Phospholipid fatty acids from Colombian Caribbean sea sponges

Authors

  • Wilson Rodriguez
  • Carmenza Duque
  • Sven Zea
  • Leonardo Castellanos
  • Freddy Ramos
  • Abel M. Forero
  • Oscar Osorno

DOI:

https://doi.org/10.1590/2675-2824069.21-005wr%20

Keywords:

Marine natural products, Caribbean sea, Fatty acid methyl esters, N-pyrrolidide derivatives

Abstract

Five demosponges belonging to the order Axinellida: Axinella corrugata, Dragmacidon alvarezae, Dragmacidon reticulatum, Ptilocaulis walpersi, Myrmekioderma rea and one sponge belonging to the order Scopalinida: Scopalina ruetzleri were analyzed to assess their fatty acid composition in the phospholipid fraction. Additionally, the seasonal and intraspecific variation in fatty acids composition was assessed in M. rea and D. alvarezae. Fatty acid identification was conducted using an HRGC-MS with an ECL value of methyl ester derivatives, and analyzing their mass spectra. To confirm double bound location, N-acylpyrrolidide derivatives were used studying their mass spectra. In total, 83 fatty acids were identified with chain lengths ranging from C14 to C32. Interestingly, brominated fatty acids were identified, previously suggested for sponges. Polybranched fatty acids such as 4,8,12-trimethyltridecanoic acid (4,8,12-TMTD) and 3,7,11,15-tetramethylhexadecanoic (phytanic acid) were found, without a clear distribution pattern. A predominance of iso-acids (i-15:0 and i-17:0) on anteiso acids were observed. Some seasonal variations in fatty acid (FA) compositions for M. rea and D. alvarezae were observed. The hierarchical Clusters Analysis (HCA) showed that the FA composition was species-specific but not informative at the family or order level.

References

ARATAKE, S., TRIANTO A., HANIF, N., DE VOOGD, N. J. & TANAKA, J. 2009. A new polyunsaturated brominated fatty acid from a Haliclona sponge. Marine Drugs, 7(4), 523-527.

BENNETT, H., BELL, J. J., DAVY, S. K., WEBSTER, N. S. & FRANCIS, D. S. 2018. Elucidating the sponge stress response; lipids and fatty acids, can facilitate survival under future climate scenarios. Global Change Biology, 24(7), 3130-3144.

BERGÉ, J. P. & BARNATHAN, G. 2005. Fatty acids from lipids of marine organisms: Molecular biodiversity, roles as biomarkers, biologically active compounds, and economical aspects. Advances in Biochemical Engineering/Biotechnology, 96, 49-125.

BLUMENBERG, M. & MICHAELIS, W. 2007. High occurrences of brominated lipid fatty acids in boreal sponges of the order Halichondrida. Marine Biology, 150(6), 1153-1160.

CAMPOS, P. E. PICHON, E., ILLIEN, B., CLERC, P., MORIOU, C., DE VOOGD, N., HELLIO, C., TRÉPOS R., FREDERICH, M., AL-MOURABIT, A. & GAUVIN-BIALECKI, A. 2018. (2S*,5S*,6Z)-2,5-epoxydocosan-6-en-21-ynoic acid, new fatty acid from the marine sponge Haliclona fascigera Natural Products Chemistry & Research, 6(5), 19-22.

CARBALLEIRA, N. M. 2002. New advances in the chemistry of methoxylated lipids. Progress in Lipid Research, 41(6), 437-456.

CARBALLEIRA, N. M. 2008. New advances in fatty acids as antimalarial, antimycobacterial and antifungal agents. Progress in Lipid Research, 47(1), 50-61.

CARBALLEIRA, N. M., CARTAGENA, M., LI, F., CHEN, Z., PRADA, C. F., CALVO-ALVAREZ, E., REGUERA, R. M. & BALAÑA-FOUCE, R. 2012. First total synthesis of the (±)-2-methoxy-6-heptadecynoic acid and related 2-methoxylated analogs as effective inhibitors of the leishmania topoisomerase IB enzyme. Pure and Applied Chemistry, 84(9), 1867-1875.

