Influence of temperature and culture media on growth and lipolytic activity of deep-sea Halomonas sulfidaeris LAMA 838 and Marinobacter excellens LAMA 842

Authors

  • Gabriela Scholante Delabary Universidade do Vale do Itajaí
  • Maria Carolina da Silva Universidade do Vale do Itajaí
  • Cibele Silveira da Silva Universidade do Vale do Itajaí
  • Letícia Zanatta Baratieri Universidade do Vale do Itajaí
  • Thiago Meinicke de Melo Universidade do Vale do Itajaí
  • Cesar Augusto Stramosk Universidade do Vale do Itajaí
  • André Oliveira de Souza Lima Universidade do Vale do Itajaí
  • Marcus Adonai Castro da Silva Universidade do Vale do Itajaí

DOI:

https://doi.org/10.1590/S2675-28242020068282

Keywords:

Deep-sea bacteria, microbial growth, lipolytic activity, Psychrotolerants

Abstract

Bacteria with lipolytic activity are widespread in the marine environment. These organisms can be used
as a source of lipases with activity in unusual conditions such as low temperatures and high salinities.
These characteristics allow them to be applied to several industrial processes and products including
wastewater treatment and detergent production. In this context the lipolytic activity of bacteria isolated
from deep-sea sediments of the South Atlantic was evaluated. Among the collection studied, two strains,
Halomonas sulfidaeris LAMA 838 and Marinobacter excellens LAMA 842, were selected for further analysis
concerning their growth and lipolytic activity in different temperatures and culture media. Both strains
were characterized as mesophiles: H. sulfidaeris LAMA 838 grew best at 30ºC, while M. excellens LAMA 842
showed a maximum growth rate between 20 and 25ºC. Maximum lipolytic activity for both microorganisms
was observed above 45ºC, but only M. excellens LAMA 842 had lipolytic activity at low temperatures (5ºC) as
well. Considering the culture media employed, H. sulfidaeris LAMA 838 grew better in marine broth without
Tween 40, while M. excellens LAMA 842 grew best in marine broth supplemented with Tween 40. Both
organisms had maximum lipolytic activity in rich or minimal media supplemented with Tween 40. These
results demonstrate the potential of deep-sea bacteria as sources of lipases and indicate conditions that
may be used in their cultivation and for the production of industrially relevant enzymes.

References

BARTON, L. L. 2005. Structural and functional relationships in

prokaryotes, New York, Springer.

BHAVANI, M., CHOWDARY, G. V., DAVID, M. & SCREENING, A. G.

Isolation and biochemical characterization of novel

lipase producing bacteria from soil samples. International

Journal of Biological Engineering, 2, 18-22.

BREZNAK, J. A. & COSTILOW, R. N. 1994. Physicochemical factors

in growth. In: GERHARDT, P., MURRAY, R. G. E., WOOD, W.

A. & KRIEG, N. R. (eds.) Methods for general and molecular

bacteriology. ASM Press: Washington. 137-154.

BYREDDY, A. R., RAO, N. M., BARROW, C. J. & PURI, M. 2017.

Tween 80 influences the production of intracellular lipase

by Schizochytrium S31 in a stirred tank reactor. Process

Biochemistry, 53, 30-35.

CHEN, R., GOU, L. & DANG, H. 2011. Gene cloning, expression and

characterization of a cold-adapted lipase from a psychrophilic

deep-sea bacterium Psychrobacter sp. C18. World Journal of

Microbiology and Biotechnology, 27, 431-441.

DALMASO, G. Z. L., FERREIRA, D. & VERMELHO, A. B. 2015. Marine

extremophiles: a source of hydrolases for biotechnological

applications. Marine Drugs, 13, 1925-1965.

FELLER, G., THIRY, M., ARPIGNY, J. L., MERGEAY, M. & GERDAY, C.

Lipases from psychrotrophic antarctic bacteria. FEMS

Mmroblology Letters, 66, 239-244.

GORSHKOVA, N. M., IVANOVA, E. P., SERGEEV, A. F., ZHUKOVA, N.

V., ALEXEEVA, Y., WRIGHT, J. P., NICOLAU, D. V., MIKHAILOV,

V. V. & CHRISTEN, R. 2003. Marinobacter excellens sp. nov.,

isolated from sediments of the sea of Japan. International

Journal of Systematic and Evolutionary Microbiology, 53,

-2078.

GUTIÉRREZ-ARNILLAS, E., RODRÍGUEZ, A., SANROMÁN, M. A. &

DEIVE, F. J. 2016. New sources of halophilic lipases: Isolation

of bacteria from Spanish and Turkish saltworks. Biochemical

Engineering Journal, 109, 170-177.

