Oceanográfico, 10, 217-231.

PRATHEP, A., LEWMANOMONT, K. & BUAPET, P. 2009. Effects of wave exposure on population and reproductive phenology of an algal turf, Gelidium pusillum (Gelidales, Rhodophyta), Songkhla, Thailand. Aquatic Botany, 90(2), 179-183, DOI: https://doi.org/10.1016/j.aquabot.2008.09.003

» https://doi.org/10.1016/j.aquabot.2008.09.003

RATTRAY, A., IERODIACONOU, D. & WOMERSLEY, T. 2015. Wave exposure as a predictor of benthic habitat distribution on high energy temperate reefs. Frontiers in Marine Science, 2, 8, DOI: https://doi.org/10.3389/fmars.2015.00008

» https://doi.org/10.3389/fmars.2015.00008

REBOITA, M. S., AMBRIZZI, T., SILVA, B. A., PINHEIRO, R. F. & ROCHA, R. P. 2019. The South atlantic subtropical anticyclone: present and future climate. Frontiers Earth Science, 7, 8, DOI: https://doi.org/10.3389/feart.2019.00008

» https://doi.org/10.3389/feart.2019.00008

REBOITA, M. S., KRUSCHE, N., AMBRIZZI, T. & ROCHA, R. P. 2015. Entendendo o tempo e o clima na América do Sul. Terrae Didatica, 8(1), 34-50, DOI: https://doi.org/10.20396/td.v8i1.8637425

» https://doi.org/10.20396/td.v8i1.8637425

REGUERO, B. G., LOSADA, I. J. & MÉNDEZ, F. J. 2019. A recent increase in global wave power as a consequence of oceanic warming. Nature Communications, 10, 205, DOI: https://doi.org/10.1038/s41467-018-08066-0

» https://doi.org/10.1038/s41467-018-08066-0

RIS, R. C. & BOOIJ, N. 1999. A third-generation wave model for coastal regions 2. Verification. Journal of Geophysical Research, 104(C4), 7667-7681.

ROCHA, R. M. & BONNET, N. Y. K. 2009. Ascídias (Tunicata, Ascidiacea) introduzidas no arquipélago de alcatrazes, São Paulo. Iheringia - Série Zoologia, 99(1), 27-35, DOI: https://doi.org/10.1590/s0073-47212009000100004

» https://doi.org/10.1590/s0073-47212009000100004

ROLIM, F. A., LANGLOIS, T., RODRIGUES, P. F. C., BOND, T., MOTTA, F. S., NEVES, L. M. & GADIG, O. B. F. 2019. Network of small no-take marine reserves reveals greater abundance and body size of fisheries target species. PLoS One, 14(1), e0204970, DOI: https://doi.org/10.1371/journal.pone.0204970

» https://doi.org/10.1371/journal.pone.0204970

ROLIM, F. A., RODRIGUES, P. F. & GADIG, O. B. F. 2017. Peixes de recife rochoso: Estação Ecológica de Tupinambás, São Paulo. São Paulo: Anolis Books.

RUSU, E., PILAR, P. & SOARES, C. G. 2008. Evaluation of the wave conditions in Madeira Archipelago with spectral models. Ocean Engineering , 35(13), 1357-1371, DOI: https://doi.org/10.1016/j.oceaneng.2008.05.007

» https://doi.org/10.1016/j.oceaneng.2008.05.007

SOUZA, R. B. & ROBINSON, I. S. 2004. Lagrangian and satellite observations of the Brazilian Coastal Current. Continental Shelf Research, 24(2), 241-262, DOI: https://doi.org/10.1016/j.csr.2003.10.001

» https://doi.org/10.1016/j.csr.2003.10.001

SHORT, A. D. & KLEIN, A. H. F. 2016. Brazilian beach systems: review and overview. In: SHORT, A. D. & KLEIN, A. H. F. (eds.). Coastal Research LibraryNew York: Springer, DOI: https://doi.org/10.1007/978-3-319-30394-9_20

» https://doi.org/10.1007/978-3-319-30394-9_20

SIEGLE, E. & COSTA, M. B. 2017. Nearshore wave power increase on reef-shaped coasts due to sea-level rise. Earth’s Future, 5(10), 1054-65, DOI: https://doi.org/10.1002/2017EF000624

» https://doi.org/10.1002/2017EF000624

SILVA, F. G., SOUSA, P. H. G. O. & SIEGLE, E. 2016. Longshore transport gradients and erosion processes along the Ilha Comprida (Brazil) beach system. Ocean Dynamics, 66, 853-865, DOI: https://doi.org/10.1007/s10236-016-0956-9

