Relationships between portable chlorophyll meter estimates for the red mangrove tree (Rhizophora mangle L.)

Authors

  • Juliana Neres Universidade Estadual de Santa Cruz
  • Pavel Dodonov Universidade Federal da Bahia
  • Marcelo Schramm Mielke Universidade Estadual de Santa Cruz
  • Gil Marcelo Reus Strenze Universidade Estadual de Santa Cruz

DOI:

https://doi.org/10.1590/s2675-28242020068308

Abstract

Several ecosystem processes and services provided by mangrove trees, such as the regulation of biogeochemical cycles, biological control, soil retention and protection against erosion, and especially CO2 assimilation and carbon storage are related to the photosynthetic process (Donato et al. 2011; Schaeffer-Novelli et al., 2016; Santos et al., 2017). Photosynthesis is directly related to chlorophyll present in the leaves, and assessment of chlorophyll concentrations may be used as an indicator of a plants’ physiological condition. Decreases in leaf chlorophyll concentrations occur in plants exposed to environmental stress, including stress caused by heavy metals (Chandra & Kang, 2016), nutrient deficiency (Kalaji et al., 2017), and petroleum pollution (Arellano et al., 2017), among others. Thus, estimates of chlorophyll concentrations may provide information on plant and ecosystem function (Heenkenda et al., 2015; Pastor-Guzman et al., 2015).

References

ARELLANO, P., TANSEY, K., BALZTER, H., TELLKAMP, M. 2017.

Plant family-specific impacts of petroleum pollution on

biodiversity and leaf chlorophyll content in the Amazon

Rainforest of Ecuador. PloS One, 12, e0169867.

BIBER, P. D. 2007. Evaluating a chlorophyll content meter on

three coastal wetland plant species. Journal of Agricultural,

Food and Environmental Sciences, 1, 1-11.

BRITO, G. G., SOFIATTI, V., BRANDÃO, Z. N., SILVA, V. B., SILVA,

F. M. & SILVA, D. A. 2011. Non-destructive analysis of

photosynthetic pigments in cotton plants. Acta Scientiarum.

Agronomy, 33, 671-678.

CHANDRA, R., KANG, H. 2016. Mixed heavy metal stress on

photosynthesis, transpiration rate, and chlorophyll content

in poplar hybrids. Forest Science and Technology, 12, 55-61.

CONNELLY, X. M. 1997. The Use of a chlorophyll meter (SPAD-502)

for field determinations of red mangrove (Rhizophora mangle

L.) leaf chlorophyll amount. NASA Univ. Res. Cent. Tech. Adv. Educ.

Aeronaut. Space Auton. Earth Environ, 1, 187–190.

DONATO, D. C., KAUFFMAN, J. B., MURDIYARSO, D., KURNIANTO,

S., STIDHAM, M. & KANNINEN, M. 2011. Mangroves

among the most carbon-rich forests in the tropics. Nature

geoscience, 4, 293-297.

FLORES-DE-SANTIAGO, F., KOVACS, J. M. & FLORES-VERDUGO, F.

Assessing the utility of a portable pocket instrument

for estimating seasonal mangrove leaf chlorophyll contents.

Bulletin of Marine Science, 89, 621-633.

HAMMER, Ø., HARPER, D. A., & RYAN, P. D. 2001. PAST: Paleontological

statistics software package for education and data analysis.

Palaeontologia electronica, version 3.1. Oslo, Noruega.

HEENKENDA, M. K., JOYCE, K. E., MAIER, S. W. & BRUIN, S. 2015.

Quantifying mangrove chlorophyll from high spatial

resolution imagery. ISPRS Journal of Photogrammetry and

Remote Sensing, 108, 234-244.

JIFON, J. L., SYVERTSEN, J. P. & WHALEY, E. 2005. Growth

environment and leaf anatomy affect nondestructive

estimates of chlorophyll and nitrogen in Citrus sp. leaves.

Journal of the American Society for Horticultural Science, 130,

-158.

KALAJI, H. M., DABROWSKI, P., CETNER, M. D., SAMBORSKA, I. A.,

LUKASIK, I., BRESTIC, M., ZIVCAK, M., TOMASZ, H., MOJSKI,

J., KOCIEL, H., PANCHAL, B. M. 2017. A comparison between

different chlorophyll content meters under nutrient

deficiency conditions. Journal of Plant Nutrition, 40, 1024-

LOPES, D. M. S., TOGNELLA, M. M. P., FALQUETO, A. R., SOARES,

M. L. G. 2019. Salinity variation effects on photosynthetic

responses of the mangrove species Rhizophora mangle

L. growing in natural habitats. Photosynthetica, 57, 1142-

MAGRIS, R. A. & BARRETO, R. 2010. Mapping and assessment

of protection of mangrove habitats in Brazil. Pan-American

Journal of Aquatic Sciences, 5(4), 546-556.

