Covariance localization in the ensemble transform Kalman filter based on an augmented ensemble

Authors

  • Jichao Wang China University of Petroleum
  • Jiacheng Li China University of Petroleum
  • Shaodong Zang China University of Petroleum
  • Jungang Yang First Institute of Oceanography
  • Guoli Wu China University of Petroleum

DOI:

https://doi.org/10.1590/s2675-28242020068309

Keywords:

Data Assimilation, Ensemble Transform Kalman Filter, Covariance Localization, Augmented Ensemble

Abstract

With the increased density of available observation data, data assimilation has become an increasingly important tool in marine research. However, the success of the ensemble Kalman filter is highly dependent on the size of the ensemble. A small ensemble used in data assimilation could cause filter divergence, undersampling and spurious correlations. The primary method to alleviate these problems is localization. It can eliminate some spurious correlations and increase the rank of the forecast error covariance matrix. The ensemble transform Kalman filter has been widely used in various studies as a deterministic filter. Unfortunately, the covariance localization cannot be directly applied to ensemble transform Kalman filter. The new covariance localization needs to be presented to adapt the ensemble transform Kalman filter. Based on the method of expanded ensemble and eigenvalue decomposition, this study describes a variation of covariance localization that takes advantage of an unbiased covariance matrix from the expanded ensemble. Experiments described herein show that the new method outperforms the localization methods proposed by others when used in the ensemble transform Kalman filter. The new method yields an analysis estimate that is closer to the true state under different experimental conditions.

References

ANDERSON, J. L. & ANDERSON, S. L. 1999. A Monte Carlo implementation

of the nonlinear filtering problem to produce

ensemble assimilations and forecasts. Monthly

Weather Review, 127(12), 2741-2758, DOI: https://doi.

org/10.1175/1520-0493(1999)127<2741:AMCIOT>2.0.CO;2

BISHOP, C. H., ETHERTON, B. J. & MAJUMDAR, S. J. 2001. Adaptive

sampling with the ensemble transform kalman filter.

Part I: Theoretical aspects. Monthly Weather Review,

(3), 420-436, DOI: https://doi.org/10.1175/1520-

-0493(2001)129<0420:ASWTET>2.0.CO;2

BISHOP, C. H. & HODYSS, D. 2009a. Ensemble covariances adaptively

localized with ECO-RAP. Part 1: Tests on simple error models.

Tellus A: Dynamic Meteorology and Oceanography, 61(1), 84-96,

DOI: https://doi.org/10.1111/j.1600-0870.2008.00371.x

BISHOP, C. H. & HODYSS, D. 2009b. Ensemble covariances adaptively

localized with ECO-RAP. Part 2: A strategy for the atmosphere.

Tellus A: Dynamic Meteorology and Oceanography, 61(1), 97-111,

DOI: https://doi.org/10.1111/j.1600-0870.2008.00372.x

BISHOP, C. H., WHITAKER, J. S. & LEI, L. 2017. Gain form of the ensemble

transform Kalman filter and its relevance to satellite

data assimilation with model space ensemble covariance

localization. Monthly Weather Review, 145(11), 4575-4592,

DOI: https://doi.org/10.1175/MWR-D-17-0102.1

CAMPBELL, W. F., BISHOP, C. H. & HODYSS, D. 2010. Vertical covariance

localization for satellite radiances in ensemble kalman

filters. Monthly Weather Review, 138(1), 282-290, DOI:

https://doi.org/10.1175/2009MWR3017.1

EVENSEN, G. 1994. Sequential data assimilation with a nonlinear

quasi-geostrophic model using Monte Carlo methods to forecast

error statistics. Journal of Geophysical Research: Oceans,

(C5), 10143-10162, DOI: https://doi.org/10.1029/94JC00572

GASPARI, G. & COHN, S. E. 1999. Construction of correlation

functions in two and three dimensions. Quarterly Journal

of the Royal Meteorological Society, 125(554), 723-757, DOI:

https://doi.org/10.1002/qj.49712555417

GREYBUSH, S. J., KALNAY, E., MIYOSHI, T., IDE, K. & HUNT, B. R.

Balance and ensemble kalman filter localization techniques.

Monthly Weather Review, 139(2), 511-522, DOI:

https://doi.org/10.1175/2010MWR3328.1

HORN, R. A. 1990. The Hadamard product. In: JOHNSON, C. R.

(ed.). Matrix theory and applications. Providence: Proceedings

of Symposia in Applied Mathematics; American Mathematical

Society, 40, 87-169.