CARBALLEIRA, N. M., MONTANO, N., AMADOR, L. A., RODRIGUEZ, A. D., GOLOVKO, M. Y., GOLOVKO, S. A., REGUERA, R. M, VELILLA-ÁLVAREZ, R. & BALAÑA-FOUCE, R. 2016. Novel very long-chain α-methoxylated δ5,9 fatty acids from the sponge Asteropus Niger are effective inhibitors of topoisomerases IB. Lipids, 51(2), 245-256.

CARBALLEIRA, N. M., MONTANO, N., VICENTE, J. & RODRIGUEZ, A. D. 2007. Novel cyclopropane fatty acids from the phospholipids of the Caribbean sponge Pseudospongosorites suberitoides Lipids , 42(6), 519-524.

CASTELLANOS, L. & DUQUE, C. 2008. Composición química y actividad antifouling de la fracción lipídica de la esponja marina Cliona tenuis (Clionidae). Revista Colombiana de Quimica, 37(3), 259-274.

ERPENBECK, D. & VAN SOEST, R. W. M. 2005. A survey for biochemical synapomorphies to reveal phylogenetic relationships of halichondrid demosponges (Metazoa: Porifera). Biochemical Systematics and Ecology, 33, 585-616.

ERPENBECK, D. & VAN SOEST, R. W. M. 2007. Status and perspective of sponge chemosystematics. Marine Biotechnology, 9(1), 2-19.

IMBS, A. B. & RODKINA, S. A. 2004. Isolation of 2-methyl branched unsaturated very long fatty acids from marine sponge Halichondria panicea and identification of them by GC-MS and NMR. Chemistry and Physics of Lipids , 129(2), 173-181.

KALIDASAN, K., SAHU, S. K., KAYALVIZHI, K. & KATHIRESAN, K. 2015. Polyunsaturated fatty acid-producing marine thraustochytrids: a potential source for antimicrobials. Journal of Coastal Life Medicine, 3(11), 848-851.

KLUIJVER, A., NIEROP, K. G. J., MORGANTI, T. M., BART, M. C., SLABY, B. M., HANZ, U., GOEIJ, J. M., MIENIS, F. & MIDDELBURG, J. J. 2021. Bacterial precursors and unsaturated long-chain fatty acids are biomarkers of North-Atlantic deep-sea demosponges. PLoS One, 16(1), e0241095.

KOOPMANS, M., VAN RIJJSWIJK, P., BOSCHKER, H. T. S., HOUTEKAMER, M., MARTENS, D. & WIJFFELS, R. H. 2015. Seasonal variation of fatty acids and stable carbon isotopes in sponges as indicators for nutrition: biomarkers in sponges identified. Marine Biotechnology , 17, 43-54.

KORNPROBST, J. M. & BARNATHAN, G. 2010. Demospongic acids revisited. Marine Drugs, 8(10), 2569-2577.

LIANG, L. F., WANG, T., CAI, Y. S., HE, W. F., SUN, P., LI, Y. F., HUANG, Q., TAGLIALATELA-SCAFATI, O., WANG, H. Y. & GUO, Y. W. 2014. Brominated polyunsaturated lipids from the Chinese sponge Xestospongia testudinaria as a new class of pancreatic lipase inhibitors. European Journal of Medicinal Chemistry, 79, 290-297.

LIPID MAPS® 2021. Lipidomics gateway [online]. Gilman Drive, CA: UCSD - University of California San Diego. Available at: https://www.lipidmaps.org/ [Accessed: 23 Jan. 2021].

» https://www.lipidmaps.org/

LÜSKOW, F., KLØVE-MOGENSEN, K., TOPHØJ, J., PEDERSEN, L. H., RIISGǺRD, H. U. & ERIKSEN, N. T. 2019. Seasonality in lipid content of the demosponges Halichondria panicea and H. bowerbanki at two study sites in temperate Danish waters. Frontiers in Marine Science, 6(328), 1-7.

MJØS, S. A. 2004. The prediction of fatty acid structure from selected ions in electron impact mass spectra of fatty acid methyl esters. European Journal of Lipid Science and Technology, 106(8), 550-560.

MOHAMAD, H., NAJMIAH, W. A., JAMIL, W. A., ABAS, F., MOHAMAD, K. S. & ALI, A. M. 2009. Octacosanoic acid, long chains saturated fatty acid from the marine sponges Xestospongia sp. Pertanika Journal of Tropical Agricultural Science, 32(1), 51-55.

