Revisiting the derivation of bulk longshore sediment transport rates using meta-heuristic algorithms

Authors

  • Zara Gholami
  • Kamran Lari
  • Abbasali Aliakbari Bidokhti
  • AmirHosein Javid

DOI:

https://doi.org/10.1590/2675-2824069.20-035zg%20

Keywords:

Longshore sediment transport, Meta-heuristic optimization, Persian Gulf, Caspian Sea

Abstract

During recent decades, different formulas have been developed to estimate longshore sediment transport rates through calibration using a wide variety of datasets, applicable for a range of particular wave and beach conditions. The equations that have shown the best capability to predict Bulk Longshore Sediment Transport Rate (BLSTR) are the formulas derived by CERC and by Kamphuis. In the present study, the five process parameters as used in the Kamphuis formula are accepted. The CERC formula includes only two of the five process parameters used in Kamphuis’ formula. A renewed optimization to derive the power of the five Kamphuis’ process parameters using an extensive dataset by Bayram was performed by Mil-Homens. In addition to this valuable effort, our contribution introduces two innovations. Firstly, the power coefficients of the five Kamphuis process parameters are optimized using a broad range of meta-heuristic algorithms. Secondly, the optimization is not based on the Bayram dataset as carefully collected and reviewed from published manuscripts but on a methodologically more homogeneous Iranian dataset acquired for port design and port management purposes. Independently from the results by Mil-Homens derived from the Bayram dataset, our study confirms these findings based on a totally different dataset. Specifically, the weaker impact of wave period and the stronger impact of the median grain diameter are in accordance with each other. The latter finding provides a stronger support for the mutual cancellation of the impact of slope and grain diameter in BLSTR, lending explanatory support to the CERC formula once beach slope and grain size are not known.

References

BAILARD, J. A. 1981. An energetics total load sediment transport model for a plane sloping beach. Journal of Geophysical Research: Oceans, 86(C11), 10938-10954, DOI: https://doi.org/10.1029/JC086iC11p10938

» https://doi.org/10.1029/JC086iC11p10938

BATTJES, J. A. 1974. Surf similarity. In: Proceedings of the 14th International Conference on Coastal Engineering, 24-28 June, Copenhagen, Denmark, American Society of Civil Engineers, pp. 467-479, DOI: https:/doi.org/10.1061/9780872621138.029

» https:/doi.org/10.1061/9780872621138.029

BAYRAM, A., LARSON, M. & HANSON, H. 2007. A new formula for the total longshore sediment transport rate. Coastal Engineering, 54(9), 700-710, DOI: https://doi.org/10.1016/j.coastaleng.2007.04.001

» https://doi.org/10.1016/j.coastaleng.2007.04.001

BOSBOOM, J. & STIVE, M. J. F. 2021. Coastal dynamics Netherlands: Delft University of Technology, DOI: https://doi.org/10.5074/T.2021.001

» https://doi.org/10.5074/T.2021.001

CERC (Coastal Engineering Research Center). 1984. Shore Protection Manual - Waterways Experiment Station Washington, DC: Coastal Engineering Research Center.

DEIGAARD, R., FREDSOE, J. & HEDEGAARD, B. 1986. Mathematical model for littoral drift. Journal of Waterways, Ports, Coastal and Ocean Engineering, 112(3), 351-369.

DORIGO, M., BIRATTARI, M. & STUTZLE, E. 2006. Ant colony optimization. IEEE Computational Intelligence Magazine, 1(4), 28-39, DOI: https://doi.org/10.1109/MCI.2006.329691

» https://doi.org/10.1109/MCI.2006.329691

DREO, J., SIARRY, P., PETROWSKI, A. & TAILLARD, E. 2006. Metaheuristics for hard optimization: methods and case studies Berlin: Springer.

FATTAHI, P., SAIDIMEHRABAD, M. & JOLAI, F. 2007. Mathematical modeling and heuristic approaches to flexible job shop scheduling problems. Journal of Intelligent Manufacturing, 18, 331-342, DOI: https://doi.org/10.1007/s10845-007-0026-8

» https://doi.org/10.1007/s10845-007-0026-8

FERNANDEZ, S., BAPITSA, P., MARTINS, V., SILVA, P., ABREU, T., PAIS-BARBOSA, J., BERNARDES, C., MIRANDA, P. V. L., ROSHA, M., SANTOS, F., BERNABEU, A. & REY, D. 2015. Longshore transport estimation on Ofir Beach in Northwest Portugal: sand-tracer experiment. Journal of Waterway, Port, Coastal, Ocean Engineering, 142(2), DOI: https://doi.org/10.1061/(ASCE)WW.1943-5460.0000319

» https://doi.org/10.1061/(ASCE)WW.1943-5460.0000319

GHOLAMI, Z., LARI, K., BIDOKHTI, A. A. & JAVID, A. 2021. Calculation of uniform longshore sediment transport rate in coastal zone using incomplete self-similarity theory. Hydrophysics [online], Article in Press. Available at: https://www.hydrophysics.ir/article_243538.html?lang=en [Accessed 17 April 2021].

