Evaluation of South Atlantic Thermohaline Properties from BESM-OA2.5 and Three Additional Global Climate Models

Authors

  • Micael Fernando Broggio
  • Carlos Alberto Eiras Garcia
  • Renato Ramos da Silva

DOI:

https://doi.org/10.1590/2675-2824069.21012mfb%20%20%20

Keywords:

Climate model, Models evaluation, Thermohaline properties

Abstract

Important global oceanic processes, such as the meridional overturning circulation, are governed by the temperature and
salinity of the ocean. As such, it is essential that these properties be correctly represented in high-quality global climate
models. This study aims to evaluate thermohaline properties both historically and under two simulations of the Brazilian
Earth System Model BESM-OA2.5 in the South Atlantic Ocean (Representation Concentration Pathway (RCP) 4.5 and 8.5).
Since error assessment in the global climate model (GCM) is fundamental to infer climate change projections, comparisons
were made for thermohaline properties among four GCMs (HadGEM2-ES, MIROC-ESM-CHEM, MIROC5, and BESM-OA2.5)
against data from ocean monitoring programs and from ORAS5-ECMWF. The results show common surface spatial pattern
errors in all models, commonly related to mesoscale processes. Specific to BESM-OA2.5 over the Southern Ocean, we
observed an increase in the temperature bias during autumn and summer, probably due to subsurface temperature
overestimation linked to North Antarctic Deep Water (NADW) formation. With respect to salinity, the underestimations
in the Subtropical/Subantarctic Zones and in the north of the South Atlantic subtropical gyre were linked to simulation
errors in the Malvinas current. All models presented overestimated annual historical temperature rates, with BESM-OA2.5
being the closest to ORAS5. In the subsurface, the BESM-OA2.5 did not easily simulate the South Atlantic Central Water
(SACW) formation, though in deep water, the model was able to better simulate the Antarctic Intermediate Water and
NADW patterns. Statistically, the multi-model means performed better, while the BESM-OA2.5 performed worst among
the models in both methodologies applied. In terms of projected scenarios, the models demonstrated sensitivity to
variations in greenhouse gas emissions between the RCPs, with higher magnitude warming predicted in the equatorial
zone, except for BESM-OA2.5

References

ANNAN, J. D. & HARGREAVES, J. C. 2011. Understanding the

CMIP3 multimodel ensemble. Journal of Climate, 24(16),

-4538, DOI: https://doi.org/10.1175/2011jcli3873.1

BARBERO, L. & WANNINKHOF, R. 2014. GO-SHIP A16S, 23 December 2013-04 February 2014 [online]. La Jola: CCHDO (CLIVAR

and Carbon Hydrographic Data Office). Available at: https://

cchdo.ucsd.edu/search?q=GO-SHIP [Accessed: 17 May

.

BARNES, W. L., PAGANO, T. S. & SALOMONSON, V. S. 1998. Prelaunch characteristics of the moderate resolution imaging

spectroradiometer (MODIS) on EOS-AM1. IEEE Transactions

on Geoscience and Remote Sensing, 36(4), 1088-1100, DOI:

https://doi.org/10.1109/36.700993

BEADLING, R. L., RUSSELL, J. L., STOUFFER, R. J., GOODMAN, P.

J. & MAZLOFF, M. 2019. Assessing the quality of Southern

Ocean circulation in CMIP5 AOGCM and Earth system model simulations. Journal of Climate, 32(18), 5915-5940, DOI:

https://doi.org/10.1175/jcli-d-19-0263.1

BERGER, H., TREGUIER, A. M., PERENNE, N. & TALANDIER, C. 2014.

Dynamical contribution to sea surface salinity variations

in the eastern Gulf of Guinea based on numerical modelling. Climate Dynamics, 43(11), 3105-3122, DOI: https://doi.

org/10.1007/s00382-014-2195-4

CAPISTRANO, V. B., NOBRE, P., TEDESCHI, R., SILVA, J., BOTTINO,

M., SILVA JUNIOR, M. B., MENEZES NETO, O. L., FIGUEROA,

S. N., BONATTI, J. P., KUBOTA, P. Y., FERNANDEZ, J. P. R.,

GIAROLLA, E., VIAL, J. & NOBRE, C. A. 2018. Overview of

climate change in the BESM-OA2. 5 climate model. Geoscientific Model Development, 12, 1613-1642, DOI: https://doi.