MARKWELL, J., OSTERMAN, J. C. & MITCHELL, J. L. 1995.

Calibration of the Minolta SPAD-502 leaf chlorophyll meter.

Photosynthesis research, 46, 467-472.

MARTINS, P. T. A., COUTO, E.C. G. & DELABIE, J. H. C. 2011.

Fitossociologia e estrutura vegetal do manguezal do rio

Cururupe (Ilhéus, Bahia, Brasil). Revista da Gestão Costeira

Integrada, 11, 163-169.

MEDEIROS, T. C. C., SAMPAIO, E. V. S. B. & NASCIMENTO, D. M.

Leaf area index and vegetation cover of the Paripe

river mangrove, Pernambuco, Brazil, in 1997 and 2017.

Journal of Integrated Coastal Zone Management, 18, 41-48.

ORTO E SILVA, E. D., PASCOALINI, S. S., ZAMPROGNO, G. C. &

TOGNELLA, M. M. P. 2020. Estimativas do teor de clorofila

do mangue da Baía de Vitória (ES) por meio de dados

hiperespectrais. Revista Brasileira de Geografia Física, 13, 131-142.

PARRY, C., BLONQUIST, J. & BUGBEE, B. 2014. In situ measurement of

leaf chlorophyll concentration: analysis of the optical absolute

relationship. Plant, cell & environment, 37, 2508-2520.

PASTOR-GUZMAN, J., ATKINSON, P. M., DASH, J. & RIOJA-NETO,

R. 2015. Spatiotemporal variation in mangrove chlorophyll

concentration using Landsat 8. Remote Sensing, 7, 14530-

R CORE TEAM. 2018. R: A language and environment for statistical

computing. R Foudation for Statistical Computing, Vienna,

Austral. Available on-line at: https:///www.R-project.org.

REBELO-MOCHEL, F. & PONZONI, F. J. 2007. Spectral

characterization of mangrove leaves in the Brazilian

Amazonian Coast: Turiaçu Bay, Maranhão State. Anais da

Academia Brasileira de Ciências, 79, 683-692.

RICHARDSON, A. D., DUIGAN, S. P. & BERLYN, G. P. 2002. An

evaluation of noninvasive methods to estimate foliar

chlorophyll content. New phytologist, 153, 185-194.

SANTOS, H. V. S., HOLLANDA, F. S. R., SANTOS, T. O., ANDRADE,

K. V. S., SANTANA, M. B. S., ESTRADA, G. C. D. & SOARES, M. L.

G. 2017. Allometric models for estimating the aboveground

biomass of the mangrove Rhizophora mangle. Brazilian

Journal of Oceanography, 65, 44-53.

SCHAEFFER-NOVELLI, Y., CINTRÓN-MOLERO, G., ADAIME, R. R., &

DE CAMARGO, T. M. 1990. Variability of mangrove ecosystems

along the Brazilian coast. Estuaries, 13(2), 204-218.

SCHAEFFER-NOVELLI, Y., SORIANO-SIERRA, E. J., DO VALE, C.

C., BERNINI, E., ROVAI, A. R., PINHEIRO, M. A. A., SCHMIDT,

A. J., ALMEIDA, R., COELHO JÚNIOR, C., MENGHINI, R. P.,

MARTINEZ, D. I., ABUCHAHLA, G. M. O., CUNHA-LIGNON, M.,

CHARLIER-SARUBO, S., SHIRAZAWA-FREITAS, J. & CINTRÓNMOLERO, G. 2016. Climate changes in mangrove forests and

salt marshes. Brazilian Journal of Oceanography, 64, 37-52.

SPAROVEK, G., DE JONG VAN LIER, Q. & DOURADO NETO, D.

Computer assisted Koeppen climate classification: a

case study for Brazil. International Journal of Climatology: A

Journal of the Royal Meteorological Society, 27, 257-266.

VIEIRA SILVA, D., DOS ANJOS, L., BRITO-ROCHA, E., DALMOLIN, Â.

C. & MIELKE, M. S. 2016. Calibration of a multi-species model

for chlorophyll estimation in seedlings of Neotropical tree

species using hand-held leaf absorbance meters and spectral

reflectance. iForest-Biogeosciences and Forestry, 9, 829.

ZHANG, C., LIU, Y., KOVACS, J. M., FLORES-VERDUGO, F., FLORES-DESANTIAGO, F. & CHEN, K. 2012. Spectral response to varying

levels of leaf pigments collected from a degraded mangrove

forest. Journal of Applied Remote Sensing, 6, 063501.

Downloads

Published

2021-06-15

How to Cite

Relationships between portable chlorophyll meter estimates for the red mangrove tree (Rhizophora mangle L.). (2021). Ocean and Coastal Research, 68, 5. https://doi.org/10.1590/s2675-28242020068308