Sulfate reduction and alterability of sulfur species in sediments of an estuary with irregular hydrological regime

Authors

  • Nicolai Mirlean Universidade Federal do Rio Grande
  • André Luiz de Bem Universidade Federal do Rio Grande
  • Guilherme Castro da Rosa Quintana Universidade Federal do Rio Grande
  • Larissa Pinheiro Costa Universidade Federal do Rio Grande
  • Alexandre Henrique Ferraz Universidade Federal do Rio Grande

DOI:

https://doi.org/10.1590/s2675-28242020068321

Keywords:

Sulfides formation, Saltmarsh sediment, Hydrological regime, River dominated estuary

Abstract

The irregular hydrological regime in Patos Lagoon estuary has been suggested as having a distinctive influence on sulfur speciation in sediments. We performed an investigation for different prolonged hydrological conditions focusing on the distribution of sulfides (acid volatile sulfide (AVS), chromium reducible sulfide (CRS), and Free-S2-) in sediment cores from salt marsh and non-vegetated shallow zone. Significant differences in sulfides content and distribution between the different hydrological periods were found. The predominance of more reducing conditions was observed during the freshwater period. It reflects a higher total reducible inorganic sulfur (TRIS) content in this period, with a great accumulation of AVS in sediments (> 100 mg kg-1). In the maximum salinity period, more oxidizing conditions prevailed, which significantly decreased the concentrations of metastable sulfides. The intense bioirrigation process exerts control over sulfide formation and distribution, which is as important as that exerted by the variations of the hydrological regime.

References

ABNT (Associação Brasileira de Normas Técinicas) 1987.

Determinação da composição granulométrica - NBR 7217, Rio

de Janeiro: ABNT.

ALBERTI, J., ESCAPA, M. & DALEO. P. 2007. Local and geographic

variation in grazing intensity by herbivorous crabs in SW Atlantic

salt marshes. Marine Ecology Progress Series, 349, 235-243.

ÁLVAREZ-IGLESIAS, P. & RUBIO, B. 2012. Early diagenesis of

organic-matter-rich sediments in a ría environment:

Organic matter sources, pyrites morphology and limitation

of pyritization at depth. Estuarine, Coastal and Shelf Science,

, 113-123.

ANGELETTI, S. & CERVELLINI, P. 2015. Estructura poblacional

del cangrejo cavador Neohelice granulata (Brachyura,

Varunidae) en una marisma del Atlántico sudoccidental.

Latin American Journal of Aquatic Research, 43, 539-547.

ANTIQUEIRA, J. & CALLIARI, L. 2005. Características sedimentares

da desembocadura da Laguna dos Patos. Gravel, 3, 39-46.

BARROS, G., MARQUES, W. & KIRINUS, E. 2014. Influence of the

freshwater discharge on the hydrodynamics of Patos Lagoon,

Brazil. International Journal of Geosciences, 5, 925-942.

BERNER, R. 1970. Sedimentary pyrite formation. American

Journal of Science, 268, 1-23.

BIANCHI, T. 2007. Biogeochemistry of Estuaries. Oxford: Oxford

University Press.

BROOKS, K. 2001. An evaluation of the relationship between

salmon farm biomass, organic inputs to sediments,

physicochemical changes associated with those inputs and

the infaunal response. Aquatic Environmental Sciences, 1-173.

BRÜCHERT, V., JØRGENSEN, B., NEUMANN, K., RIECHMANN,

D., SCHLÖSSER, M. & SCHULZ, H. 2003. Regulation of

bacterial sulfate reduction and hydrogen sulfide fluxes in

the central namibian coastal upwelling zone. Geochimica et

Cosmochimica Acta, 67, 4505-4518.

COSTA, C., MARANGONI, J. & AZEVEDO, A. 2003. Plant zonation

in irregularly flooded salt marshes: relative importance

of stress tolerance and biological interactions. Journal of

Ecology, 91, 951-965.