org/10.5194/gmd-2018-209

CASAGRANDE, F., NOBRE, P., SOUZA, R. B., MARQUEZ, A. L.,

TOURIGNY, E., CAPISTRANO, V. & MELLO, R. L. 2016. Arctic

sea ice: Decadal simulations and future scenarios using

BESM-OA. Atmospheric and Climate Sciences, 6(2), 351-366,

DOI: https://doi.org/10.4236/acs.2016.62029

CHOU, C., NEELIN, J. D., CHEN, C. A. & TU, J. Y. 2009. Evaluating the “rich-get-richer” mechanism in tropical

precipitation change under global warming. Journal of Climate, 22(8), 1982-2005, DOI: https://doi.

org/10.1175/2008JCLI2471.1

South Atlantic thermohaline properties evaluation

Ocean and Coastal Research 2021, v69:e21029 21

Broggio et al.

CHOU, C., NEELIN, J. D., TU, J. Y. & CHEN, C. T. 2006. Regional

tropical precipitation change mechanisms in ECHAM4/

OPYC3 under global warming. Journal of Climate, 19(17),

-4223, DOI: https://doi.org/10.1175/JCLI3858.1

CHOU, S. C., LYRA, A., MOURÃO, C., DERECZYNSKI, C., PILOTTO, I.,

GOMES, J., BUSTAMANTE, J., TAVARES, P., SILVA, A., RODRIGUES1,

D., CAMPOS, D., CHAGAS, D., SUEIRO, G., SIQUEIRA, G., NOBRE, P.

& MARENGO, J. 2014. Evaluation of the eta simulations nested in

three global climate models. American Journal Climate Change,

(5), 438-454, DOI: https://doi.org/10.4236/ajcc.2014.35039

COLAS, F., MCWILLIAMS, J. C., CAPET, X. & KURIAN, J. 2012.

Heat balance and eddies in the Peru-Chile current system. Climate dynamics, 39(1-2), 509-529, DOI: https://doi.

org/10.1007/s00382-011-1170-6

COLLINS, W. J., BELLOUIN, N., DOUTRIAUX-BOUCHER, M., GEDNEY,

N., HALLORAN, P., HINTON, T., HUGHES, J., JONES, C. D., JOSHI,

M., LIDDICOAT, S., MARTIN, G., O’CONNOR, F., RAE, J., SENIOR, C.,

SITCH, S., TOTTERDELL, I., WILTSHIRE, A. & WOODWARD, S. 2011.

Development and evaluation of an Earth-System model–HadGEM2. Geoscientific Model Development, 4(4), 1051-1075, DOI:

https://doi.org/10.5194/gmd-4-1051-2011

DURACK, P. J., WIJFFELS, S. E. & MATEAR, R. J. 2012. Ocean salinities reveal strong global water cycle intensification during

to 2000. Science, 336(6080), 455-458, DOI: https://doi.

org/10.1126/science.1212222

ECMWF (European Centre for Medium-Range Weather Forecasts).

ORAS5/Ocean ReAnalysis System 5. ICDC/Integrated Climate

Data Center [online]. Hamburg: Universitat Hamburg. Available

at: http://icdc.cen.uni-hamburg.de/1/projekte/easy-init/easyinit-ocean.html?no_cache=1 [Accessed: 23 May 2018].

EMÍLSSON, I. 1961. The shelf and coastal waters off southern

Brazil. Boletim do Instituto Oceanográfico, 11(2), 101-112.

FARIAS, E. G. G., NOBRE, P., LORENZZETTI J. A., ALMEIDA, R. A. F. &

LUIS JÚNIOR, C. I. 2013. Variability of air-sea CO2 fluxes and

dissolved inorganic carbon distribution in the Atlantic basin:

a coupled model analysis. International Journal of Geosciences,

(1), 249-258, DOI: https://doi.org/10.4236/ijg.2013.41A022

FETTER, A. F. & MATANO, R. P. 2008. On the origins of the

variability of the Malvinas Current in a global, eddy‐

permitting numerical simulation. Journal of Geophysical Research: Oceans, 113(C11), 1-21, DOI: https://doi.

org/10.1029/2008JC004875

FIGUEROA, S. N., BONATTI, J. P., KUBOTA, P. Y., GRELL, G. A., MORRISON, H., BARROS, S. R. M., FERNANDEZ, J. P. R., RAMIREZ, E.,

SIQUEIRA, L., LUZIA, G., SILVA, J., SILVA, J. R., PENDHARKAR,

J., CAPISTRANO, V. B., ALVIM, D. S., ENORÉ, D. P., DINIZ, F. L.

