Wave regime characterization in the northern sector of Patos Lagoon, Rio Grande do Sul, Brazil

Authors

  • Chayonn Marinho Universidade Federal do Rio Grande
  • Jorge Arigony Neto Macquarie University
  • João Luiz Nicolodi Universidade Federal do Rio Grande
  • Natália Lemke Universidade Federal do Rio Grande
  • José Antônio Scotti Fontoura Universidade Federal do Rio Grande

DOI:

https://doi.org/10.1590/s2675-28242020068295

Keywords:

Wave modeling, SWAN, wave regime in Patos Lagoon

Abstract

This paper describes wave prediction results for Patos Lagoon's northern sector through numerical modeling using Delft3D software. ERA-Interim satellite reanalysis data of wind intensity and direction were used as inputs to force the hydrodynamic model. For SWAN calibration and validation in the study region, wave parameters were used. These parameters were acquired in situ by a directional waverider buoy. Statistical data showed the good performance of the model, albeit with a tendency to overestimate significant wave height and underestimate peak period and propagation direction. Once validated, wave parameters for five points at different depths were obtained during the four seasons of the year between 2017 and 2018. In general, it was observed that the largest ripples come from the S and SSW directions and occurred during spring at the deepest point under wind conditions exceeding 10 m s-1. Ripples up to 0.30 m account for 77.9 % at the shallowest point and 65.7 % at the deepest point. Thus, the study area was classified as low energy and characterized by small, high-frequency, short-period ripples strongly influenced and determined by the local depth because larger ripples are always observed in the deepest locations, giving the lagoon a characteristic of depth-limited ripples. The results obtained here have the potential to contribute to territorial management of the region, with emphasis on the Integral Protection Conservation Unit located in the study area (Itapuã State Park) and on the development and safety of the important, heavily used navigation route that connects Rio Grande Port to the state capital, Porto Alegre.

References

AKPINAR, A., VAN VLEDDER, G. P., KÖMÜRCÜ, M. I. & ÖZGER, M. 2012.

Evaluation of the numerical wave model (SWAN) for wave simulation in the Black Sea. Continental Shelf Research, 50-51, 80-99.

BRYANT, E. 1979. Comparison of computed and observed

breaker wave heights. Coastal Engineering, 3, 39-50.

CASSIANO, G. F., RIBEIRO, R. B. & YASSUDA, E. A. 2012. Acquisition of wave data and modeling in Santos Bay, São Paulo,

Brazil. In: 10th International Conference on Hydroscience & Engineering, 4-7 Nov. 2012. Orlando, Flórida, USA: ICHE-2012.

CASTELÃO, R. M. & MÖLLER, O. O. 2003. Sobre a circulação tridimensional forçada por ventos na Lagoa dos Patos. Revista

Atlântica, 25(2), 91-106.

DELANEY, P. 1965. Fisiografia e geologia de superfície da planície costeira do Rio Grande do Sul. DSc. University of São

Paulo. Available at: https://teses.usp.br/teses/disponiveis/44/44997/tde-29082016-151600/publico/Delaney_

Doutorado.pdf [Accessed 10 July 2018].

ECMWF (European Centre for Medium-Range Weather Forecasts). ERA Interim, Daily [online]. Reading, UK: ECMWF.

Available at: https://apps.ecmwf.int/datasets/data/interim-

-full-daily/levtype=sfc/ [Accessed: 14 January 2019].

FONTOURA, J. A. S., NICOLODI, J. L., ROMEU, M. A. R., MELO, E.,

LEMKE, N., AGUIAR, D. F. & GOULART, M. M. 2015. Medição

direcional de ondas na Lagoa dos Patos, RS, Brasil. In: Congresso Hidroviário da Sociedade Brasileira de Engenharia Naval (SOBENA), 6-8 Oct. 2015. Manaus, AM, Brazil: SOBENA.

GUEDES-SOARES, C. 1986. Calibration of visual observations of

wave period. Ocean Engineering, 13(6), 539-547.

GUIMARÃES, P. V., FARINA, L., TOLDO JUNIOR, E., DIAZ-HERNANDEZ,

G. & AKHMATSKAYA, E. 2015. Numerical simulation of extreme

wave runup during storms events in Tramandaí Beach, Rio

Grande do Sul, Brazil. Coastal Engineering, 95, 171-180.

HASSELMANN, K. & COLLINS, J. I. 1968. Spectral dissipation of

finite depth gravity waves due to turbulent bottom friction.

Journal of Marine Research, 26(1), 1-12.

HOLTHUIJSEN, L. H. 2007. Waves in oceanic and coastal waters.

New York: Cambridge University Press.

JARDINE, T. P. 1979. The reliability of visually observed wave heights. Coastal Engineering, 3, 33-38.

KJERFVE, B. 1986. Comparative oceanography of coastal lagoons.

In: WOLFE, D. A. (ed.). Estuarine variability. New York: Academic Press, 63-81.

