Ocean Energy, Fluxes and an Anti-Anti-Turbulence Conjecture

Authors

  • WK Dewar
  • B Deremble

DOI:

https://doi.org/10.1590/2675-2824070.21042wkd

Keywords:

Energetics, Turbulence

Abstract

The energy sources for convection and the general circulation are revisited through an analysis of the compressible equations of motion, rather than the Boussinesq equations. We are motivated in this endeavor by a more straightforward connection in the compressible equations between thermodynamics and dynamics, and the continuing debate in the field regarding the suggestion, made first in the form of Sandström’s theorem, that surface buoyancy fluxes can not drive the overturning circulation. While ultimately supporting the Sandström position, the analysis leads to some new insights into ocean energetics and surface energy fluxes. We argue the ultimate role of buoyancy fluxes are to damp the circulation and that ocean energy cycles between internal and kinetic energy. Ocean heating due to the general circulation, geothermal heat flux and the biosphere are evaluated for their roles and we suggest the latter two provide energy to the overturning much more effectively than surface forcing. All three also contribute significantly to net ocean surface energy flux, an effect that influences the interpretation of ocean heat content imbalances.

References

BATCHELOR, G. 1967. An Introduction to Fluid Dynamics, Cambridge University Press.

CESSI, P. 2019. The Global Overturning Circulation, Annual Reviews of Marine Science 11, 249- 270.

COMAN, M., GRIFFITHS, R. & HUGHES, G. 2006. Sandstrom’s experiments revisited, Journal of Marine Research 64, 783-796.

DAVIES, J. 2013. Global map of solid Earth surface heat flow, Geochem., Geophys., Geosyst 14, 4608-4622.

DEFANT, A. 1961. Physical Oceanography: Volume I, MacMillan.

DEWAR, W., BINGHAM, R., IVERSON, R., NOWACEK, D., St Laurent, L. & WIEBE, P. 2006. Does the marine biosphere mix the ocean?, Journal of Marine Research 64, 541- 561.

FERRARI, R. & WUNSCH, C. 2009. Ocean circulation kinetic energy - reservoirs, sources and sinks, Ann. Rev. Fluid Mech. 41, 253-282.

GAYEN, B., GRIFFITHS, R., HUGHES, G. & SAENZ, J. 2013. Energetics of horizontal convection, Journal of Fluid Mechanics 716, doi:10.1017/jfm.2012.592.

» https://doi.org/10.1017/jfm.2012.592

HAZEWINKEL, J., PAPARELLA, F. & YOUNG, W. 2012. Stressed horizontal convection, Journal of Fluid Mechanics 692, 317-331.

HUANG, R. 1998. Mixing and available potential energy in a Boussinesq ocean, Journal of Physical Oceanography 28, 669-678.

HUANG, R. 1999. Mixing and energetics of the oceanic thermohaline circulation, Journal of Physical Oceanography 29, 727-746.

HUGHES, G., A McC Hogg & GRIFFITHS, R. 2009. Available potential energy and irreversible mixing in the meridional overturning circulation, Journal of Physical Oceanography 39, 3130- 3146.

IOC, SCOR and IAPSO 2010. The international thermodynamic equation of seawater - 2010: Calculation and use of thermodynamic properties, intergovernmental oceanographic commission, manuals and guides no. 56, edn, UNESCO.

JEFFREYS, H. 1925. On fluid motions produced by differences of temperature and humidity, Quarterly Journal of the Royal Meteorological Society 51, 347-356.

KUHLBROT, T. 2008. On Sandström’s inferences from his tank experiments: a hundred years On Sandström’s inferences from his tank experiments: a hundred years later, Tellus A 60, 819- 836.

LANDAU, L. & LIFSHITZ, E. 1959. Fluid Mechanics, Pergamon Press.

MEYSSIGNAC, B., BOYER, T., ZHAO, Z., HAKUBA, M. Z., LANDERER, F. W., STAMMER, D., KöHL, A., KATO, S., L’ECUYER, T., ABLAIN, M., ABRAHAM, J. P., BLAZQUEZ, A., CAZENAVE, A., CHURCH, J. A., COWLEY, R., CHENG, L., DOMINGUES, C. M., GIGLIO, D., GOURETSKI, V., ISHII, M., JOHNSON, G. C., KILLICK, R. E., LEGLER, D., LLOVEL, W., LYMAN, J., PALMER, M. D., PIOTROWICZ, S., PURKEY, S. G., ROEMMICH, D., ROCA, R., SAVITA, A., SCHUCKMANN, K. V., SPEICH, S., STEPHENS, G., WANG, G., WIJFFELS, S. E. & ZILBERMAN, N. 2019. Measuring Global Ocean Heat Content to Estimate the Earth Energy Imbalance, Frontiers in Marine Science 6. doi:10.3389/fmars.2019.00432.

» https://doi.org/10.3389/fmars.2019.00432

MUNK, W. & WUNSCH, C. 1998. Abyssal recipes. PartII. Energetics of tidal and wind mixing, Deep-Sea Research 45, 1977-2010.

PAPARELLA, F. & YOUNG, W. 2002. Horizontal convection is non-turbulent, Journal of Fluid Mechanics 466, 205-215.

POLLACK, H., HURTER, S. & JOHNSON, J. 1993. Heat flow from the Earth’s interior: Analysis of the global data set, Reviews of Geophysics 31, 267-280.

SANDSTRöM, J. 1908. Dynamische Versuche mit Meerwasser, Annual Hydrogr Mar Meteorol. 6-23.

SANDSTRöM, J. 1916. Meteorologische Studien im Schwedishen Hochgebirge, Goteborgs Kungl. Vetenskaps-och Vitterhetssamhalles Handlingar 17, 1-48.

SANDSTRöM, J. 1922. Deux theoremes fondamentaux de la dynamique de la mer, Svenska Hydrografisk-Biologiska Kommissionens Skrifter 7.

VREUGDENHIL, C., GAYEN, B. & GRIFFITHS, R. 2016. Mixing and dissipation in a geostrophic buoyancy-driven circulation, Journal of Geophysical Research-Oceans 121, 6076-6091.

WANG, W. & HUANG, R. 2004. Wind energy input to the surface waves, Journal of Marine Research 34, 1276-1280. doi:10.1175/15200485(2004)034<1276:WEITTS>2.0.CO;2.

» https://doi.org/10.1175/15200485(2004)034<1276:WEITTS>2.0.CO;2

WUNSCH, C. 1998. The work done by the wind on the oceanic general circulation, Journal of Physical Oceanography 28, 2331-2339.

WUNSCH, C. & FERRARI, R. 2004. Vertical mixing, energy, and the general circulation of the oceans, Ann. Rev. Fluid Mech. 36, doi:10.1146/annurev.fluid.36.050802.122121.

» https://doi.org/10.1146/annurev.fluid.36.050802.122121

YOUNG, W. 2010. Dynamic enthalpy, conservative temperature and the seawater boussinesq approximation, Journal of Physical Oceanography 40, 394-400.

ZHAI, X., JOHNSON, H., MARSHALL, D. & WUNSCH, C. 2012. On the wind power input to the ocean general circulation, Journal of Physical Oceanography 42, 1357-1365.

Downloads

Published

2022-06-29

How to Cite

Ocean Energy, Fluxes and an Anti-Anti-Turbulence Conjecture. (2022). Ocean and Coastal Research, 70(Suppl. 1). https://doi.org/10.1590/2675-2824070.21042wkd