» https://www.hydrophysics.ir/article_243538.html?lang=en

JAFARI, E., ALAEE, M. J., NAZARALI, M. & BALI, M. 2016. Sea water temperature observation and simulation in the Caspian Sea. In: Proceedings of the International Conference on Ports, Marine and Structures (ICOPMAS), 31 October - 2 November, Tehran, Iran, ICOPMAS.

KAMPHUIS, J. W. & READSHAW, J. S. 1978. A model study of alongshore sediment transport rates. Coastal Egineergin Proceedings, 1(16), 99, DOI: https://doi.org/10.9753/icce.v16.99

» https://doi.org/10.9753/icce.v16.99

KOMAR, P. D. 1998. Longshore currents generated by obliquely incident seawaves. Journal of Geophysical Research, 75(33), 6778-6789.

KOMAR, P. D. & INMAN, D. L. 1970. Longshore sand transport on beaches. Journal of Geophysical Research, 75(30), 5914-5927, DOI: https://doi.org/10.1029/JC075i030p05914

» https://doi.org/10.1029/JC075i030p05914

MAHMOODI, A., LASHTEHNESHAEI, M. A., MANSOURI, A. & SHAFAEIBAJESTAN, M. 2020. Study of current- and wave-induced sediment transport in the Nowshahr port entrance channel by using numerical modeling and field measurements. Journal of Marine Science and Engineering, 8(4), 284, DOI: https://doi.org/10.3390/jmse8040284

» https://doi.org/10.3390/jmse8040284

MIL-HOMENS, J. 2016. Longshore sediment transport: bulk formulas and process based models. PhD. Netherlands: Delft University of Technology, DOI: https://doi.org/10.4233/uuid:f7703aba-2760-47b1-99c2-a076a84d9b0f

» https://doi.org/10.4233/uuid:f7703aba-2760-47b1-99c2-a076a84d9b0f

MIL-HOMENS, J., RANASINGHE, R., VAN THIEL DE VRIES, J. S. M. & STIVE, M. J. F. 2013. Re-evaluation and improvement of three commonly used bulk longshore sediment transport formulas. Coastal Engineering , 75, 29-39, DOI: https://doi.org/10.1016/j.coastaleng.2013.01.004

» https://doi.org/10.1016/j.coastaleng.2013.01.004

MIL-HOMENS, J., RANASINGHE, R., VAN THIEL DE VRIES, J. S. M. & STIVE, M. J. F. 2013. Influence of profile features on longshore sediment transport. In: Coastal Dynamics, 7th International Conference on Coastal Dynamics, 24-28 June, Arcachon, France , Bordeaux University.

MIRJALILI, S. & LEWIS, A. 2016. The whale optimization algorithm. Advances in Engineering Software, 95, 51-67, DOI: https://doi.org/10.1016/j.advengsoft.2016.01.008

» https://doi.org/10.1016/j.advengsoft.2016.01.008

PMO (Iranian Port and Maritime Organization). 2021. Homepage [online]. Iran: Iranian Port and Maritime Organization. Available at: https://irancoasts.pmo.ir/en/first [Accessed 17 April 2021].

» https://irancoasts.pmo.ir/en/first

ROSATI, L. W. T. & KEVI, B. 2002. Coastal Engineering Manual. Engineering Manual (EM) 1102-1100. Coastal Sediment process Washington, DC: U.S. Army Corps of Engineers.

SMITH, E. R., WANG, P., EBERSOLE, B. A. & ZHANG, J. 2009. Dependence of total longshore sediment transport rates on incident wave parameters and breaker type. Journal of Coastal Research, 25(3), 675-683.

YANG, X. S. 2010. A new meta-heuristic bat-inspired algorithm. In: GONZÁLES, J. R., PELTA, D. A., CRUZ, C., TERRAZAS, G. & KRASNOGOR, N. (eds.). Nature inspired cooperative strategies for optimization (NICSO 2010) Berlin: Springer-Verlag, pp. 65-74, DOI: https://doi.org/10.1007/978-3-642-12538-6_6

Downloads

Published

2022-06-24

How to Cite

Revisiting the derivation of bulk longshore sediment transport rates using meta-heuristic algorithms. (2022). Ocean and Coastal Research, 69. https://doi.org/10.1590/2675-2824069.20-035zg