HOUTEKAMER, P. L. & MITCHELL, H. L. 2001. A sequential ensemble

Kalman filter for atmospheric data assimilation. Monthly

Weather Review, 129(1), 123-137.

HUNT, B. R., KOSTELICH, E. J. & SZUNYOGH, I. 2007. Efficient data

assimilation for spatiotemporal chaos: a local ensemble transform

Kalman filter. Physica D: Nonlinear Phenomena, 230(1-2),

-126, DOI: https://doi.org/10.1016/j.physd.2006.11.008

JANJIĆ, T., NERGER, L., ALBERTELLA, A., SCHROTER, J. & SKACHKO,

S. 2011. On domain localization in ensemble-based

Kalman filter algorithms. Monthly Weather Review, 139(7),

-2060, DOI: https://doi.org/10.1175/2011MWR3552.1

JIANG, J. & GORELL, S. B. 2019. Analysis of localization methods

in ensemble Kalman filter with SVD analytical solution.

Journal of Petroleum Science and Engineering, 175, 919-931,

DOI: https://doi.org/10.1016/j.petrol.2019.01.030

LORENC, A. C. 2003. The potential of the ensemble Kalman filter

for NWP—a comparison with 4D‐Var. Quarterly Journal of

the Royal Meteorological Society, 129(595), 3183-3203, DOI:

https://doi.org/10.1256/qj.02.132

LORENZ, E. N. & EMANUEL, K. A. 1998. Optimal sites for supplementary

observations: simulation with a small model. Journal

of the Atmospheric Sciences, 55(4), 399-414, DOI: https://doi.

org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2

LUO, X., LORENTZEN, R. J., VALESTRAND, R. & EVENSEN, G. 2019. Correlation-

based adaptive localization for ensemble-based history

matching: applied to the Norne field case study. Society of

Petroleum Engineers - Reservoir Evaluation & Engineering, 22(3),

-26, DOI: https://doi.org/10.2118/191305-MS

MET OFFICE (UK - Met Office College). 2008. UK observations

[online]. London: Met Office College. Available at: http://

www.metoffice.gov.uk/research/nwp/observations/.

MIYOSHI, T. & YAMANE, S. 2007. Local ensemble transform Kalman

filtering with an AGCM at a T159/L48 resolution. Monthly

Weather Review, 135(11), 3841-3861, DOI: https://doi.

org/10.1175/2007MWR1873.1

OKE, P. R., SAKOV, P. & CORNEY, S. P. 2007. Impacts of localisation

in the EnKF and EnOI: experiments with a small model.

Ocean Dynamics, 57, 32-45, DOI: https://doi.org/10.1007/

s10236-006-0088-8

OTT, E., HUNT, B. R., SZUNYOGH, I., ZIMIN, A. V., KOSTELICH, E.

J., CORAZZA, M., KALNAY, E., PATIL, D. J. & YORKE, J. A. 2004.

A local ensemble Kalman filter for atmospheric data assimilation.

Tellus A: Dynamic Meteorology and Oceanography,

(5), 415-428, DOI: https://doi.org/10.3402/tellusa.

v56i5.14462

PETRIE, R. 2008. Localization in the ensemble Kalman filter. MSc.

Reading: Atmosphere, Ocean and Climate University of

Reading.

SAKOV, P. & BERTINO, L. 2011. Relation between two common

localisation methods for the EnKF. Computational Geosciences,

, 225-237, DOI: https://doi.org/10.1007/s10596-010-

-6

SIVASHINSKY, G. I. 1977. Nonlinear analysis of hydrodynamic

instability in laminar flames-I. Derivation of basic

equations. Acta Astronautica, 4(11-12), 1177-1206,

DOI: https://doi.org/10.1016/0094-5765(77)90096-0

WHITAKER, J. S. & HAMILL, T. M. 2002. Ensemble data assimilation

without perturbed observations. Monthly

Weather Review, 130(7), 1913-1924, DOI: https://doi.

org/10.1175/1520-0493(2002)130<1913:edawpo>2.0.

co;2

ZANG, S. & WANG, J. 2019. Considering the impact of

observation error correlation in ensemble square-

-root Kalman filter. Brazilian Journal of Oceanography,

, e19261, DOI: https://doi.org/10.1590/s1679-

Downloads

Published

2020-10-24

How to Cite

Covariance localization in the ensemble transform Kalman filter based on an augmented ensemble. (2020). Ocean and Coastal Research, 68, 12. https://doi.org/10.1590/s2675-28242020068309