NECHEV, J., CHRISTIE, W. W., ROBAINA, R., DIEGO, F., POPOV, S. & STEFANOV, K. 2004. Chemical composition of the sponge Hymeniacidon sanguinea from the Canary Islands. Comparative Biochemistry and Physiology - A Molecular and Integrative Physiology, 137(2), 365-374.

ORELLANO, E. A., CARTAGENA, M. M., ROSADO, K. & CARBALLEIRA, N. M. 2013. Synthesis of the novel (±)-2-methoxy-6-icosynoic acid-a fatty acid that induces death of neuroblastoma cells. Chemistry and Physicsof Lipids , 172-173, 14-19.

RABIN, N., ZHENG, Y., OPOKU-TEMENG, C., DU, Y., BONSU, E. & SINTIM, H. O. 2015. Agents that inhibit bacterial film formation. Future Medicinal Chemistry, 7(5), 647-671.

ŘEZANKA, T. & SIGLER, K. 2009. Odd-numbered very-long-chain fatty acids from the microbial, animal and plant kingdoms. Progress in Lipid Research , 48(3-4), 206-238.

RODKINA, S. A. 2005. Fatty acids and other lipids of marine sponges. Russian Journal of Marine Biology, 31, S49-S60.

RODRÍGUEZ, W., OSORNO, O., RAMOS, F. A., DUQUE, C. & ZEA, S. 2010. New fatty acids from Colombian Caribbean Sea sponges. Biochemical Systematics and Ecology , 38(4), 774-783.

SANTALOVA, E. A. & DENISENKO, V. A. 2017. Fatty acids from a glass sponge Aulosaccus sp. occurrence of new cyclopropane-containing and methyl-branched acids. Lipids , 52(1), 73-82.

SCHREIBER, A., WÖRHEIDE, G. & THIEL, V. 2006. The fatty acids of calcareous sponges (Calcarea, Porifera). Chemistry and Physics of Lipids , 143(1-2), 29-37.

TANIGUCHI, M., UCHIO, Y., YASUMOTO, K., KUSUMI, T. & OOI, T. 2008. Brominated unsaturated fatty acids from marine sponge collected in Papua New Guinea. Chemical and Pharmaceutical Bulletin, 56(3), 378-382.

VAN DUYL, F. C., LENGGER, S. K., SCHOUTEN, S., LUNDÄLV, T., VAN OEVELEN, D. & MÜLLER, C. E. 2020. Dark CO2 fixation into phospholipid-derived fatty acids by the cold-water coral associated sponge Hymedesmia (Stylopus) coriacea (Tisler Reef, NE Skagerrak). Marine Biology Research, 16(1), 1-17.

VEGA-SEQUEDA, J., RODRÍGUEZ-RAMÍREZ, A., REYES-NIVIZ, C. & NAVAS-CAMACHO, R. 2008. Formaciones coralinas del área de Santa Marta: Estado y patrones de distribución espacial de la comunidad bentónica. Boletin de Investigaciones Marinas y Costeras, 37, 87-105.

YANG, Y. H., DU, L., HOKOSAWA, M., MIYASHITA, K., KOKUBUN, Y., ARAI, H. & TARODA, H. 2017. Fatty acid and lipid class composition of the microalga Phaeodactylum tricornutum Journal of Oleo Science, 66(4), 363-368.

ZEA, S. & PULIDO, A. 2016. Taxonomy of the Caribbean sponge Dragmacidon reticulatum (Ridley & Dendy, 1886) (Porifera, Demospongiae, Axinellida), with the description of a new species. Zootaxa, 4114(4), 393-408.

ZHANG, L. X., JI, X. Y., TAN, B. B., LIANG, Y. Z., LIANG, N. N.,WANG, X. L. & DAI, H. 2010. Identification of the composition of fatty acids in Eucommia ulmoides seed oil by fraction chain length and mass spectrometry. Food Chemistry, 121(3), 815-819.

ZIVANOVIC, A., PASTRO, N. J., FROMONT, J., THOMSON, M. & SKROPETA, D. 2011. Kinase inhibitory, haemolytic and cytotoxic activity of three deep-water sponges from North Western Australia and their fatty acid composition. Natural Product Communications, 6(12), 1921-1924.

Downloads

Published

2022-06-24

How to Cite

Phospholipid fatty acids from Colombian Caribbean sea sponges. (2022). Ocean and Coastal Research, 69. https://doi.org/10.1590/2675-2824069.21-005wr