HANKIN, L. & AGNOSTAKIS, S. L. 1975. The use of solid media

for detection of enzyme production by fungi. Mycologia, 67,

-607.

HU, Y., LIU, Y., LI, J., FENG, Y., LU, N., ZHU, B. & XUE, S. 2015.

Structural and functional analysis of low temperature active

alcaline esterase from South China sediment microbial

metagenomics library. Journal of Industrial Microbiology &

Biotechnology, 42, 1449-1461.

KAI, W. & PEISHENG, Y. 2016. Optimization of lipase production

from a novel strain Thalassospira permensis M35-15 using

response surface methodology. Bioengineered, 7, 298-303.

KAVITHA, M. 2016. Cold active lipases–an update. Frontiers in

Life Science, 9, 226-238.

KAYE, J. Z. & BAROSS, J. A. 2004. Synchronous effects of

temperature, hydrostatic pressure, and salinity on growth,

phospholipid profiles, and protein patterns of four

Halomonas species isolated from deep-sea hydrothermalvent

and sea surface environments. Applied and

Environmental Microbiology, 70, 6220-6229.

KAYE, J. Z., MÁRQUÉZ, M. C., VENTOSA, A & BAROSS, J. A. 2004.

Halomonas neptunia sp.nov., Halomonas sulfidaeris sp. nov.,

Halomonas axialensis sp. nov. and Halomonas hydrothermalis

sp. nov.: halophilic bacteria isolated from deep-sea

hydrothermal-vent environments. International Journal of

Systematic and Evolutionary Microbiology, 54, 499-511.

KAYE, J. Z., SYLVAN, J. B., EDWARDS, K. J. & BAROSS, A. J. 2011.

Halomonas and Marinobacter ecotypes from hydrothermal

vent, subseafloor and deep-sea environments. FEMS

Microbiology Ecology, 75, 123-133.

KIRAN, G. S., LIPTON, A. N., KENNEDY, J., DOBSON, A. D. W. & SELVIN,

J. A. 2014. A halotolerant thermostable lipase from the marine

bacterium Oceanobacillus sp. PUMB02 with an ability to disrupt

bacterial biofilms. Bioengineered, 5, 3005-3018.

KIRAN, G. S., SHANMUGHAPRIYA, S., JAYALAKSHMI, J.,

SELVIN, J., GANDHIMATHI, R., SIVARAMAKRISHNAN,

S. & NATARAJASEENIVASAN, K. 2008. Optimization of

extracellular psychrophilic alkaline lipase produced

by marine Pseudomonas sp. (MSI057). Bioprocess and

Biosystems Engineering, 31, 483-492.

KUMAR, S., KARAN, R., KAPOOR, S., SINGH, S. P. & KHARE, S.

K. 2012. Screening and isolation of halophilic bacteria

producing industrially important enzymes. Brazilian Journal

of Microbiology, 43, 1595-1603.

LAILAJA, V. P. & CHANDRASEKARAN, M. 2013. Detergent

compatible alkaline lipase produced by marine Bacillus

smithii BTMS 11. World Journal of Microbiology and

Biotechnology, 29, 1349-1360.

LO GIUDICE, A., MICHAUD, L., DE PASCALE, D., DE DOMENICO,

M., DI PRISCO, G., FANI, R. & BRUNI, V. 2006. Lipolytic activity

of Antarctic cold-adapted marine bacteria (Terra Nova Bay,

Ross Sea). Journal of Applied Microbiology, 101, 1039-1048.

LÓPEZ-LÓPEZ, O., CERDÁN, M. E. & GONZÁLEZ SISO, M. I. 2014.

New extremophilic lipases and esterases from metagenomics.

Current Protein and Peptide Science, 15, 445-455.

MUSA, H., HAFIZ KASIM, F., NAGOOR GUNNY, A. A., GOPINATH, S.

C. B. & AZMIER AHMAD, M. 2019. Enhanced halophilic lipase

secretion by Marinobacter litoralis SW-45 and its potential

fatty acid esters release. Journal of Basic Microbiology, 59,

-100.

NEILSON, A. H. & ALLARD, A. S. 2008. Environmental degradation

and transformation of organic chemicals, Boca Raton, CRC

Press.

NEMEC, T. & JERNEJC, K. 2002. Influence of tween 80 on

lipid metabolism of an Aspergillus niger strain. Applied

Biochemistry and Biotechnology, 3, 229-238.

NG, H. J., LÓPEZ-PÉREZ, M., WEBB, H. K., GOMEZ, D., SAWABE,

T., RYAN, J., VYSSOTSKI, M., BIZET, C., MALHERBE, F.,

MIKHAILOV, V. V., CRAWFORD, R. J. & IVANOVA, E. P. 2014.