R., SATYAMURTI, P., CAVALCANTI, I. F. A., NOBRE, P., BARBOSA, H. M. J., MENDES, C. L. & PANETTA, J. 2016. The Brazilian

Global Atmospheric Model (BAM): performance for tropical

rainfall forecasting and sensitivity to convective scheme

and horizontal resolution. Weather and Forecasting, 31(5),

-1572, DOI: https://doi.org/10.1175/WAF-D-16-0062.1

FLATO, G. J., MAROTZKE, B., ABIODUN, P., BRACONNOT, S. C.,

CHOU, W., COLLINS, P., COX, F., DRIOUECH, S., EMORI, V., EYRING, C., FOREST, P., GLECKLER, E., GUILYARDI, C., JAKOB, V.,

KATTSOV, C., REASON M., RUMMUKAINEN. 2013. Evaluation

of climate models. In: STOCKER, T. F., QIN, D., PLATTNER, G. K.,

TIGNOR, M., ALLEN, S. K., BOSCHUNG, J., NAUELS, A., XIA, Y.,

BEX, V. & MIDGLEY, P. M. (ed.). Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth

Assessment Report of the Intergovernmental Panel on Climate

Change. Cambridge: Cambridge University Press, pp. 741-

, DOI: https://doi.org/10.1017/CBO9781107415324.020

GAN, J., MYSAK, L. A. & STRAUB, D. N. 1998. Simulation of the

South Atlantic Ocean circulation and its seasonal variability.

Journal of Geophysical Research: Oceans, 103(C5), 10241-

, DOI: https://doi.org/10.1029/98JC00367

GARZOLI, S. L. & GIULIVI, C. 1994. What forces the variability of

the southwestern Atlantic boundary currents?. Deep Sea Research Part I: Oceanographic Research Papers, 41(10), 1527-

, DOI: https://doi.org/10.1016/0967-0637(94)90059-0

GARZOLI, S. L. & MATANO, R. 2011. The South Atlantic and the

Atlantic Meridional Overturning Circulation. Deep Sea Research Part II: Topical Studies in Oceanography, 58(17-18),

-1847, DOI: https://doi.org/10.1016/j.dsr2.2010.10.063

GENT, P. R., YEAGER, S. G., NEALE, R. B., LEVIS, S. & BAILEY, D. A.

Improvements in a half degree atmosphere/land version of the CCSM. Climate Dynamics, 34(6), 819-833, DOI:

https://doi.org/10.1007/s00382-009-0614-8

GIAROLLA, E., SIQUEIRA, L. S. P., BOTTINO, M. J., MALAGUTTI,

M., CAPISTRANO, V. B. & NOBRE, P. 2015. Equatorial Atlantic

Ocean dynamics in a coupled ocean–atmosphere model

simulation. Ocean Dynamics, 65(6), 831-843, DOI: https://

doi.org/10.1007/s10236-015-0836-8

GLECKLER, P. J., TAYLOR, K. E. & DOUTRIAUX, C. 2008. Performance

metrics for climate models. Journal of Geophysical Research,

(6), 1-20, DOI: https://doi.org/10.1029/2007JD008972

GOES, M., CIRANO, M., MATA, M. M. & MAJUMDER, S. 2019. Longterm monitoring of the Brazil Current Transport at 22°S from

XBT and altimetry data: seasonal, interannual, and extreme

variability. Journal Geophysical Research: Oceans, 124(6),

-3663, DOI: https://doi.org/10.1029/2018JC014809

GORDON, A. L. 1986. Interocean exchange of thermocline water. Journal of Geophysical Research, 91(C4), 5037-5046, DOI:

https://doi.org/10.1029/JC091iC04p05037

HADGEM2 DEVELOPMENT TEAM. 2011. The HadGEM2 family

of met office unified model climate configurations. Geoscientific Model Development, 4(3), 723-757, DOI: https://doi.

org/10.5194/gmd-4-723-2011

HOOD, M., FUKASAWA, M., GRUBER, N., JOHNSON, G. C., KÖRTZINGER, A., SABINE, C., SLOYAN, B., STANSFIELD, K. & TANHUA,

T. 2009. Ship-based repeat hydrography: a strategy for a sustained global program. In: Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society. Venice: European Space Agency Publication, v. 2, pp. 509-519.

HORNER-DEVINE, A. R., HETLAND, R. D. & MACDONALD, D. G.

