Trophic analysis of female mangrove crabs at two sites from Southeastern Brazil (Rio de Janeiro)

Authors

  • Eduardo Vianna de Almeida
  • Vinicius Tavares Kütter
  • Emmanoel Vieira Silva-Filho

DOI:

https://doi.org/10.1590/2675-2824070.21032evda

Keywords:

Estuary, δ 13C; δ 15N, Feeding habit, Ucides cordatus

Abstract

The mangrove crab Ucides cordatus (Linnaeus, 1763) is a burrowing crab with an important role in mangrove nutrient cycling. The species holds major socioeconomic importance, generating yield for traditional and low-income populations. Despite its ecological and economic importance, there are few experiments in Brazil applying stable isotope tools to trophic crab classification, and even fewer considering females in the reproductive period. Females have different energy demands than males; studies examining C and N can reveal details regarding the differences. Hence, the present study is the first analysis of the δ 13C, δ 15N, and the C/N ratio in ovigerous females of two populations from Southeastern Brazil (Caceribu River - Guanabara Bay and Gargaú mangrove - Paraiba do Sul River secondary estuary). The Caceribu mangrove is larger and is located in one of the most impacted bays in the world. In the Paraiba do Sul River region, the mangrove swamp is about ten times smaller, has a substantially lower population in the surrounding area, and is more influenced by agricultural activities. The δ 13C analysis confirmed mangrove leaves as their main food source. The significant δ 13C variation between the Guanabara and Paraiba do Sul estuary populations can be related to differences in food availability and nutritional value. However, the δ 15N values can be related to the ingestion of other food items during the breeding season as well as the influence of anthropogenic mangrove degradation. At both study sites, the δ15N values were higher than those observed in other mangrove crab populations and other herbivorous species. Significant (p < 0.05) isotopic differences were found among populations, suggesting variations in biogeochemical cycles that may be related to different environmental conditions between the sites.

References

ALMEIDA, E. V., KÜTTER, V. T., MARQUES, E. D. & SILVA-FILHO, E. V. 2016 First assessment of trace metal concentration in mangrove crab eggs and other tissues, SE Brazil. Environmental Monitoring and Assessment, 188, 421, DOI: https://doi.org/10.1007/s10661-016-5413-1

» https://doi.org/10.1007/s10661-016-5413-1

BODIN, N., LE LOC’H, F., HILY, C., CAISEY, X., LATROUITE, D. & LE GUELLEC, A-M. 2007. Variability of stable isotope signatures (δ 13C and δ 15N) in two spider crab populations (Maja brachydactyla) in Western Europe. Journal of Experimental Marine Biology and Ecology, 343(2), 149-157, DOI: https://doi.org/10.1016/j.jembe.2006.09.024

» https://doi.org/10.1016/j.jembe.2006.09.024

BORGES, P. S. P. 2014. Índices e modelos biogeoquímicos para definição do estado trófico, suscetibilidade à eutrofização e metabolismo do estuário do rio Paraíba do Sul, RJ [online]. MSc. Niterói (RJ): UFF (Universidade Federal Fluminense). Available at: https://app.uff.br/riuff/handle/1/1585 [Accessed: 10 Apr 2021].

» https://app.uff.br/riuff/handle/1/1585

CARREIRA, R. S., WAGENER, A. L. R., READMAN, J. W., FILEMAN, T. W., MACKO, S. A. & VEIGA, A. 2002. Changes in the sedimentary organic carbon pool of a fertilized tropical estuary, Guanabara Bay, Brazil: an elemental, isotopic and molecular marker approach. Marine Chemistry, 79(3-4), 207-227, DOI: https://doi.org/10.1016/S0304-4203(02)00065-8

» https://doi.org/10.1016/S0304-4203(02)00065-8

CHRISTOFOLETTI, R. A., HATTORI, G. Y. & PINHEIRO, M. A. A. 2013. Food selection by a mangrove crab: temporal changes in fasted animals. Hydrobiologia, 702, 63-72, DOI: https://doi.org/10.1007/s10750-012-1307-6

» https://doi.org/10.1007/s10750-012-1307-6

COSTA, L. A. A., PESSOA, D. M. M. & CARREIRA, R. S. 2018. Chemical and biological indicators of sewage river input to an urban tropical estuary (Guanabara Bay, Brazil), Ecological Indicators, 90, 513-518, DOI: https://doi.org/10.1016/j.ecolind.2018.03.046

