Aggregative capacity of experimental anchored Fish Aggregating Devices (aFADs) in Northeastern Brazil revealed through electronic tagging data

Authors

  • Luísa Queiroz Véras Universidade Federal de Pernambuco
  • Manuela Capello MARBEC, Univ Montpellier
  • Fabien Forget MARBEC, Univ Montpellier
  • Mariana Travassos Tolotti MARBEC, Univ Montpellier
  • Drausio Pinheiro Véras Universidade Federal Rural de Pernambuco
  • Laurent Dagorn MARBEC, Univ Montpellier
  • Fábio Hissa Hazin Universidade Federal Rural de Pernambuco

DOI:

https://doi.org/10.1590/s2675-28242020068284

Keywords:

Associative behavior, Acoustic tagging, Moored FADs, Pelagic fish, Artisanal fishing

Abstract

Catches of pelagic fish associated to anchored Fish Aggregating Devices have been responsible for increases in income, fish consumption, and even cultural identity of artisanal fishing communities in many developing countries worldwide. Nonetheless, in Brazil, aFAD fishing is still poorly developed and studied. In this experiment, FADs were anchored offshore the city of Recife (Northeastern Brazil) to investigate the potential of moored buoys in the aggregation of commercially important pelagic species near the coast, as an alternative fishing site for artisanal fishers. The behavior of acoustically tagged fish was investigated to assess whether they were attracted to the FADs and how long they remained associated to them. The results indicated that, although economically important species were found near the FADs, they did not remain associated for long periods. From the four species tagged, Acanthocybium solandri, Coryphaena hippurus, Thunnus atlanticus, and Caranx crysos, only the two latter were detected at the FADs. Both species presented a preference for a specific FAD, with stronger site fidelity being recorded for C. crysos. This species presented Total Resident Times (TRTs) of more than a month and continuous residence times of more than 14 consecutive days. T. atlanticus, on the other hand, remained around the buoys for short time intervals, with a maximum TRT of only two days. Short diurnal excursions far from the FADs and few longer excursions during nighttime were recorded for C. crysos. These results do not support the possible use of moored FADs near the coast of Recife as an alternative fishing site for artisanal fisheries. It is possible that the geomorphological characteristics of the experimental area did not favor the aggregative behavior of large pelagic fish species, such as tunas, around FADs.

References

ADAM, M. S., JAUHAREE, A. R. & MILLER, K. I. 2015. Review of

yellowfin tuna fisheries in the Maldives. In: Working Party on

Tropical Tunas. Victoria: Indian Ocean Tuna Commission, 19,

pp. 1-15.

ADDIS, P., CAU, A., MASSUTÍ, E., MERELLA, P., SINOPOLI, M. &

ANDALORO, F. 2006. Spatial and temporal changes in the

assemblage structure of fishes associated to fish aggregation

devices in the Western Mediterranean. Aquatic Living

Resources, 19(2), 149-160.

ALBERT, J. A., BEARE, D., SCHWARZ, A. M., ALBERT, S., WARREN,

R., TERI, J., SIOTA, F. & ANDREW, N. L. 2014. The contribution

of nearshore fish aggregating devices (FADs) to food security

and livelihoods in Solomon Islands. PLoS One, 9(12),

e115386.

BASKE, A., GIBBON, J., BENN, J. & NICKSON, A. 2012. Estimating

the use of drifting fish aggregation devices (FADs ) around the

globe. Washington: The Pew Environment Group - Discussion

Paper, pp. 1-8.

BELL, J. D., ALBERT, J., ANDRÉFOUËT, S., ANDREW, N. L., BLANC,

M., BRIGHT, P., BROGAN, D., CAMPBELL, B., GOVAN, H.,

HAMPTON, J., HANICH, Q., HARLEY, S., JORARI, A., SMITH, M.

L., PONTIFEX, S., SHARP, M. K., SOKIMI, W. & WEBB, A. 2015.

Optimising the use of nearshore fish aggregating devices

for food security in the Pacific Islands. Marine Policy, 56, 98-

BEZERRA, N. A., MACENA, B., TRAVASSOS, P., AFONSO, P. & HAZIN,

F. H. V. 2019. Evidence of site fidelity and deep diving

behaviour of scalloped hammerhead shark (Sphyrna lewini)

around the Saint Peter and Saint Paul Archipelago, in the

equatorial Mid-Atlantic ridge. Marine and Freshwater Research,

(6), 653-661.