Mixing and transport in coastal river plumes. Annual

Review of Fluid Mechanics, 47, 569-594, DOI: https://doi.

org/10.1146/annurev-fluid-010313-141408

HUANG, B., HU, Z. Z. & JHA, B. 2007. Evolution of model systematic errors in the tropical Atlantic basin from coupled

climate hindcasts. Climate Dynamics, 28(7-8), 661-682, DOI:

https://doi.org/10.1007/s00382-006-0223-8

INPE (Instituto Nacional de Pesquisas Espaciais). 2015a. BESM-OA2.5

historical dataset are not available online. Cachoeira Paulista: INPE.

INPE (Instituto Nacional de Pesquisas Espaciais). 2015b. BESM-OA2.5

model CMIP5 RCP 4.5 and RCP 8.5 outputs - ESGF (Earth System

Grid Federation Data Access) [online]. Brasília: INPE. Available at:

https://dm2.cptec.inpe.br [Accessed: 10 Jan 2018].

KENDALL, M. G. 1970. Rank correlation methods. 4th ed. London: Griffin.

KING, M. D., HERRING, D. D. & DINER, D. J. 1995. The earth observing

system (EOS): a space-based program for assessing Mankind’s

impact on the global environment. Optics & Photonics News,

(1), 34-39. DOI: https://doi.org/10.1364/OPN.6.1.000034

South Atlantic thermohaline properties evaluation

Ocean and Coastal Research 2021, v69:e21029 22

Broggio et al.

LAGERLOEF, G., COLOMB, F. R., LE VINE, D., WENTZ, F., YUEH, S.,

RUF, C., LILLY, J., GUNN, J., CHAO, Y., DECHARON, A., FELDMAN, G. & SWIFT, C. 2008. The Aquarius/SAC-D mission:

designed to meet the salinity remote-sensing challenge.

Oceanography, 21(1), 68-81, DOI: https://doi.org/10.5670/

oceanog.2008.68

LLNL (Lawrence Livermore National Laboratory). JAMESTEC

(Japan Agency for Marine-Earth Science and Technology),

NIES (National Institute for Environmental Studies). 2015a.

MIROC-ESM-CHEM model CMIP5 historical, RCP 4.5 and RCP

5 outputs [online]. Lawrence: LLNL (Lawrence Livermore

National Laboratory)/ESGF (Earth System Grid Federation

Data Access). Available at: Available at: https://esgf-node.

llnl.gov [Accessed: 25 Jan 2018].

LLNL (Lawrence Livermore National Laboratory). JAMESTEC (Japan Agency for Marine-Earth Science and Technology), NIES

(National Institute for Environmental Studies). 2015b. MIROC5

model CMIP5 historical, RCP 4.5 and RCP 8.5 outputs [online].

Lawrence: LLNL (Lawrence Livermore National Laboratory)/

ESGF (Earth System Grid Federation Data Access). Available at:

https://esgf-node.llnl.gov [Accessed: 25 Jan 2018].

MACDONALD, A. & BARINGER, M. O. 2011. GO-SHIP A10, 26

September 2011-31 October 2011 [online]. La Jola: CCHDO

(CLIVAR and Carbon Hydrographic Data Office). Available

at: https://cchdo.ucsd.edu/search?q=GO-SHIP [Accessed:

May 2018].

MANN, H. B. 1946. Nonparametric tests against trend. Econometrica, 13(3), 245-259, DOI: https://doi.org/10.2307/1907187

MARCELLO, F., WAINER, I. & RODRIGUES, R. R. 2018. South Atlantic subtropical gyre late twentieth century changes. Journal

of Geophysical Research: Oceans, 123(8), 5194-5209, DOI:

https://doi.org/10.1029/2018JC013815

MATANO, R. P. 1993. On the separation of the Brazil Current from the

coast. Journal of Physical Oceanography, 23(1), 79-90, DOI: https://

doi.org/10.1175/1520-0485(1993)023<0079:OTSOTB>2.0.CO;2

MEEHL, G. A., STOCKER, T. F., COLLINS, W. D., FRIEDLINGSTEIN, P.,

GAYE, A. T., GREGORY, J. M., KITOH, A., KNUTTI, R., MURPHY,

J. M., NODA, A., RAPER, S. C. B., WATTERSON, I. G., WEAVER, A.

J. & ZHAO, Z. C. 2007. Global climate projections. In: SOLOMON, S., QIN, D., MANNING, M., CHEN, Z., MARQUIS, M., AVERYT, K. B., TIGNOR, M. & MILLER, H. L. (eds.). Climate Change

: The Physical Science Basis. Contribution of Working

Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press, pp. 747-845.

MOHC. 2015. HadGEM2-ES model CMIP5 historical, RCP 4.5 and

RCP 8.5 outputs [online]. Lawrence: ESGF (Earth System Grid

Federation Data Access). Available at: https://esgf-node.llnl.

gov [Accessed: 10 Jan 2018].