COSTA, L., MIRLEAN, N. & GARCIA, F. 2017. Arsenic Environmental

Threshold Surpass in Estuarine Sediments: Effects of

Bioturbation. Bulletin of Environmental Contamination and

Toxicology, 98, 521-524.

COSTA, L., MIRLEAN, N. & QUINTANA, G. 2019. Distribution

and Geochemistry of Arsenic in Sediments of the World ’ s

Largest Choked Estuary: the Patos Lagoon , Brazil. Estuaries

and Coasts, 42, 1896-1911.

DU LAING, G., RINKLEBE, J., VANDECASTEELE, B., MEERS, E.

& TACK, F. 2009. Trace metal behaviour in estuarine and

riverine floodplain soils and sediments: A review. Science of

The Total Environment, 407, 3972-3985.

FEIJTEL, T., DELAUNE, R. & PATRICK, W. 1988. Seasonal Pore Water

Dynamics in Marshes of Barataria Basin, Louisiana. Soil

Science Society of America Journal, 52, 59-67.

FERREIRA, T. 2010. Bioturbation and its role in iron and sulfur

geochemistry in mangrove soils. In: PÉREZ, X. & VAZQUEZ, F.

(eds) Biogeochemistry and Pedogenetic Process in Saltmarsh

and Mangrove Systems. New York: Nova Science Publishers.

FOSSING, H. & JØRGENSEN, B. 1989. Measurement of bacterial

sulfate reduction in sediments: Evaluation of a single-step

chromium reduction method. Biogeochemistry, 8, 205-222.

GAGNON, C., MUCCI, A. & PELLETIER, É. 1995. Anomalous

accumulation of acid-volatile sulphides (AVS) in a coastal

marine sediment, Saguenay Fjord, Canada. Geochimica et

Cosmochimica Acta, 59, 2663-2675.

HERNÁNDEZ-CRESPO, C. & MARTÍN, M. 2013. Mid-Term Variation

of Vertical Distribution of Acid Volatile Sulphide and

Simultaneously Extracted Metals in Sediment Cores From

Lake Albufera (Valencia, Spain). Archives of Environmental

Contamination and Toxicology, 65, 654-664.

HUERTA-DIAZ, M. & REIMER, J. (2010) Biogeochemistry of

Sediments. In: PÉREZ, X. & VAZQUEZ F. (eds) Biogeochemistry

and Pedogenetic Process in Saltmarsh and Mangrove Systems,

New York: Nova Science Publishers.

HYUN, J., SMITH, A. & KOSTKA, J. 2007. Relative contributions of

sulfate- and iron(III) reduction to organic matter mineralization

and process controls in contrasting habitats of the Georgia

saltmarsh. Applied Geochemistry, 22, 2637-2651.

IRIBARNE, O., BOTTO, F., MARTINETTO, P. & GUTIERREZ, J.

The role of burrows of the SW Atlantic intertidal

crab Chasmagnathus granulata in trapping debris. Marine

Pollution Bulletin, 40, 1057-1062.

IVANOFF, M., TOLDO, E., FIGUEIRA, R. & FERREIRA, P. 2020. Use of 210Pb and 137Cs in the assessment of recent sedimentation in

Patos Lagoon, southern Brazil. Geo-Marine Letters.

JØRGENSEN, B. & KASTEN, S. 2005. Sulfur Cycling and Methane

Oxidation. In: SCHULZ, H. & ZABEL, M. (eds) Marine

Geochemistry, Berlin: Springer.

KJERFVE, B. 1994. Coastal lagoons. In: KJERFVE, B. (ed) Coastal

Lagoon Processes, Amsterdam: Elsevier Oceanographic

Series.

KORETSKY, C., CUELLAR, A., HAVEMAN, M., BEUVING, L.,

SHATTUCK, T. & WAGNER, M. 2008. Influence of Spartina

and Juncus on saltmarsh sediments. II. Trace element

geochemistry. Chemical Geology, 255, 100-113.