BRANCO-NUNES, I. S. L., VERAS, D. P., OLIVEIRA, P. & HAZIN, F.

Vertical movements of the southern stingray, Dasyatis

americana (Hildebrand & Schroeder, 1928) in the biological

reserve of the Rocas Atoll, Brazil. Latin American Journal of

Aquatic Research, 44(2), 216-227.

BROWN, H., BENFIELD, M. C., KEENAN, S. F. & POWERS, S. P. 2010.

Movement patterns and home ranges of a pelagic carangid

fish, Caranx crysos, around a petroleum platform complex.

Marine Ecology Progress Series, 403, 205-218.

CAMPBELL, B., HANICH, Q. & DELISLE, A. 2016. Not just a passing

FAD: insights from the use of artisanal fish aggregating

devices for food security in Kiribati. Ocean and Coastal Management,

, 38-44.

CAPELLO, M., BACH, P. & ROMANOV, E. 2013a. Fine-scale catch

data reveal clusters of large predators in the pelagic realm.

Canadian Journal of Fisheries and Aquatic Sciences, 70(12),

-1791.

CAPELLO, M., DENEUBOURG, J. L., ROBERT, M., HOLLAND, K. N.,

SCHAEFER, K. M. & DAGORN, L. 2016. Population assessment

of tropical tuna based on their associative behavior

around floating objects. Scientific Reports, 6(1), 1-14.

CAPELLO, M., ROBERT, M., SORIA, M., POTIN, G., ITANO, D., HOLLAND,

K., DENEUBOURG, J. L. & DAGORN, L. 2015. A methodological

framework to estimate the site fidelity of tagged

animals using passive acoustic telemetry. PLoS One, 10(8),

e0134002.

CAPELLO, M., SORIA, M., COTEL, P., DENEUBOURG, J. L. & DAGORN,

L. 2011. Quantifying the interplay between environmental

and social effects on aggregated-fish dynamics.

PLoS One, 6(12), e28109.

CAPELLO, M., SORIA, M., COTEL, P., POTIN, G., DAGORN, L. &

FRÉON, P. 2012. The heterogeneous spatial and temporal

patterns of behavior of small pelagic fish in an array of Fish

Aggregating Devices (FADs). Journal of Experimental Marine

Biology and Ecology, 430-431, 56-62.

CAPELLO, M., SORIA, M., POTIN, G., COTEL, P. & DAGORN, L.

b. Effect of current and daylight variations on small-pelagic

fish aggregations (Selar crumenophthalmus) around a

coastal fish aggregating device studied by fine-scale acoustic

tracking. Aquatic Living Resources, 26, 63-68.

CARVALHO, M. F., BARBOSA, J. M., ARAÚJO, A. R. R. & SOUZA,

J. M. 2015. Cadeia de comercialização de tunídeos no Estado

de Sergipe, Brasil. Acta of Fisheries and Aquatic Research,

(1), 1-12.

CASTRO, J. J., SANTIAGO, J. A. & SANTANA-ORTEGA, A. T. 2002.

A general theory on fish aggregation to floating objects: an

alternative to the meeting point hypothesis. Reviews in Fish

Biology and Fisheries, 11(3), 255-277.

DAGORN, L., HOLLAND, K. N. & ITANO, D. G. 2007. Behavior of

yellowfin (Thunnus albacares) and bigeye (T. obesus) tuna

in a network of fish aggregating devices (FADs). Marine Biology,

, 595-606.

DAGORN, L., PETIT, M. & STRETTA, J. M. 1997. Simulation of

large-scale tropical tuna movements in relation with daily

remote sensing data: the artificial life approach. BioSystems,

(3), 167-180.

DAHLET, L. I., DOWNEY-BREEDT, N., ARCE, G., SAUER, W. H. H. &

GASALLA, M. A. 2019. Comparative study of skipjack tuna

Katsuwonus pelamis (Scombridae) fishery stocks from the

South Atlantic and western Indian oceans. Scientia Marina,

(1), 19-30.

