Sub-lethal predatory shell damage does not affect physiology under high CO2 in the intertidal gastropod Tritia reticulata

Authors

  • Leonardo Querobim Yokoyama Universidade Federal de São Paulo
  • Alexander Turra Universidade de São Paulo
  • Coleen Suckling Bangor University
  • Gabriela Torres University of Rhode Island
  • Andrew Davies Alfred-Wegener-Institute
  • Ian McCarthy University of Rhode Island

DOI:

https://doi.org/10.1590/S2675-28242020068274

Keywords:

Ocean acidification, Metabolism, Intertidal, Gastropod, Shell repair

Abstract

Ocean acidification (OA) poses a major threat to marine animals, especially marine shelled invertebrates such as molluscs. Although many organisms are capable of compensating for the effects of OA, this can impose physiological costs and impact performance (e.g. through increased metabolism and decreased growth). Sublethal injuries on shells may provoke changes in energy allocation. Under acidified conditions, organisms would spend less energy on reproduction and somatic growth to repair the damage. Therefore, we analysed the physiological responses of the intertidal gastropod Tritia reticulata during shell regeneration under OA conditions. We simulated a sub-lethal predation event (a notch in the outer lip of the shell) and individuals were exposed to control (pH 8.08) and low pH scenarios (pH 7.88 and 7.65). After two months exposure, all individuals showed shell repair, with a full repair rate observed in 75% of individuals. Contrary to expectations, shell repair following sub-lethal damage and OA had no apparent impact on physiological state in terms of energy reserves (as measured by whole-animal Carbon/Nitrogen) or growth potential (as measured by whole-animal RNA:Protein and RNA:DNA ratios). As an intertidal organism, T. reticulata could be resilient to future global environmental change because of compensatory mechanisms that are inherent in intertidal animals, and may represent a robust species with which to study future scenarios of OA in temperate coastal ecosystems. However, unrestricted food availability during experiment could have played a role in the results and therefore food limitation should be considered in future studies regarding shell repair and metabolism under the effects of OA.

References

ADDADI, L., JOESTER, D., NUDELMAN, F. & WEINER, S. 2006. Mollusk shell formation: a source of new concepts for understanding biomineralization processes. Chemistry, 12, 4, 981-

AMARAL, V., PENHA-LOPES, G. & PAULA, J. 2009. RNA/DNA ratio

of crabs as an indicator of mangrove habitat quality. Aquatic

Conservation: Marine and Freshwater Ecosystems, 19, S1, S56-

S62.

ANDERSON, A. J., MACKENZIE, F. T. & GATTUSO, J. P. 2011. Effects

of ocean acidification on benthic processes, organisms, and

ecosystems. In: GATTUSO, J. P. & HANSSON, L. (eds.), Ocean

Acidification. New York: Oxford University Press Inc.

BARROSO, C. M., MOREIRA, M. H. & RICHARDSON, C. A. 2005a.

Age and growth of Nassarius reticulatus in the Ria de Aveiro,

north-west Portugal. Journal of the Marine Biological Association of the United Kingdom, 85, 151-156.

BARROSO, C. M., NUNES, M., RICHARDSON, C. A. & MOREIRA, M.

H. 2005b. The gastropod statolith: a tool for determining

the age of Nassarius reticulatus. Marine Biology, 146, 6, 1139-

BENIASH, E., IVANINA, A., LIEB, N. S., KUROCHKIN, I. & SOKOLOVA,

I. M. 2010. Elevated level of carbon dioxide affects metabolism and shell formation in oysters Crassostrea virginica. Marine Ecology Progress Series, 419, 95-108.

BIBBY, R., CLEALL-HARDING, P., RUNDLE, S., WIDDICOMBE, S. &

SPICER, J. 2007. Ocean acidification disrupts induced defences in the intertidal gastropod Littorina littorea. Biology Letters,

, 67-74.

BLUNDON, J. A. & VERMEIJ, G. J. 1983. Effect of shell repair on

shell strength in the gastropod Littorina irrorata. Marine Biology, 76, 41-45.

BUCKLEY, L. J., CALDARONE, E. M. & ONG, T. L. 1999. RNA-DNA

ratio and other nucleic acid-based indicators for growth and

condition of marine fishes. Hydrobiologia, 401, 265-277.