KRISTENSEN, E., ANDERSEN, F. & BLACKBURN, T. 1992. Effects of

benthic macrofauna and temperature on degradation of

macroalgal detritus: The fate of organic carbon. Limnology

and Oceanography, 37, 1404-1419.

LEE, R., KRAUS, D. & DOELLER, J. 1999. Oxidation of sulfide by

Spartina alterniflora roots. Limnology and Oceanography,

, 1155-1159.

LI, D., LIU, X., LIU, Z. & ZHAO, X. 2016. Variations in total organic

carbon and acid-volatile sulfide distribution in surface

sediments from Luan River Estuary, China. Environmental

Earth Sciences, 75, 1-11.

LIU, Z., LEE, C. & ALLER, R. 2008. Drying effects on decomposition

of salt marsh sediment and on lysine sorption. Journal of

Marine Research, 66, 665-689.

LUTHER, G., FERDELMAN, T., KOSTKA, J., TSAMAKIS, E. & CHURCH,

T. 1991. Temporal and spatial variability of reduced sulfur

species (FeS2

, S2

O3

−) and porewater parameters in salt

marsh sediments. Biogeochemistry, 14, 57-88.

MANSFELDT, T. 2004. Redox potential of bulk soil and soil

solution concentration of nitrate, manganese, iron, and

sulfate in two Gleysols. Journal of Plant Nutrition and Soil

Science, 167, 7-16.

MARQUES, W., FERNANDES, E., MORAES, B., MÖLLER, O. &

MALCHEREK, A. 2010. Dynamics of the Patos Lagoon coastal

plume and its contribution to the deposition pattern of

the southern Brazilian inner shelf. Journal of Geophysical

Research, 115, 1-22.

MARTINETTO, P., MONTEMAYOR, D. & ALBERTI, J. 2016. Crab

bioturbation and herbivory may account for variability in

carbon sequestration and stocks in south west atlantic salt

marshes. Frontiers in Marine Science, 3,1-12.

MARVIN-DIPASQUALE, M. & CAPONE, D. 1998. Benthic sulfate

reduction along the Chesapeake Bay central channel. I.

Spatial trends and controls. Marine Ecology Progress Series,

, 213-228.

MARVIN-DIPASQUALE, M., BOYNTON, W. & CAPONE, D. 2003.

Benthic sulfate reduction along the Chesapeake Bay central

channel. II. Temporal controls. Marine Ecology Progress

Series, 260, 55-70.

MIRLEAN, N. & COSTA, C. 2017. Geochemical factors promoting

die-back gap formation in colonizing patches of Spartina

densiflora in an irregularly flooded marsh. Estuarine, Coastal

and Shelf Science, 189, 104-114.

MÖLLER, O., CASTELLO, J. & VAZ, A. 2009. The effect of river

discharge and winds on the interannual variability of the

pink shrimp Farfantepenaeus paulensis production in Patos

Lagoon. Estuaries and Coasts, 32, 787-796.

MÖLLER, O., LORENZZENTTI, J., STECH, J. & MATA, M. 1996.

The Patos Lagoon summertime circulation and dynamics.

Continental Shelf Research, 16, 335-351.

MORSE, J. & CORNWELL, J. 1987. Analysis and distribution of

iron sulfide minerals in recent anoxic marine sediments.

Marine Chemistry, 22, 55-69.

OENEMA, O. 1990. Sulfate reduction in fine-grained

sediments in the Eastern Scheldt, southwest

Netherlands. Biogeochemistry, 9, 53-74.

OTERO, X., FERREIRA, T., HUERTA-DÍAZ, M., PARTITI, C., SOUZA, V.,

VIDAL-TORRADO, P. & MACÍAS, F. 2009. Geochemistry of iron and

manganese in soils and sediments of a mangrove system, Island

of Pai Matos (Cananeia - SP, Brazil). Geoderma, 148, 318-335.