DEMPSTER, T. 2004. Biology of fish associated with moored fish

aggregation devices (FADs): implications for the development

of a FAD fishery in New South Wales, Australia. Fisheries

Research, 68(1-3), 189-201.

DEMPSTER, T. & TAQUET, M. 2004. Fish aggregation device (FAD)

research: gaps in current knowledge and future directions

for ecological studies. Reviews in Fish Biology and Fisheries,

(1), 21-42.

DUBROCA, L., CHASSOT, E., FLOCH, L., DEMARCQ, H., ASSAN, C.

& MOLINA, A. D. 2013. Seamounts and tuna fisheries: tuna

hotspots or fisherman habits?. Scientific Papers of The International

Commission for the Conservation of Atlantic Tunas,

(5), 2087-2102.

EIGHANI, M., PAIGHAMBARI, S. Y., TAQUET, M. & GAERTNER, J. C.

Introducing nearshore fish aggregation devices (FAD)

to artisanal Persian Gulf fisheries: a preliminary study. Fisheries

Research, 212, 35-39.

FERREIRA, L. C., AFONSO, A. S., CASTILHO, P. C. & HAZIN, F. H.

V. 2013. Habitat use of the nurse shark, Ginglymostoma cirratum,

off Recife, Northeast Brazil: a combined survey with

longline and acoustic telemetry. Environ. Biol. Fishes, 96(6),

-745.

FORGET, F. G., CAPELLO, M., FILMALTER, J. D., GOVINDEN, R., SORIA,

M., COWLEY, P. D. & DAGORN, L. 2015. Behaviour and

vulnerability of target and non-target species at drifting

fish aggregating devices (FADs) in the tropical tuna purse

seine fishery determined by acoustic telemetry. Canadian

Journal of Fisheries and Aquatic Sciences, 72(9), 1398-1405.

FRÉON, P. & DAGORN, L. 2000. Review of fish associative behaviour:

toward a generalisation of the meeting point hypothesis.

Reviews in Fish Biology and Fisheries, 10, 183-207.

GAERTNER, J. C., TAQUET, M., DAGORN, L., MÉRIGOT, B., AUMEERUDDY,

R., SANCHO, G. & ITANO, D. 2008. Visual censuses

around drifting fish aggregating devices (FADs): a new

approach for assessing the diversity of fish in open-ocean

waters. Marine Ecology Progress Series, 366, 175-186.

GIRARD, C., BENHAMOU, S. & DAGORN, L. 2004. FAD: fish aggregating

device or fish attracting device? A new analysis of

yellowfin tuna movements around floating objects. Animal

Behaviour, 67, 319-326.

GIRARD, C., DAGORN, L., TAQUET, M., AUMEERUDDY, R., PEIGNON,

C. & BENHAMOU, S. 2007. Homing abilities of dolphinfish

(Coryphaena hippurus) displaced from fish aggregating

devices (FADs) determined using ultrasonic telemetry.

Aquatic Living Resources, 20(4), 313-321.

GOODING, R. M. & MAGNUSON, J. J. 1967. Ecological significance

of a drifting object to pelagic fishes. Pacific Science,

(4), 486-497.

GOVINDEN, R., JAUHARY, R., FILMALTER, J., FORGET, F., SORIA,

M., ADAM, S. & DAGORN, L. 2013. Movement behaviour of

skipjack (Katsuwonus pelamis) and yellowfin (Thunnus albacares)

tuna at anchored fish aggregating devices (FADs) in

the Maldives, investigated by acoustic telemetry. Aquatic

Living Resources, 26, 69-77.

GRAHAM, B. S., GRUBBS, D., HOLLAND, K. & POPP, B. N. 2007. A

rapid ontogenetic shift in the diet of juvenile yellowfin tuna

from Hawaii. Marine Biology, 150(4), 647-658.

HAIMOVICI, M., ANDRIGUETTO, F. J. M. & SUNYE, P. S. 2014. A

pesca marinha e estuarina no Brasil - estudos de caso multidisciplinares.

Rio Grande: Editora da FURG.

HOLLAND, K., BRILL, R. & CHANG, R. K. C. 1990. Horizontal and vertical

movements of Pacific blue marlin captured and released

using sportfishing gear. Fishery Bulletin, 88(2), 397-402.