BRENNAND, H. S., SOARS, N., DWORJANYN, S. A., DAVIS, A. R. &

BYRNE, M. 2010. Impact of ocean warming and ocean acidification on larval development and calcification in the sea urchin Tripneustes gratilla. PLoS ONE, 5, 6, e11372. DOI: https://

doi.org/10.1371/journal.pone.0011372

CALDEIRA, K. & WICKETT, M. E. 2003. Anthropogenic carbon and

ocean pH. Nature, 425, 365.

CATARINO, A. I., BAUWENS, M. & DUBOIS, P. 2012. Acid-base balance and metabolic response of the sea urchin Paracentrotus

lividus to different seawater pH and temperatures. Environmental Science and Pollution Research, 19, 6, 2344-2353.

CHATZINIKOLAOU, E., GRIGORIOU, P., KEKLIKOGLOU, K., FAULWETTER, S. & PAPAGEORGIOU, N. 2017. The combined effects

of reduced pH and elevated temperature on the shell density

of two gastropod species measured using micro-CT imaging.

ICES Journal of Marine Science, 74, 1135-1149.

CHATZINIKOLAOU, E. & RICHARDSON, C. A. 2007. Evaluating

growth and age of netted whelk Nassarius reticulatus (Gastropoda: Nassariidae) using statolith growth rings. Marine

Ecology Progress Series, 342, 163-176.

CHATZINIKOLAOU, E. & RICHARDSON, C. A. 2008. Population dynamics and growth of Nassariusreticulatus (Gastropoda: Nassariidae) in Rhosneigr (Anglesey, UK). Marine Biology, 153, 4,

-619.

CHÍCHARO, M.A. & CHÍCHARO, L. 2008. RNA:DNA ratio and other

nucleic acid derived indices in marine ecology. International

Journal of Molecular Sciences, 9, 8, 1453-1471.

COLEMAN, D. W., BYRNE, M. & DAVIS, A. R. 2014. Molluscs on acid:

gastropod shell repair and strength in acidifying oceans. Marine Ecology Progress Series, 509, 203-211.

COURTNEY, T., WESTFIELD, I. & RIES, J. B. 2013. CO2

-induced ocean

acidification impairs calcification in the tropical urchin Echinometra viridis. Journal of Experimental Marine Biology and

Ecology, 440, 169-175.

DAHLHOFF, E. P. 2004. Biochemical indicators of stress and metabolism: applications for marine ecological studies. Annual

Review of Physiology, 66, 1, 183-207.

DAY, E. G., BRANCH, G. M. & VILJOEN, C. 2000. How costly is molluscan shell erosion? A comparison of two patellid limpets

with contrasting shell structures. Journal of Experimental

Marine Biology and Ecology, 243, 2, 185-208.

DICKSON, A. G. & MILLERO, F. J. 1987. A comparison of the equilibrium-constants for the dissociation of carbonic-acid in

seawater media. Deep-Sea Research, 34, 10, 1733-1743.

DIETL, G. P. & ALEXANDER, R. R. 2009. Patterns of unsuccessful shell-crushing predation along a tidal gradient in two

geographically separated salt marshes. Marine Ecology, 30,

-124.

DONAZZOLO, R., DEGOBBIS, D., SFRISO, A., PAVONI, B. & ORIO,

A. A. 1989. Influence of Venice lagoon macrofauna on nutrient exchange at the sediment-water interface. The Science

of the Total Environment, 86, 3, 223-238.

DUPONT, S., HAVENHAND, J., THORNDYKE, W., PECK, L. &

THORNDYKE, M. 2008. Near-future level of CO2

-driven

ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Marine Ecology Progress Series, 373, 285-294.

FAGAN, K. A., KOOPS, M. A., ARTS, M. T. & POWER, M. M. 2011. Assessing the utility of C:N ratios for predicting lipid content

in fishes. Canadian Journal of Fisheries and Aquatic Sciences,

, 2, 374-385.

FERRON, A. & LEGGETT, W. C. 1994. An appraisal of condition

measures for marine fish larvae. Advances in Marine Biology,

, 217-303.

FINDLAY, H. S., WOOD, H. L., KENDALL, M. A., SPICER, J. I.,

TWITCHETT, R. J. & WIDDICOMBE, S. 2011. Comparing the

impact of high CO2

on calcium carbonate structures in different marine organisms. Marine Biology Research, 7, 6, 565-

FRASER, K. P. P. & ROGERS, A. D. 2007. Protein metabolism in

marine animals: the underlying mechanism of growth. Advances in Marine Biology, 52, 267-362.