KJERFVE, B. & MAGILL, K. E. 1989. Geographic and hydrographic

characteristics of shallow coastal lagoons. Marine Geology,

(3-4), 187-199.

KOMEN, G. J., HASSELMANN, S. & HASSELMANN, K. 1984. On the

existence of a fully developed wind-sea spectrum. Journal

of Physical Oceanography, 14(8), 1271-1285.

LALBEHARRY, R. 2001. Evaluation of the CMC regional wave

forecasting system against buoy data. Atmosphere-Ocean,

(1), 1-20.

LEE, J. M., WISEMAN JUNIOR, W. J. & KELLY, F. J. 1990. Barotropic,

subtidal exchange between Calcasieu Lake and the Gulf of

Mexico. Estuaries, 13(3), 258-264.

LEMKE, N., FONTOURA, J. A. S., CALLIARI, L. J., AGUIAR, D. F.,

MELO, E., NICOLODI, J. L., ROMEU, M. A. R. & GOULART, M. M.

Estudo comparativo entre modelagem e medições de

ondas na Lagoa dos Patos – RS, Brasil. In: XI Simpósio sobre

Ondas, Marés, Engenharia Oceânica e Oceanografia por Satélite (XI OMARSAT). Arraial do Cabo, RJ, Brazil: Instituto de

Estudos do Mar Almirante Paulo Moreira.

LEMKE, N., CALLIARI, L. J., FONTOURA, J. A. S. & AGUIAR, D. F.

Wave directional measurement in Patos Lagoon, RS,

Brazil. Brazilian Journal of Water Resources, 22, e.1.

LEMKE, N., FONTOURA, J. A. S., CALLIARI, L. J. & FERREIRA, N. M.

Estimativa de cenários característicos de ondas na enseada de São Lourenço do Sul, Lagoa dos Patos – RS. Revista

Perspectivas Online: Exatas & Engenharias, 8(20), 25-42.

LIN, W. Q., SANFORD, L. P. & SUTTLES, S. E. 2002. Wave measurement and modeling in Chesapeake bay. Continental Shelf

Research, 22, 18-19.

LU, X. & WONG, K. C. 1994. The subtidal lagrangian current in

Delaware’s inland bays under low wind conditions. Estuarine Coastal and Shelf Science, 39, 353-365.

MATOS, M. F. A., SCUDELARI, A. C., AMARO, V. E. & FORTES, C. J.

E. M. 2017. Integration among numeric Simulating (SWAN)

and field data on wave climate determination at the state

of Rio Grande do Norte northern coast. Revista Brasileira de

Geomorfologia, 18(2), 311-328.

MELO, E., HAMMES, G. R., FRANCO, D. & ROMEU, A. R. 2008. Aferição do desempenho do modelo WW3 em Santa Catarina.

In: III Seminário e Workshop em Engenharia Oceânica – FURG

(SEMENGO), 5-7 Nov. 2008. Rio Grande, RS, Brazil: SEMENGO.

MILLET, B., TEXIER, H. & COLLEUIL, B. 1991. Modélisation numérique de circulation et dynamique sédimentaire d’um

écosystème lagunaire tropical: le lac Nokoue (Benin). Journal of Reach Oceanore, 16, 10-15.

MOEINI, M. H. & ETEMAD-SHAHIDI, A. 2009. Wave parameter

hindcasting in a lake using the SWAN model. Scientia Iranica. Sharif University of Technology. Scientia Iranica, International Journal of Science & Technology, 16(2), 156-164.

NICOLODI, J. L. & PETTERMANN, R. M. 2011. Vulnerability of the Brazilian coastal zone in its environmental, social and technological aspects. Journal of Coastal Research, SI64, 1372-1379.

NICOLODI, J. L., TOLDO JUNIOR, E. E. & FARINA, L. 2011. Wave

dynamics and resuspension in Lake Guaíba (Brazil) with implications on points of water abstraction for human supply.

Journal of Coastal Research, SI64, 1550-1554.

NICOLODI, J. L., TOLDO JUNIOR, E. E. & FARINA, L. 2013. Dynamic

and resuspension by waves and sedimentation pattern definition in low energy environments, Guaíba Lake, Brazil. Brazilian Journal of Oceanography, 61(1), 55-64.

PADILLA-HERNÁNDEZ, R. & MONBALIUR, J. 2001. Energy balance

of wind waves as a function of the bottom friction formulation. Coastal Engineering, 43(2), 131-148.

PAES-LEME, R. B., VIOLANTE-CARVALHO, N., ACCETTA, D. & MEIRELLES, S. 2008. Modelagem física e computacional de ondas

geradas pelo vento em um terminal portuário: o desempenho do modelo SWAN 40.51 em uma região com elevada

reflexão e difração. Revista Brasileira de Geofísica, 26(1), 45-59.