HOLLAND, K. N. & GRUBBS, R.D. 2007. Fish visitors to seamounts:

tunas and bill fish at seamounts. In: PITCHER, T. J., MORATO,

T., HART, P. J. B., CLARK, M. R., HAGGAN N. & SANTOS, R. S.

(eds.). Seamounts: ecology, fisheries & conservation. Oxford:

Blackwell Publishing, pp. 189-201.

HOLLAND, K. N., JAFFE, A. & CORTEZ, W. 2000. The fish aggregating

device (FAD) system of Hawaii. In: Pêche thonière et dispositifs de

concentration de poissons. Caribbean-Martinique, pp. 55-62.

HUNTER, J. R. & MITCHELL, C. T. 1968. Field experiments on the

attraction of pelagic fish to floating objects. ICES Journal of

Marine Science, 31(3), 427-434.

JONES, J. 1772. Oppian’s Halieuticks of the nature of fishes and

fishing of the ancients. In: BOOKS, V. (ed.). Oppians’s life and

writings, and a catalogue of his fishes. Oxford: Theater.

KESSEL, S. T., COOKE, S. J., HEUPEL, M. R., HUSSEY, N. E., SIMPFENDORFER,

C. A., VAGLE, S. & FISK, A. T. 2014. A review of detection

range testing in aquatic passive acoustic telemetry

studies. Reviews in Fish Biology and Fisheries, 24(1), 199-218.

LESSA, R. & NÓBREGA, M. 2000. Guia de identificação de peixes marinhos

da região Nordeste. Recife: Programa REVIZEE/SCORE-NE.

LIMA, J. H. M., LIN, C. F., DIAS NETO, J. & MENEZES, A. A. S. 2000.

Sobre o uso da rede de cerco na pesca de atuns no Brasil.

Boletim Técnico-Científico do CEPNOR, 11(1), 81-115.

LIMA, J. S., ZAPPES, C. A., DI BENEDITTO, A. P. M. & ZALMON, I. R.

Artisanal fisheries and artificial reefs on the southeast

coast of Brazil: contributions to research and management.

Ocean and Coastal Management, 163, 372-382.

MAGUIRE, J. J., SISSENWINE, M., CSIRKE, J., GRAINGER, R. & GARCIA,

S. 2006. The state of world highly migratory, straddling

and other high seas fishery resources and associated species.

Rome: FAO Fisheries Technical Paper.

MARSAC, F. & CAYRÉ, P. 1998. Telemetry applied to behaviour

analysis of yellowfin tuna (Thunnus albacares, Bonnaterre,

movements in a network of fish aggregating devices.

Hydrobiologia, 371-372, 155-171.

MATSUMOTO, T., KITAGAWA, T. & KIMURA, S. 2013. VERTICAL Behavior

of bigeye tuna (Thunnus obesus) in the northwestern

Pacific Ocean based on archival tag data. Fisheries Oceanography,

(3), 234-246.

MBARU, E. K., SIGANA, D., RUWA, R. K., MUENI, E. M., NDORO, C. K.,

KIMANI, E. N. & KAUNDA-ARARA, B. 2018. Experimental evaluation

of influence of FADs on community structure and fisheries

in coastal Kenya. Aquatic Living Resources, 31(6), 1-12.

MEYER, C. G., HOLLAND, K. N., WETHERBEE, B. M. & LOWE, C. G. 2000.

Movement patterns, habitat utilization, home range size and

site fidelity of whitesaddle goatfish, Parupeneus porphyreus, in a

marine reserve. Environmental Biology of Fishes, 59(3), 235-242.

MONTES, N., SIDMAN, C., LORENZEN, K., TAMURA, M. & ISHIDA,

M. 2019. Influence of fish aggregating devices on the livelihood

assets of artisanal fishers in the Caribbean. Ocean and

Coastal Management, 179, e104872.

MORALES-NIN, B., CANNIZZARO, L., MASSUTI, E., POTOSCHI, A.

& ANDALORO, F. 2000. An overview of the FADs fishery in

the Mediterranean Sea. Fish Aggregating Devices Symposium,

-207.