GALINDO, L. A., PUILLANDRE, N., UTGE, J., LOZOUET, P. &

BOUCHET, P. 2016. The phylogeny and systematics of the

Nassariidae revisited (Gastropoda, Buccinoidea). Molecular

Phylogenetics and Evolution, 99, 337-353.

GAZEAU, F., PARKER, L. M., COMEAU, S., GATTUSO, J. P.,

O’CONNOR, W. A., MARTIN, S., PÖRTNER, H. O. & ROSS, P. M.

Impacts of ocean acidification on marine shelled molluscs. Marine Biology, 160, 2207-2245.

GELLER, J. B. 1990. Reproductive responses to shell damage by

the gastropod Nucella emarginata (Deshayes). Journal of Experimental Marine Biology and Ecology, 136, 77-87.

GUTOWSKA, M. A., PÖRTNER, H. O. & MELZNER, F. 2008. Growth

and calcification in the cephalopod Sepia officinalis under

elevated seawater pCO2

. Marine Ecology Progress Series, 373,

-309.

HARRIS, J. O. MAGUIRE, G. B., EDWARDS, S. J. & HINDRUM, S.

M. 1999. Effect of pH on growth rate, oxygen consumption rate, and histopathology of gill and kidney tissue for

juvenile greenlip abalone, Haliotis laevigata Donovan and

blacklip abalone, Haliotis rubra Leach. Journal of Shellfish

Research, 18, 611-619.

HARVEY, B. P., MCKEOWN, N. J., RASTRICK, S. P. S. BERTOLINI, C.,

FOGGO, A., GRAHAM, H., HALL-SPENCER, J. M., MILAZZO, M.,

SHAW, P. W., SMALL, D. P. & MOORE, P. J. 2016. Individual and

population-level responses to ocean acidification. Scientific

Reports, 6, 20194. DOI: https://doi.org/10.1038/srep20194

HOULIHAN, D. F., MATHERS, E. M. & FOSTER, A. R. 1993. Biochemical correlates of growth rate in fish. In: RANKIN, J. C.

& JENSEN, F. B. (eds.), Fish Ecophysiology. London: Chapman

and Hall.

IPCC (Intergovernmental Panel on Climate Change). 2013. Climate change 2013: The physical science basis. Summary for

policymakers. Working Group I Contribution to the IPCC Fifth

Assessment Report, viewed 27 Jun 2019, <http://www.ipcc.

ch>.

KIM, D. H., BAEK, J. M., LEE, J. H., KIM, B. R., YOON, S. J. & KIM, J.

H. 2011. Food effect on the diel variations and starvation of

the melania snail Semisulcospira gottschei using RNA/DNA

ratios. Fisheries and Aquatic Sciences, 14, 4, 411-416.

KROEKER, K. J., SANFORD, E., JELLISON, B. M. & GAYLORD, B.

Predicting the effects of ocean acidification on predator-prey interactions: a conceptual framework based on

coastal molluscs. Biological Bulletin, 226, 3, 211-222.

LANGER, G., NEHRKE, G., BAGGINI, C., RODOLFO-METALPA, R.,

HALL-SPENCER, J. M. & BIJMA, J. 2014. Limpets counteract

ocean acidification induced shell corrosion by thickening

of aragonitic shell layers. Biogeosciences, 11, 24, 7363-7368.

LEWIS, E. & WALLACE, D. W. R. 1998. Program developed for CO2

system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory.

Oak Ridge, Tennessee: U.S. Department of Energy, viewed

Dia Mês ANO, <https://cdiac.esd.ornl.gov/oceans/co2rprt.

html>.

LOWRY, O. H., ROSEBROUGH, N. J., FARR, A. L. & RANDALL, R. J.

Protein measurement with the Folin phenol reagent.

Journal of Biological Chemistry, 193, 1, 265-275.

MAAS, A. E., WISHNER, K. F. & SEIBEL, B. A. 2012. The metabolic response of pteropods to acidification reflects natural CO2

-exposure in oxygen minimum zones. Biogeosciences, 9, 747-757.