MÖLLER JUNIOR, O. O., PIOLA, A. R., FREITAS, A. C. & CAMPOS, E.

J. 2008. The effects of river discharge and seasonal winds on

the shelf off southeastern South America. Continental Shelf

Research, 28(13), 1607-1624, DOI: https://doi.org/10.1016/j.

csr.2008.03.012

MOSS, R. H., EDMONDS, J. A., HIBBARD, K. A., MANNING, M. R., ROSE,

S. K., VAN VUUREN, D. P., CARTER, T. R., EMORI, S., KAINUMA, M.,

KRAM, T., MEEHL G. A., MITCHELL, J. F. B., NAKICENOVIC, N., RIAHI, K., SMITH, S. J., STOUFFER, R. J., THOMSON, A. M., WEYANT, J.

P. & WILBANKS, T. J. 2010. The next generation of scenarios for

climate change research and assessment. Nature, 463(7282),

-756, DOI: https://doi.org/10.1038/nature08823

NASA (National Aeronautics and Space Administration), OBPG

(Ocean Biology Processing Group). 2014a. Moderate-resolution Imaging Spectroradiometer (MODIS) Aqua monthly Sea

Surface Temperature Data [online]. Washington, DC: NASA’s

Ocean Color Web. Available at: https://oceancolor.gsfc.

nasa.gov/l3/ [Accessed: 02 May 2018].

NASA (National Aeronautics and Space Administration), OBPG

(Ocean Biology Processing Group). 2014b. Moderate-resolution Imaging Spectroradiometer (MODIS) Terra Sea Surface

Temperature Data [online]. Washington, DC: NASA’s Ocean

Color Web [online]. Available at: https://oceancolor.gsfc.

nasa.gov/l3/ [Accessed: 02 May 2018].

NASA (National Aeronautics and Space Administration), OBPG

(Ocean Biology Processing Group). 2014c. SAC-D/Aquarius

monthly Sea Surface Salinity Data [online]. Washington, DC:

NASA’s Ocean Color Web. Available at: https://oceancolor.

gsfc.nasa.gov/l3/ [Accessed: 02 May 2018].

NOAA (National Oceanic and Atmospheric Administration),

AOML (Atlantic Oceanographic and Meteorological Laboratory). 2004. AX97 XBT [online]. Washington, DC: NOAA/

AOML. Available at: https://www.aoml.noaa.gov/phod/

hdenxbt/ax_home.php?ax=97 [Accessed: 17 May 2018].

NOBRE, P., SIQUEIRA, L. S., ALMEIDA, R. A., MALAGUTTI, M., GIAROLLA, E., CASTELÃO, G. P., BOTTINO, M. J., KUBOTA, P., FIGUEROA,

S. N., COSTA, M. C., BAPTISTA JUNIOR., M., IRBER JUNIOR., L. &

MARCONDES, G. G. 2013. Climate simulation and change in

the Brazilian Climate Model. Journal of Climate, 26(17), 6716-

, DOI: https://doi.org/10.1175/JCLI-D-12-00580.1

PEREIRA, J., GABIOUX, M., ALMEIDA, M. M., CIRANO, M., PAIVA,

A. M. & AGUIAR, A. L. 2014. The bifurcation of the western

boundary current system of the South Atlantic Ocean. Brazilian Journal of Geophysics, 32(2), 241-257, DOI: https://doi.

org/10.22564/rbgf.v32i2.456

PETERSON, R. G. & STRAMMA, L. 1991. Upper-level circulation in

the South Atlantic Ocean. Progress in Oceanography, 26(1),

-73, DOI: https://doi.org/10.1016/0079-6611(91)90006-8

PEZZI, L. P., SOUZA, R. B. D., DOURADO, M. S., GARCIA, C. A. E.,

MATA, M. M. & SILVA‐DIAS, M. A. F. 2005. Ocean‐atmosphere in situ observations at the Brazil‐Malvinas Confluence region. Geophysical Research Letters, 32(22), L22603,

DOI: https://doi.org/10.1029/2005GL023866

PEZZI, L. P., SOUZA, R. B. & QUADRO, M. F. L. 2016. Uma revisão

dos processos de interação oceano-atmosfera em regiões

de intenso gradiente termal do oceano atlântico sul baseada em dados observacionais. Revista Brasileira de Meteorologia, 31(4), 428-453, DOI: https://doi.org/10.1590/0102-

PINCUS, R., BATSTONE, C. P., HOFMANN, R. J. P., TAYLOR, K. E. &

GLECKER, P. J. 2008. Evaluating the present‐day simulation

of clouds, precipitation, and radiation in climate models.