PANUTRAKUL, S., MONTENY, F. & BAEYENS, W. 2001. Seasonal

variations in sediment sulfur cycling in the Ballastplaat

mudflat, Belgium. Estuaries, 24, 257-265.

PEIXOTO, A. & COSTA C. 2004. Produção primária líquida aérea de

Spartina densiflora Brong. (Poaceae) no estuário da laguna

dos Patos, Rio Grande do Sul, Brasil. Iheringia, 59, 27-34.

QUINTANA, G., MIRLEAN, N., COSTA, L., & JOHANNESSON, K.

Mercury distributions in sediments of an estuary

subject to anthropogenic hydrodynamic alterations (Patos

Estuary, Southern Brazil). Environmental Monitoring and

Assessment, 192(5). doi:10.1007/s10661-020-8232-3

RICKARD, D. & LUTHER, G. 1997. Kinetics of pyrite formation

by the H2

S oxidation of iron (II) monosulfide in aqueous

solutions between 25 and 125°C: The mechanism.

Geochimica et Cosmochimica Acta, 61, 135-147.

RICKARD, D. & LUTHER, G. 2007. Chemistry of iron sulfides.

Chemical reviews, 107, 514-562.

RICKARD, D. & MORSE, J. W. 2005. Acid volatile sulfide (AVS).

Marine chemistry, 97, 141-197.

ROJAS, N. & SILVA, N. 2005. Early diagenesis and vertical

distribution of organic carbon and total nitrogen in recent

sediments from southern Chilean fjords (Boca del Guafo to

Pulluche Channel). Investigaciones marinas, 33, 183-194.

STUMM, W. and MORGAN, J.J. (1996) Aquatic Chemistry.

Chemical Equilibria and Rates in Natural Waters. New York:

John Wiley & Sons, Inc.

SUNDBY, B. 2006. Transient state diagenesis in continental

margin muds. Marine Chemistry, 102, 2-12.

USEPA (United States Environmental Protection Agency) 1991.

Draft analytical method for determination of acid volatile

sulfide in sediment. Whashinton: USEPA.

VAIRAVAMURTHY, M. & SCHOONEN, M. 1995. Geochemical

transformations of sedimentary sulfur. Washington:

American Chemical Society.

VAZ, A., MÖLLER, O. & ALMEIDA., T. 2006. Análise quantitativa da

descarga dos rios afluentes da Lagoa dos Patos. Atlântica,

, 13-23.

WANG, C., LIN, D., WANG, P., AO, Y., HOU, J. & ZHU, H. 2015.

Seasonal and spatial variations of acid-volatile sulphide

and simultaneously extracted metals in the Yangtze River

Estuary. Chemistry and Ecology, 31, 466-477.

WINDOM, H., NIENCHESKI, L. & SMITH, R. 1999. Biogeochemistry

of nutrients and trace metals in the estuarine region of the

Patos Lagoon (Brazil). Estuarine, Coastal and Shelf Science,

, 113-123.

XIN, P., LI, L. & BARRY, D. 2013. Tidal influence on soil conditions

in an intertidal creek marsh system. Water Resources

Research, 49, 137-150.

YANG, Y., ZHANG, L., CHEN, F., KANG, M., WU, S. & LIU, J.

Seasonal variation of acid volatile sulfide and

simultaneously extracted metals in sediment cores from

the Pearl River Estuary. Soil and Sediment Contamination:

An International Journal, 23, 480-496.

ZHANG, L., LIAO, Q., HE, W., SHANG, J. & FAN, C. 2013. The effects of

temperature on oxygen uptake and nutrient flux in sedime

Downloads

Published

2021-06-15

How to Cite

Sulfate reduction and alterability of sulfur species in sediments of an estuary with irregular hydrological regime. (2021). Ocean and Coastal Research, 68, 16. https://doi.org/10.1590/s2675-28242020068321