MARCHANT, H. K., CALOSI, P. & SPICER, J. I. 2010. Short-term exposure to hypercapnia does not compromise feeding, acid–

base balance or respiration of Patella vulgata but surprisingly

is accompanied by radula damage. Journal of the Marine Biological Association of the United Kingdom, 90, 1379-1384.

MCCLINTOCK, J. B., ANGUS, R. A., MCDONALD, M. R., AMSLER, C.

D., CATLEDGE, S. A. & VOHRA, Y. K. 2009. Rapid dissolution

of shells of weakly calcified Antarctic benthic macro-organisms indicates high vulnerability to ocean acidification. Antarctic Science, 21, 5, 449-456.

MEHRBACH, C., CULBERSON, C. H., HAWLEY, J. E. & PYTKOWICXZ, R. M. 1973. Measurement of apparent dissociation

constants of carbonic acid in seawater at atmospheric pressure. Limnology and Oceanography, 18, 897-907.

MEJBAUM, W. 1939. Über die bestimmung kleiner pentosemengen insbesondere in derivaten der adenylsaüre. Hoppe-Seyler’s Zeitschrift fur Physiologische Chemie, 258, 117-120.

MELZNER, F., STANGE, P., TRÜBENBACH, K., THOMSEN, J., CASTIES,

I., PANKNIN, U., GORB, S. N. & GUTOWSKA, M. A. 2011. Food

supply and seawater pCO2

impact calcification and internal

shell dissolution in the blue mussel Mytilus edulis. PLoS One, 6,

, e24223. DOI: https://doi.org/10.1371/journal.pone.0024223

PARKER, L. M., ROSS, P. M., O’CONNOR, W. A., PÖRTNER, H. O.,

SCANES, E. & WRIGHT, J. M. 2013. Predicting the response

of molluscs to the impact of ocean acidification. Biology, 2,

, 651-692.

PIERROT, D., LEWIS, E. & WALLACE, D. W. R. 2006. MS Excel Program Developed for CO2

System Calculations. ORNL/CDIAC105a. Carbon Dioxide Information Analysis Center, Oak Ridge

National Laboratory. Oak Ridge, Tennessee: U.S. Department of Energy. DOI: https://doi.org/10.3334/CDIAC/otg.

CO2SYS_XLS_CDIAC105a

PROUM, S., HARLEY, C. D., STEELE, M. & MARSHALL, D. J. 2017.

Aerobic and behavioral flexibility allow estuarine gastropods to flourish in rapidly changing and extreme pH conditions. Marine Biology, 164, 1-14.

RODOLFO-METALPA, R., HOULBRÈQUE, F., TAMBUTTÉ, É., BOISSON, F., BAGGINI, C., PATTI, F. P., JEFFREE, R., FINE, M., FOGGO, A., GATTUSO, J. P. & HALL-SPENCER, J. M. 2011. Coral and

mollusc resistance to ocean acidification adversely affected

by warming. Nature Climate Change, 1, 308-312.

SANDERS, M. B., BEAN, T. P., HUTCHINSON, T. H. & LE QUESNE,

W. J. F. 2013. Juvenile king scallop, Pecten maximus, is potentially tolerant to low levels of ocean acidification when

food is unrestricted. PLoS ONE, 8, 9, e74118. DOI: https://doi.

org/10.1371/journal.pone.0074118

SCHACTER, G. R. & POLLACK, R. I. 1973. Simplified method for

quantitative assay of small amounts of protein in biologic

material. Analytical Biochemistry, 51, 2, 654-655.

SCHNEIDER, C.A., RASBAND, W.S. & ELICEIRI, K.W. 2012. NIH Image to ImageJ: 25 years of image analysis. Nature Methods

, 671-675.

SHIRAYAMA, Y. & THORNTON, H. 2005. Effect of increased atmospheric CO2

on shallow water marine benthos. Journal of

Geophysical Research: Oceans, 110, C9, CO9S08. DOI: https://

doi.org/10.1029/2004jCO02618

SOKOLOVA, I. M., FREDERICH, M., BAGWE, R., LANNIG, G. & SUKHOTIN, A. A. 2012. Energy homeostasis as an integrative

tool for assessing limits of environmental stress tolerance

in aquatic invertebrates. Marine Environmental Research, 79,

-15.

STAFFORD, E. S., TYLER, C. L. & LEIGHTON, L. R. 2015. Gastropod

shell repair tracks predator abundance. Marine Ecology, 36,

, 1176-1184.