Journal of Geophysical Research: Atmosphere, 113(D14),

D14209, DOI: https://doi.org/10.1029/2007JD009334

PIOLA, A. R. & MATANO, R. P. 2017. Ocean currents: Atlantic

Western Boundary—Brazil Current/Falkland (Malvinas) Current. In: SCOTT, A. E. (ed.). Reference module in earth systems

and environmental sciences. Amsterdam: Elsevier, pp. 1-6.

PIOLA, A. R., MATANO, R. P., PALMA, E. D., MÖLLER JUNIOR,

O. O. & CAMPOS, E. J. D. 2005. The influence of the Plata

River discharge on the western South Atlantic shelf. Geophysical Research Letters, 32(1), L01603, DOI: https://doi.

org/10.1029/2004GL021638

South Atlantic thermohaline properties evaluation

Ocean and Coastal Research 2021, v69:e21029 23

Broggio et al.

PONTES, G. M., GUPTA, A. S. & TASCHETTO, A. S. 2016. Projected

changes to South Atlantic boundary currents and confluence

region in the CMIP5 models: the role of wind and deep ocean

changes. Environmental Research Letters, 11(9), 094013, DOI:

https://doi.org/10.1088/1748-9326/11/9/094013

POOLE, R. & TOMCZAK, M. 1999. Optimum multiparameter analysis of the water mass structure in the Atlantic Ocean thermocline. Deep Sea Research Part I: Oceanographic Research

Papers, 46(11), 1895-1921, DOI: https://doi.org/10.1016/

S0967-0637(99)00025-4

RANDALL, D. A., WOOD, R., BONY, S., COLMAN, R., FICHEFET, T.,

FYFE, J., KATTSOV, V., PITMAN, A., SHUKLA, J., SRINIVASAN, J.,

STOUFFER, R. J., SUMI A. & TAYLOR, K. E. 2007. Climate models and their evaluation. In: SOLOMON, S., QIN, D., MANNING, M., CHEN, Z., MARQUIS, M., AVERYT, K. B., TIGNOR,

M. & MILLER, H. L. (ed.). Climate Change 2007: The Physical

Science Basis. Contribution of Working Group I to the Fourth

Assessment Report of the Intergovernmental Panel on Climate

Change. New York: Cambridge University Press, pp. 590-662.

ROEHRIG, R., BOUNIOL, D., GUICHARD, F., HOURDIN, F. & REDELSPERGER, J. L. 2013. The present and future of the West

African monsoon: a process-oriented assessment of CMIP5

simulations along the AMMA transect. Journal of Climate,

(17), 6471-6505, DOI: https://doi.org/10.1175/JCLID-12-00505.1

ROSSI-WONGTSCHOWSKI, C. L. D. B. & MADUREIRA, L. S. P. 2006.

O Ambiente oceanográfico da plataforma continental e do talude na região sudeste-sul do Brasil. São Paulo: Edusp.

RUELA, R., SOUSA, M. C., CASTRO, M. & DIAS, J. M. 2020. Global

and regional evolution of sea surface temperature under

climate change. Global and Planetary Change, 190, 103190,

DOI: https://doi.org/10.1016/j.gloplacha.2020.103190

SALLÉE, J. B., SHUCKBURGH, E., BRUNEAU, N., MEIJERS, A. J.,

BRACEGIRDLE, T. J. & WANG, Z. 2013. Assessment of Southern Ocean mixed‐layer depths in CMIP5 models: historical

bias and forcing response. Journal of Geophysical Research:

Oceans, 118(4), 1845-1862. DOI: https://doi.org/10.1002/

jgrc.20157

SALLÉE, J. B., SHUCKBURGH, E., BRUNEAU, N., MEIJERS, A. J.,

BRACEGIRDLE, T. J., WANG, Z. & ROY, T. 2013. Assessment of

Southern Ocean water mass circulation and characteristics

in CMIP5 models: historical bias and forcing response. Journal of Geophysical Research: Oceans, 118(4), 1830-1844, DOI:

https://doi.org/10.1002/jgrc.20135

SANTINI, M. & CAPORASO, L. 2018. Evaluation of freshwater

flow from rivers to the sea in CMIP5 simulations: insights

from the Congo River basin. Journal of Geophysical Research: Atmospheres, 123(18), 10278-10300, DOI: https://