Véras et al.: Aggregative capacity of aFADs in Brazil

Ocean and Coastal Research 2020, v68:e20284 14

MORENO, G., BOYRA, G., SANCRISTOBAL, I., ITANO, D. & RESTREPO,

V. 2019. Towards acoustic discrimination of tropical

tuna associated with fish aggregating devices. PLoS One,

(6), e0216353.

MORENO, G., DAGORN, L., CAPELLO, M., LOPEZ, J., FILMALTER,

J., FORGET, F., SANCRISTOBAL, I. & HOLLAND, K. 2016. Fish

aggregating devices (FADs) as scientific platforms. Fisheries

Research, 178, 122-129.

MOURATO, B. L., CARVALHO, F., MUSYL, M., AMORIM, A., PACHECO,

J. C., HAZIN, H. & HAZIN, F. 2014. Short-term movements

and habitat preferences of sailfish, Istiophorus platypterus

(Istiophoridae), along the southeast coast of Brazil. Neotropical

Ichthyology, 12(4), 861-870.

MUIR, J., ITANO, D., HUTCHINSON, M., LEROY, B. & HOLLAND, K.

Behavior of target and non-target species on drifting

FADs and when encircled by purse seine gear. Western and

Central Pacific Fisheries Commission, 8, 1-8.

NIELLA, Y. V, AFONSO, A. S. & HAZIN, F. H. V. 2017. Bioecology

and movements of bull sharks, Carcharhinus leucas, caught

in a long-term longline survey off northeastern Brazil. Neotropical

Ichthyology, 15(3), e170106.

OSHIMA, T., TAKAO, Y., HASEGAWA, S., KIMURA, T., UEHARA, T.

& FUSEJIMA, I. 2019. Differences in reaction of bigeye tuna

(Thunnus obesus) and skipjack tuna (Katsuwonus pelamis) to

intermittent light. Fisheries Research, 214, 148-156.

PARKER, R. W. R., VÁZQUEZ-ROWE, L. & TYEDMERS, P. H. 2014.

Fuel performance and carbon footprint of the global purse

seine tuna fleet. Journal of Cleaner Production, 103, 517-524.

QUARTAU, R., HIPÓLITO, A., ROMAGNOLI, C., CASALBORE, D.,

MADEIRA, J., TEMPERA, F., ROQUE, C. & CHIOCCI, F. L. 2014.

The morphology of insular shelves as a key for understanding

the geological evolution of volcanic islands: Insights

from Terceira Island (Azores). Geochemistry, Geophysics,

Geosystems, 15, 1801-1826.

R CORE TEAM, 2019. R: a language and environment for statistical

computing. Vienna: R Foundation for Statistical Computing.

ROBERT, M., DAGORN, L., DENEUBOURG, J. L., ITANO, D. & HOLLAND,

K. N. 2012. Size-dependent behavior of tuna in an

array of fish aggregating devices (FADs). Marine Biology,

(4), 907-914.

ROBERT, M., DAGORN, L., FILMALTER, J. D., DENEUBOURG, J. L.,

ITANO, D. & HOLLAND, K. 2013. Intra-individual behavioral

variability displayed by tuna at fish aggregating devices

(FADs). Marine Ecology Progress Series, 484, 239-247.

RODRIGUEZ-TRESS, P., CAPELLO, M., FORGET, F., SORIA, M.,

BEEHARRY, S. P., DUSSOOA, N. & DAGORN, L. 2017. Associative

behavior of yellowfin Thunnus albacares, skipjack

Katsuwonus pelamis, and bigeye tuna Thunnus obesus at

anchored fish aggregating devices (FADs) off the coast of

Mauritius. Marine Ecology Progress Series, 570, 213-222.

ROUNTREE, R. A. 1989. Association of fishes with fish aggregation

devices: effects of structure size on fish abundance.

Bulletin of Marine Science, 44(2), 960-972.

SCOTT, P. C. 1985. Fish aggregating buoys in Brazil. ICLARM

Newsletter, 11, 1.

SEMPO, G., DAGORN, L., ROBERT, M. & DENEUBOURG, J. L. 2013.

Archimer spatial distribution of social fish species. Journal

of Applied Ecology, 50(5), 1081-1092.