PALLARES, E., SÁNCHEZ-ARCILLA, A. & ESPINO, M. 2014. Wave

energy balance in wave models (SWAN) for semi-enclosed

domains – Application to Catalan coast. Continental Shelf Research, 87, 41-53.

PLANT, N. G. & GRIGGS, G. B. 1992. Comparison of visual observations of wave height and period to measurements made

by an offshore slope array. Journal of Coastal Research, 8(4),

-965.

ROCHA, M. V. L., MOURA, T., FORTES, C. J. E. M., CAPITÃO, R., BEZERRA, M. M. & SANCHO, F. E. 2012. Análise comparativa de

medições in situ e estimativas numérica na Praia da Cornélia, Costa da Caparica, Portugal. Journal of Integrated Coastal

Zone Management, 12(2), 147-157.

RODRÍGUEZ, M. G., NICOLODI, J. L., GUTIÉRREZ, O. M., LOSADA, V.

C. & HERMOSA, A.E. 2018. Brazilian coastal processes: wind,

wave climate and sea level. In: SHORT, A. D. & KLEIN, A. H. F.

(eds.). Brazilian Beach Systems. Switzerland: Springer Nature,

pp. 37-66.

RUSU, E. 2016. Reliability and applications on the numerical wave

predictions in the Black Sea. Frontiers in Marine Science, 3, 95.

RUSU, L., BERNARDINHO, M. & SOARES, C. G. 2014. Wind and

wave modeling in the Black Sea. Journal of Operational Oceanography, 7(1), 5-20.

SÁNCHES, A. S., RODRIGUES, D. A., FONTES, R. M., MARTINS, M. F.,

KALID, R. A. & TORRES, E. A. 2018. Wave resource characterization through in-situ measurement followed by artificial neural networks’ modeling. Renewable Energy, 115, 1055-1066.

SEIBT, C., PEETERS, F., GRAF, M., SPRENGER, M. & HOFMANN, H. 2013.

Modeling wind waves and wave exposure of nearshore zones in

medium-sized lakes. Limnology and Oceanography, 58(1), 23-26.

SHIN, S. 2013. Simulation of two-dimensional internal waves generated by a translating and pitching foil. Ocean Engineering, 70, 77-86.

SIMÃO, C. E. 2016. Estudo do padrão de ondulações na Lagoa dos

Patos utilizando o modelo SWAN (Delft3D), RS, Brasil. MSc. Federal University of Rio Grande.

SMITH, N. P. 1978. Long period, estuarine-shelf exchanges in

response to meteorological forcing. In: Nihoul, J. C. J. (ed.).

Hydrodynamics of estuaries and Fjords. Amsterdam: Elsevier

Oceanography Series 30, pp. 147-159.

SORENSEN, O., KOFOED-HANSEN, H., RUGBJERG, M. & SORENSEN, L. S.

A third-generation spectral wave model using an unstructured finite volume technique. In: 29th International Conference on

Coastal Engineering (ICCE), 19-24 Sep. 2004.Lisbon, Portugal: ICCE.

STECH, J. L. & LORENZZETTI, J. A. 1992. The response of the

South Brazil Bight to the passage of wintertime cold fronts.

Journal of Geophysics Research, 97(C6), 9507-9520.

TOLDO, E. E., ALMEIDA, L. E. S. B., CORRÊS, I. C. S., FERREIRA, E. R. &

GRUBER, N. L. S. 2006. Wave prediction along Lagoa dos Patos

Coastline, Southern Brasil. Revista Atlântica, 28(2), 87-95.

TOMAZELLI, L. J. 1993. O regime dos ventos e a taxa de migração das dunas eólicas costeiras do Rio Grande do Sul, Brasil.

Pesquisas, 20:18-26.

USACE (U.S. Army Corps of Engineers). 2002. Department of the

Army. Engineer Manuals. Coastal Engineering Manual – Part

II. Washington, DC: USACE.

VAN VLEDDER, G. P. & AKPINAR, A. 2015. Wave model predictions in the Black Sea: sensitivity to wind fields. Applied

Ocean Research, 53, 161-178.

VILLWOCK, J.A., TOMAZELLI, L.J., LOSS, E.L., DEHNHARDT, E.A.,

HORN Fo, N.O., BACHI, F.A., DEHNHARDT, BA. 1986. Geology

of the Rio Grande do Sul Coastal Province. In: RABASA, J.,

(ed.), Quaternary of South America and Antarctic Peninsula.

Rotterdam: A.A. Balkema Publishers, 4, 11p.

WONG, K. C. 1991. The effect of coastal sea level forcing on

Indian River Bay and Rehoboth Bay, Delaware. Estuarine,

Coastal and Shelf Science, 32(3), 213-229.

Downloads

Published

2021-06-15

How to Cite

Wave regime characterization in the northern sector of Patos Lagoon, Rio Grande do Sul, Brazil. (2021). Ocean and Coastal Research, 68, 18. https://doi.org/10.1590/s2675-28242020068295