» https://doi.org/10.1016/j.ecolind.2018.03.046

COTOVICZ, L. C., KNOPPERS, B. A., DEIRMENDJIAN, L. & ABRIL, G. 2019. Sources and sinks of dissolved inorganic carbon in an urban tropical coastal bay revealed by δ13C-DIC signals. Estuarine, Coastal and Shelf Science, 220, 185-195, DOI: https://doi.org/10.1016/j.ecss.2019.02.048

» https://doi.org/10.1016/j.ecss.2019.02.048

DEGENS, E. T., BEHRENDT, M., GOTTHARDT, B. & REPPMANN, E. 1968. Metabolic fractionation of carbon isotopes in marine plankton - II. Data on samples collected off the coasts of Peru and Ecuador. Deep Sea Research and Oceanographic Abstracts, 15(1), 11-20, DOI: https://doi.org/10.1016/0011-7471(68)90025-9

» https://doi.org/10.1016/0011-7471(68)90025-9

DITTEL, A. I., EPIFANIO, C. E. & FOGEL, M. L. 2006. Trophic relationships of juvenile blue crabs (Callinectes sapidus) in estuarine habitats. Hydrobiologia, 568, 379-390, DOI: https://doi.org/10.1007/s10750-006-0204-2

» https://doi.org/10.1007/s10750-006-0204-2

DOI, H., MATSUMASA, M., TOYA, T., SATOH, N., MIZOTA, T., MAKI, Y. & KIKUCHI, E. 2005. Spatial shifts in food sources for macrozoobenthos in an estuarine ecosystem: carbon and nitrogen stable isotope analyses. Estuarine, Coastal and Shelf Science, 64(2), 316-322, DOI: https://doi.org/10.1016/j.ecss.2005.02.028

» https://doi.org/10.1016/j.ecss.2005.02.028

FOGEL, M. L., WOOLLER, M. J., CHEESEMAN, J., SMALLWOOD, B. J., ROBERTS, Q., ROMERO, I., MEYERS, M. J., FOGEL, M. L., WOOLER, M. J., CHEESEMAN, J., SAMLLWOOD, B. J., ROBERTS, Q., ROMERO, I. & MEYERS, M. J. 2008. Unusually negative nitrogen isotopic compositions (δ15N) of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem. Biogeosciences, 5(1), 937-969, DOI: https://doi.org/10.5194/bg-5-1693-2008

» https://doi.org/10.5194/bg-5-1693-2008

FRAGOSO, C. P., BERNINI, E., ARAÚJO, B. F., ALMEIDA, M. G. & REZENDE, C. E. 2018. Mercury in litterfall and sediment using elemental and isotopic composition of carbon and nitrogen in the mangrove of Southeastern Brazil. Estuarine, Coastal and Shelf Science, 202, 30-39, DOI: https://doi.org/10.1016/j.ecss.2017.12.005

» https://doi.org/10.1016/j.ecss.2017.12.005

FRY, B. 2006. Stable isotope ecology New York: Springer Science.

GIARRIZZO, T., SCHWAMBORN, R. & SAINT-PAUL, U. 2011. Utilization of carbon sources in a northern Brazilian mangrove ecosystem. Estuarine, Coastal and Shelf Science, 95(4), 447-457, DOI: https://doi.org/10.1016/j.ecss.2011.10.018

» https://doi.org/10.1016/j.ecss.2011.10.018

GUERAO, G., ROTLLANT, G., GISBERT, E., UYÀ, M. & CARDONA, L. 2016. Consistent habitat segregation between sexes in the spider crabs Maja brachydactyla and Maja squinado (Brachyura), as revealed by stable isotopes. Scientia Marina, 80(1), 103-110, DOI: https://doi.org/10.3989/scimar.04236.23B

» https://doi.org/10.3989/scimar.04236.23B

HAINES, E. B. 1976. Relation between the stable carbon isotope composition of fiddler crabs, plants, and soils in a salt marsh. Limnology and Oceanography, 21(6), 880-883.