Marinobacter salarius sp. nov. and Marinobacter similis sp.

nov., isolated from Sea Water. PLoS One, 9, e106514. DOI:

https://doi:10.1371/journal.pone.0106514

ODISI, E. J., SILVESTRIN, M. B., TAKAHASHI, R. Y. U., SILVA, M. A.

C. & LIMA, A. O. S. 2012. Bioprospection of cellulolytic and

lipolytic south Atlantic deep-sea bacteria. Electronic Journal

of Biotechnology, 15. DOI: https://doi:10.2225/vol15-issue

- fulltext-17

OVES, M., QARI, H. A., FELEMBAN, N. M., KHAN, M. Z., REHAN,

Z. A. & ISMAIL, I. M. I. 2017. Marinobacter lipolyticus

from Red Sea for lipase production and modulation

of silver nanomaterials for anti-candidal activities. IET

Nanobiotechnol, 11, 403-410.

PEREZ, J. A. A., ALVES, E. S., CLARK, M. R., BERGSTAD, O. A.,

GEBRUK, A., CARDOSO, I. A. & ROGACHEVA, A. 2012. Patterns

of life on the southern Mid-Atlantic Ridge: Compiling what

is known and addressing future research. Oceanography, 4,

-31.

PHILIPPOT, L., ANDERSSON, S. G., BATTIN, T. J., PROSSER, J. I.,

SCHIMEL, J. P., WHITMAN, W. B. & HALLIN, S. 2010. The ecological

coherence of high bacterial taxonomic ranks. Nature

Reviews Microbiology, 8, 523-529.

PINSIRODOM, P. & PARKIN, K. L. 2001. Lipase assays. Current

Protocols in Food Analytical Chemistry, C3.1.1-C3.1.13. DOI:

https://doi.org/10.1002/0471142913.fac0301s00

POZDNYAKOVA, N. N., RODAKIEWICZ-NOWAK, J. & TURKOVSKAYA,

O. V. 2004. Catalytic properties of yellow laccase

from Pleurotus ostreatus D1. Journal of Molecular Catalysis B:

Enzymatic, 30, 19-24.

SILVA, M. A. C., CAVALETT, A., SPINNER, A., ROSA, D. C., JASPER,

R. B., QUECINE, M. C., BONATELLI, M. L., KLEINER, A. P., CORÇÃO,

G. & LIMA, A. S. O. 2013. Phylogenetic identification

of marine bacteria isolated form deep-sea of the eastern

South Atlantic Ocean. SpringerPlus, 2, 127. DOI: https://

doi:10.1186/2193-1801-2-127

SMIBERT, R. M. & KRIEG, N. R. 1994. Phenotypic characterization. In:

GERHARDT, P., MURRAY, R. G. E., WOOD, W. A. & KRIEG, N. R. (eds.)

Methods for General and Molecular Bacteriology. Washington:

American Society for Microbiology. 607-654.

SUN, Q. L., WANG, M. Q. & SUN, L. 2015. Characteristics of the

cultivable bacteria from sediments associated with two

deep-sea hydrothermal vents in Okinawa Trough. World

Journal of Microbiology and Biotechnology, 31, 2025-2037.

TREICHEL, H., DE-OLIVEIRA, D., MAZUTTI, M. A., DI-LUCCIO, M. &

OLIVEIRA, J. V. 2010. A review on microbial lipases production.

Food and Bioprocess Technology, 3, 182-196.

WHITE, D., DRUMMOND, J. & FUQUA, C. 2012. The physiology

and biochemistry of prokaryotes, Oxford, Oxford University

Press.

WOO, J. H., HWANG, Y. O., KANG, S. G., LEE, H. S., CHO, J. C. &

KIM, S. J. 2007. Cloning and characterization of tree epoxide

hidrolases from a marine bacterium, Erytrobacter litoralis

HTCC2594. Applied Microbiology and Biotechnology, 76, 365-

YUAN, J., LAI, Q., SUN, F., ZHENG, T. & SHAO, Z. 2015. The

diversity of PAH-degrading bacteria in a deep-sea water

column above the Southwest Indian Ridge. Frontiers in

Microbiology, 6, 853.

ZHANG, L., WANG, Y., LIANG, J., SONG, Q. & ZHANG, X. H. 2016.

Degradation properties of various macromolecules of

cultivable psychrophilic bacteria from the deep-sea water

of the South Pacific Gyre. Extremophiles, 20, 663-671.

Downloads

Published

2020-01-11

How to Cite

Influence of temperature and culture media on growth and lipolytic activity of deep-sea Halomonas sulfidaeris LAMA 838 and Marinobacter excellens LAMA 842. (2020). Ocean and Coastal Research, 68, 11. https://doi.org/10.1590/S2675-28242020068282