doi.org/10.1029/2017JD027422

SCHMITT, R. W. 1995. The ocean component of the global water cycle. Reviews of Geophysics, 33(C2), 1395-1409, DOI:

https://doi.org/10.1029/95RG00184

SILLMANN, J., KHARIN, V. V., ZHANG, X., ZWIERS, F. W. & BRONAUGH, D. 2013. Climate extremes indices in the CMIP5

multimodel ensemble: Part 1. Model evaluation in the

present climate. Journal Geophysical Research: Atmosphere,

(4), 1716-1733, DOI: https://doi.org/10.1002/jgrd.50203

SILVEIRA, I. C. A., SCHMIDT, A. C. K., CAMPOS, E. J. D., GODOI, S. S.

& IKEDA, Y. 2000. A corrente do Brasil ao largo da costa leste

brasileira. Revista Brasileira de Oceanografia, 48(2), 171-183,

DOI: https://doi.org/10.1590/S1413-77392000000200008

SITZ, L. E., FARNETI, R. & GRIFFIES, S. M. 2015. Simulated South

Atlantic transports and their variability during 1958-2007.

Ocean Modelling, 91, 70-90, DOI: https://doi.org/10.1016/j.

ocemod.2015.05.001

SLOYAN, B. M., WANNINKHOF, R., KRAMP, M., JOHNSON, G. C.,

TALLEY, L. D., TANHUA, T., MCDONAGH, E., CUSACK, C.,

O’ROURKE, E., MCGOVERN, E., KATSUMATA, K., DIGGS, S.,

HUMMON, J., ISHII, M., AZETSU-SCOTT, K, BOSS, E., ANSORGE, I., PEREZ, F. F., MERCIER, H., WILLIAMS, M. J. M., ANDERSON, L., LEE, J. H., MURATA, A., KOUKETSU, S., JEANSSON, E., HOPPEMA, M. & CAMPOS, E. 2019. The Global

Ocean Ship-Based Hydrographic Investigations Program

(GO-SHIP): a platform for integrated multidisciplinary ocean

science. Frontiers in Marine Science, 6, 445, DOI: https://doi.

org/10.3389/fmars.2019.00445

SPRINTALL, J. & TOMCZAK, M. 1993. On the formation of Central

Water and thermocline ventilation in the southern hemisphere. Deep Sea Research Part I: Oceanographic Research

Papers, 40(4), 827-848, DOI: https://doi.org/10.1016/0967-

(93)90074-D

STRAMMA, L. & ENGLAND, M. 1999. On the water masses and

mean circulation of the South Atlantic Ocean. Journal of

Geophysical Research: Oceans, 104(9), 20863-20883, DOI:

https://doi.org/10.1029/1999JC900139

TAILLEUX, R., LAZAR, A. & REASON, C. J. C. 2005. Physics and

dynamics of density-compensated temperature and salinity anomalies. Part I: Theory. Journal of Physical Oceanography, 35(5), 849-864, DOI: https://doi.org/10.1175/

JPO2706.1

TALLEY, L. D., PICKARD, G. L., EMERY, W. J. & SWIFT, J. H. 2011.

Atlantic Ocean. Descriptive physical oceanography: an introduction. Boston: Elsevier.

TAYLOR, K. E. 2001. Summarizing multiple aspects of model

performance in a single diagram. Journal of Geophysical

Research: Atmosphere, 106(D7), 7183-7192, DOI: https://doi.

org/10.1029/2000JD900719

TAYLOR, K. E., BALAJI, V., HANKIN, S., JUCKE, M., LAWRENCE,

B. & PASCOE, S. 2012. CMIP5 Data Reference Syntax (DRS)

and Controlled Vocabularies, version 1.3.1 [online]. Livermore: Program for Climate Model Diagnosis & Intercomparison. Available at: https://pcmdi.llnl.gov/mips/cmip5/

cmip5_data_reference_syntax.pdf?id=94 [Accessed: 14

April 2021].

TAYLOR, K. E., STOUFFER, R. J. & MEEHL, G. A. 2012. An overview

of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485-498, DOI: https://doi.

org/10.1175/BAMS-D-11-00094.1

TEBALDI, C. & KNUTTI, R. 2007. The use of the multi-model ensemble in probabilistic climate projections. Philosophical

Transactions of the Royal Society A, 365(1857), 2053-2075,

DOI: https://doi.org/10.1098/rsta.2007.2076

TERRAY, L., CORRE, L., CRAVATTE, S., DELCROIX, T., REVERDIN, G.