SEPULVEDA, C. A., AALBERS, S. A., ORTEGA-GARCIA, S., WEGNER,

N. C. & BERNAL, D. 2011. Depth distribution and temperature

preferences of wahoo (Acanthocybium solandri) off

Baja California Sur, Mexico. Marine Biology, 158(4), 917-926.

SILVA, G. B., CHAVES, D. C. B. & FONTELES-FILHO, A. A. 2013. Aspectos

econômicos da pesca de atuns e afins associada a

uma boia oceânica no atlântico oeste equatorial. Boletim do

Instituto de Pesca, 39(1), 85-91.

SILVA, G. B., HAZIN, H. G., HAZIN, F. H. V. & TRAVASSOS, P. 2019.

The tuna fisheries on “associated school” in Brazil: description

and trends. Collective Volume of Scientific Papers, 75(7),

-1934.

SILVA, G. B., HAZIN, H. G. & NASCIMENTO, P. V. A. 2018. Fishing

operations to catch tuna on aggregated schools at the vicinity

of a data buoy in the Western Equatorial Atlantic. Brazilian

Journal of Oceanography, 66(4), 335-338.

SILVEIRA, C. M. V. A. 2014. Relatório Final LH-010/2014 - Comissão

Pirata BR-XV.

SINOPOLI, M., LAURIA, V., GAROFALO, G., MAGGIO, T. & CILLARI,

T. 2019. Extensive use of fish aggregating devices together

with environmental change influenced the spatial distribution

of a tropical affinity fish. Scientific Reports, 9(1), 1-12.

SORIA, M., DAGORN, L., POTIN, G. & FRÉON, P. 2009. First fieldbased

experiment supporting the meeting point hypothesis

for schooling in pelagic fish. Animal Behaviour, 78(6),

-1446.

STEHFEST, K. M., PATTERSON, T. A., DAGORN, L., HOLLAND, K.

N., ITANO, D. & SEMMENS, J. M. 2013. Network analysis of

acoustic tracking data reveals the structure and stability of

fish aggregatios in the ocean. Animal Behaviour, 85(4), 839-

TAQUET, M. 2013. Fish aggregating devices (FADs): Good or bad

fishing tools? A question of scale and knowledge: FOREWORD:

Tahiti International Conference “tuna Fisheries and

FADs”, November 2011. Aquatic Living Resources, 26(1), 25-

TAQUET, M., DAGORN, L., GAERTNER, J. C., GIRARD, C., AUMERRUDDY,

R., SANCHO, G. & ITANO, D. 2007. Behavior of dolphinfish

(Coryphaena hippurus) around drifting FADs as

observed from automated acoustic receivers. Aquatic Living

Resources, 20(4), 323-330.

TRAVASSOS, P. E., PEREIRA, A. A. & TOLOTTI, M. T. 2009. Comportamento

da Albacora-laje, Thunnus albacares (Bonnaterre,

. In: VIANA, D. L., HAZIN, F. H. V., SOUZA, M. A. C. (eds.).

O arquipélago de São Pedro e São Paulo: 10 anos de Estação

Científica. São Paulo: ECIRM - Marinha do Brasil, pp. 348.

WENG, J. S., HUNG, M. K., LAI, C. C., WU, L. J., LEE, M. A. & LIU, K.

M. 2013. Fine-scale vertical and horizontal movements of

juvenile yellowfin tuna (Thunnus albacares) associated with

a subsurface fish aggregating device (FAD) off southwestern

Taiwan. Journal of Applied Ichthyology, 29(5), 990-1000.

WHITNEY, N. M., TAQUET, M., BRILL, R. W., GIRARD, C., SCHWIETERMAN,

G. D., DAGORN, L. & HOLLAND, K. N. 2016. Swimming

depth of dolphinfish (Coryphaena hippurus) associated

and unassociated with fish aggregating devices Nicholas.

Fishery Bulletin, 114(4), 426-434.

Downloads

Published

2020-09-19

How to Cite

Aggregative capacity of experimental anchored Fish Aggregating Devices (aFADs) in Northeastern Brazil revealed through electronic tagging data. (2020). Ocean and Coastal Research, 68, 14. https://doi.org/10.1590/s2675-28242020068284