SUCKLING, C. C., CLARK, M. S., BEVERIDGE, C., BRUNNER, L.,

HUGHES, A. D., HARPER, E. M., COOK, E. J., DAVIES, A. J. &

PECK, L. S. 2014. Experimental influence of pH on the early

life-stages of sea urchins II: increasing parental exposure

gives rise to different responses. Invertebrate Reproduction

and Development, 58, 3, 161-175.

SUCKLING, C. C., CLARK, M. S., RICHARD, J., MORLEY, S. A.,

THORNE, M. A. S., HARPER, E. M. & PECK, L. S. 2015. Adult

acclimation to combined temperature and pH stressors

significantly enhances reproductive outcomes compared

to short-term exposures. Journal of Animal Ecology, 84, 3,

-784.

TALLMARK, B. 1980. Population dynamics of Nassarius reticulatus (Gastropods, Prosobranchia) in Gullmar Fjord, Sweden.

Marine Ecology Progress Series, 3, 51-62.

TATE, R. D., BENKENDORFF, K., LAH, R. A. & KELAHER, B. P. 2017.

Ocean acidification and warming impacts the nutritional

properties of the predatory whelk, Dicathais orbita. Journal

of Experimental Marine Biology and Ecology, 493, 7-13.

THOMSEN, J, CASTIES, I., PANSCH, C., KÖRTZINGER, A. & MELZNER, F. 2013. Food availability outweighs ocean acidification effects in juvenile Mytilus edulis: laboratory and field

experiments. Global Change Biology, 19, 4, 1017-1027.

THOMSEN, J. & MELZNER, F. 2010. Moderate seawater acidification does not elicit long-term metabolic depression in the

blue mussel Mytilus edulis. Marine Biology, 157, 12, 2667-

TURRA, A., DENADAI, M. R. & LEITE, F. P. P. 2005. Predation on

gastropods by shell-breaking crabs: effects on shell availability to hermit crabs. Marine Ecology Progress Series, 286,

, 279-291.

WATSON, S. A., PECK, L. S., TYLER, P. A., SOUTHGATE, P. C., TAN, K.

S., DAY, R. W. & MORLEY, S. A. 2012. Marine invertebrate skeleton size varies with latitude, temperature, and carbonate

saturation: implications for global change and ocean acidification. Global Change Biology, 18, 10, 3026-3038.

WHITELEY, N. M., SUCKLING, C. C., CIOTTI, B. J., BROWN, J., MCCARTHY, I. D., GIMENEZ, L., & HAUTON, C. 2018. Sensitivity

to near-future CO2

conditions in marine crabs depends on

their compensatory capacities for salinity change. Scientific

Reports, 8, 1, 15639.

WO, K. T., LAM, P. K. S. & WU, R. S. S. 1999. A comparison of

growth biomarkers for assessing sublethal effects of cadmium on a marine gastropod, Nassarius festivus. Marine Pollution Bulletin, 39, 1-12, 165-173.

WOOTTON, J. T., PFISTER, C. A. & FORESTER, J. D. 2008. Dynamic

patterns and ecological impacts of declining ocean pH in

a high-resolution multi-year dataset. Proceedings of the National Academy of Sciences, 105, 48, 18848-18853.

ZHANG, H., CHEUNG, S. G. & SHIN, P. K. S. 2014. The larvae of

congeneric gastropods showed differential responses to

the combined effects of ocean acidification, temperature

and salinity. Marine Pollution Bulletin, 79, 1-2, 39-46.

ZHANG, H., SHIN, P. K. & CHEUNG, S. G. 2015. Physiological responses and scope for growth upon medium-term exposure to the combined effects of ocean acidification and

temperature in a subtidal scavenger Nassarius conoidalis.

Marine Environmental Research, 106, 1, 51-60.

ZHANG, H., SHIN, P. K. S. & CHEUNG, S. G. 2016. Physiological

responses and scope for growth in a marine scavenging

gastropod, Nassarius festivus (Powys, 1835), are affected

by salinity and temperature but not by ocean acidification.

ICES Journal of Marine Science, 73, 3, 814-824.

Downloads

Published

2021-06-15

How to Cite

Sub-lethal predatory shell damage does not affect physiology under high CO2 in the intertidal gastropod Tritia reticulata. (2021). Ocean and Coastal Research, 68, 11. https://doi.org/10.1590/S2675-28242020068274