» https://doi.org/10.1007/s10236-016-0956-9

ST. PIERRE, A. P. & GAGNON, P. 2015. Wave action and starvation modulate intra-annual variation in displacement, microhabitat selection, and ability to contact prey in the common sea star, Asterias rubens Linnaeus. Journal of Experimental Marine Biology and Ecology, 467, 95-107, DOI: https://doi.org/10.1016/j.jembe.2015.03.009

» https://doi.org/10.1016/j.jembe.2015.03.009

STEIN, L. P. & SIEGLE, E. 2019. Santos beach morphodynamics under high-energy conditions. Revista Brasileira de Geomorfologia, 20(3), 445-456, DOI: https://doi.org/10.20502/rbg.v20i3.1419

» https://doi.org/10.20502/rbg.v20i3.1419

STOPA, J. E., CHEUNG, K. F. & CHEN, Y. L. 2011. Assessment of wave energy resources in Hawaii. Renewable Energy, 36(2), 554-567, DOI: https://doi.org/10.1016/j.renene.2010.07.014

» https://doi.org/10.1016/j.renene.2010.07.014

STOPA, J. E., FILIPOT, J. F., LI, N., CHEUNG, K. F., CHEN, Y. L. & VEGA, L. 2013. Wave energy resources along the Hawaiian Island chain. Renewable Energy , 55, 305-321, DOI: https://doi.org/10.1016/j.renene.2012.12.030

» https://doi.org/10.1016/j.renene.2012.12.030

SUN, Z., ZHANG, H., XU, D., LIU, X. & DING, J. 2020. Assessment of wave power in the South China Sea based on 26-year high-resolution hindcast data. Energy, 197, 117218, DOI: https://doi.org/10.1016/j.energy.2020.117218

» https://doi.org/10.1016/j.energy.2020.117218

THÉBAUDEAU, B., TRENHAILE, A. S. & EDWARDS, R. J. 2013. Modelling the development of rocky shoreline profiles along the northern coast of Ireland. Geomorphology, 203, 66-78, DOI: https://doi.org/10.1016/j.geomorph.2013.03.027

» https://doi.org/10.1016/j.geomorph.2013.03.027

TOLMAN, H. L. 1999. User manual and system documentation of WAVEWATCH-III version 1.18 College Park: U.S. Department of Commerce/National Oceanic and Atmospheric Administration/National Weather Service/National Centers for Environmental Prediction.

TOLVANEN, H. & SUOMINEN, T. 2005. Quantification of openness and wave activity in archipelago environments. Estuarine, Coastal and Shelf Science, 64(2-3), 436-446, DOI: https://doi.org/10.1016/j.ecss.2005.03.001

» https://doi.org/10.1016/j.ecss.2005.03.001

VANN JONES, E. C., ROSSER, N. J. & BRAIN, M. J. 2018. Alongshore variability in wave energy transfer to coastal cliffs. Geomorphology, 322, 1-14, DOI: https://doi.org/10.1016/j.geomorph.2018.08.019

» https://doi.org/10.1016/j.geomorph.2018.08.019

VISNADI, S. R. & VITAL, D. M. 2001. Briófitas das ilhas de Alcatrazes, do Bom Abrigo, da Casca e do Castilho, estado de São Paulo, Brasil. Acta Botanica Brasilica, 15(2), 255-270, DOI: https://doi.org/10.1590/S0102-33062001000200011

» https://doi.org/10.1590/S0102-33062001000200011

WILLIAMS, G. J., SMITH, J. E., CONKLIN, E. J., GOVE, J. M., SALA, E. & SANDIN, S. A. 2013. Benthic communities at two remote pacific coral reefs: effects of reef habitat, depth, and wave energy gradients on spatial patterns. PeerJ, 1, e81, DOI: https://doi.org/10.7717/peerj.81

» https://doi.org/10.7717/peerj.81

WRIGHT, J. T., HOLMES, Z. C. & BYERS, J. E. 2018. Stronger positive association between an invasive crab and a native intertidal ecosystem engineer with increasing wave exposure. Marine Environmental Research, 142, 124-129, DOI: https://doi.org/10.1016/j.marenvres.2018.09.025

» https://doi.org/10.1016/j.marenvres.2018.09.025




How to Cite

Takase, L. S., Stein, L. P., Hoff, N. T., & Siegle, E. (2021). Wave climate and power distribution around a rocky island: Alcatrazes, Brazil. Ocean and Coastal Research, 69, 14. https://doi.org/10.1590/2675-2824069.20-009lst



Original Article