& RIBES, A. 2012. Near-surface salinity as nature’s rain gauge

to detect human influence on the tropical water cycle. Journal of Climate, 25(3), 958-977, DOI: https://doi.org/10.1175/

JCLI-D-10-05025.1

TOKINAGA, H., TANIMOTO, Y. & XIE, S. P. 2005. SST-induced

surface wind variations over the Brazil-Malvinas confluence: Satellite and in situ observations. Journal of climate, 18(17), 3470-3482, DOI: https://doi.org/10.1175/

JCLI3485.1

South Atlantic thermohaline properties evaluation

Ocean and Coastal Research 2021, v69:e21029 24

Broggio et al.

TZORTZI, E., JOSEY, S. A., SROKOSZ, M. & GOMMENGINGER, C.

Tropical Atlantic salinity variability: new insights from

SMOS. Geophysical Research Letters, 40(10), 2143-2147, DOI:

https://doi.org/10.1002/grl.50225

VAN CASPEL, M. R., MATA, M. M. & CIRANO, M. 2010. Sobre a

relação TS na porção central do Atlântico Sudoeste: uma

contribuição para o estudo da variabilidade oceânica no

entorno da cadeia Vitória-Trindade. Atlântica, 32(1), 95-110,

DOI: https://doi.org/10.5088/atl. 2010.32.1.95

VEIGA, S. F., NOBRE, P., GIAROLLA, E., CAPISTRANO, V., BAPTISTA JUNIOR, M., MARQUEZ, A. L., FIGUEROA, S. N., BONATTI, J. P., KUBOTA,

P. & NOBRE, C. A. 2019. The Brazilian Earth System Model ocean-atmosphere (BESM-OA) version 2.5: evaluation of its cmip5 historical simulation. Geoscientific Model Development, 12(4), 1613-1642.

DOI: https://doi.org/10.5194/gmd-12-1613-2019

WANG, C., ZHANG, L., LEE, S. K., WU, L. & MECHOSO, C. R. 2014. A

global perspective on CMIP5 climate model biases. Nature

Climate Change, 4(3), 201-205, DOI: https://doi.org/10.1038/

NCLIMATE2118

WATANABE, M., SUZUKI, T., O’ISHI, R., KOMURO, Y., WATANABE,

S., EMORI, S., TAKEMURA, T., CHIKIRA, M., OGURA, T., SEKIGUCHI, M., TAKATA, K., YAMAZAKI, D., YOKOHATA, T., NOZAWA,

T., HASUMI, H., TATEBE, H. & KIMOTO, M. 2010. Improved

climate simulation by MIROC5: mean states, variability, and

climate sensitivity. Journal of Climate, 23(23), 6312-6335,

DOI: https://doi.org/10.1175/2010JCLI3679.1

WATANABE, S., HAJIMA, T., SUDO, K., NAGASHIMA, T., TAKEMURA, T., OKAJIMA, H., NOZAWA, T., KAWASE, H., ABE, M.,

YOKOHATA, T., ISE, T., SATO, H., KATO, E., TAKATA, K., EMORI,

S. & KAWAMIYA, M. 2011. MIROC-ESM 2010: model description and basic results of CMIP5-20c3m experiments. Geoscientific Model Development, 4(4), 845-872, DOI: https://doi.

org/10.5194/gmd-4-845-2011

YU, L. 2011. A global relationship between the ocean water cycle and near-surface salinity. Journal of Geophysical Research, 116(C10), C10025, DOI: https://doi.

org/10.1029/2010JC006937

ZHENG, Y., SHINODA, T., LIN, J. L. & KILADIS, G. N. 2011.

Sea surface temperature biases under the stratus cloud deck in the southeast Pacific Ocean in 19

IPCC AR4 coupled general circulation models. Journal of Climate, 24(15), 4139-4164, DOI: https://doi.

org/10.1175/2011JCLI4172.1

ZUO, H., BALMASEDA, M. A., TIETSCHE, S., MOGENSEN, K. &

MAYER, M. 2019. The ECMWF operational ensemble reanalysis-analysis system for ocean and sea ice: a description of the system and assessment. Ocean Science Discussions, 15(3), 779-808, DOI: https://doi.org/10.5194/

os-2018-154

Downloads

Published

2022-06-27

How to Cite

Broggio, M. F. ., Garcia, C. A. E. ., & Silva, . R. R. da . (2022). Evaluation of South Atlantic Thermohaline Properties from BESM-OA2.5 and Three Additional Global Climate Models. Ocean and Coastal Research, 69. https://doi.org/10.1590/2675-2824069.21012mfb

Issue

Section

Original Article