HERBON, C. M. & NORDHAUS, I. 2013. Experimental determination of stable carbon and nitrogen isotope fractionation between mangrove leaves and crabs. Marine Ecology Progress Series, 490, 91-105, DOI: https://doi.org/10.3354/meps10421

» https://doi.org/10.3354/meps10421

JIANG, S., WENG, B., LIU, T., SU, Y., LIU, J., LU, H. & YAN, C. 2017. Response of phenolic metabolism to cadmium and phenanthrene and its influence on pollutant translocations in the mangrove plant Aegiceras corniculatum (L.) Blanco (Ac). Ecotoxicology and Environmental Safety, 141, 290-297, DOI: https://doi.org/10.1016/j.ecoenv.2017.03.041

» https://doi.org/10.1016/j.ecoenv.2017.03.041

KALAS, F. A., CARREIRA, R. S., MACKO, S. A. & WAGENER, A. L. R. 2009. Molecular and isotopic characterization of the particulate organic matter from an eutrophic coastal bay in SE Brazil. Continental Shelf Research, 29, 2293-2302, DOI: https://doi.org/10.1016/j.csr.2009.09.007

» https://doi.org/10.1016/j.csr.2009.09.007

KRISTENSEN, D. K., KRISTENSEN, E. & MANGION, P. 2010. Food partitioning of leaf-eating mangrove crabs (Sesarminae): experimental and stable isotope (13C and 15N) evidence. Estuarine, Coastal and Shelf Science, 87(4), 583-590, DOI: https://doi.org/10.1016/j.ecss.2010.02.016

» https://doi.org/10.1016/j.ecss.2010.02.016

LACERDA, L. D., JOSE, D. V., REZENDE, C. E., FRANCISCO, M. C. F., WASSERMAN, J. C. & MARTINS, J. C. 1986. Leaf chemical characteristics affecting herbivory in a new world mangrove forest. Biotropica, 18(4), 350-55, DOI: https://doi.org/10.2307/2388579

» https://doi.org/10.2307/2388579

LÓPEZ, B. & CONDE, J. E. 2013. Dietary variation in the crab Aratus pisonii (H. Milne Edwards, 1837) (Decapoda, Sesarmidae) in a mangrove gradient in northwestern Venezuela. Crustaceana, 86(9), 1051-1069, DOI: https://doi.org/10.1163/15685403-00003220

» https://doi.org/10.1163/15685403-00003220

MACKENZIE, R. A., CORMIER, N. & DEMOPOULOS, A. W. 2020. Estimating the value of mangrove leaf litter in sesarmid crab diets: the importance of fractionation factors. Bulletin of Marine Science, 96(3), 501-520, DOI: https://doi.org/10.5343/bms.2019.0026

» https://doi.org/10.5343/bms.2019.0026

MAGALHÃES, A., COSTA, R. M., SILVA, R. & PEREIRA, L. C. C. 2007. The role of women in the mangrove crab (Ucides cordatus, Ocypodidae) production process in North Brazil (Amazon region, Pará). Ecological Economics, 61(2-3), 559-565, DOI: https://doi.org/10.1016/j.ecolecon.2006.05.013

» https://doi.org/10.1016/j.ecolecon.2006.05.013

MARQUES, J. S. J., DITTMAR, T., NIGGEMANN, J., ALMEIDA, M. G., GOMEZ-SAEZ, G. V. & REZENDE, C. E. 2017. Dissolved black carbon in the headwaters-to-ocean continuum of Paraíba do Sul River, Brazil. Frontiers in Earth Science, 5, 11, DOI: https://doi.org/10.3389/feart.2017.00011

» https://doi.org/10.3389/feart.2017.00011

MOLISANI, M. M., SALOMÃO, M., OVALLE, A. R. C., REZENDE, C. E., LACERDA, L. D. & CARVALHO, C. E. V. 1999. Heavy metals in sediments of the Lower Paraíba do Sul River and Estuary, RJ, Brazil. Bulletin of Environmental Contamination and Toxicology, 63(5), 682-690.

MONTEIRO, F. F., CORDEIRO, R. C., SANTELLI, R. E., MACHADO, W., EVANGELISTA, E., VILLAR, L. S., VIANA, L. C. A. & BIDONE, E. D. 2012. Sedimentary geochemical record of historical anthropogenic activities affecting Guanabara Bay (Brazil) environmental quality. Environmental Earth Science, 65, 1661-1669, DOI: https://doi.org/10.1007/s12665-011-1143-4

» https://doi.org/10.1007/s12665-011-1143-4

NORDHAUS, I., DIELE, K. & WOLFF, M. 2009. Activity patterns, feeding and burrowing behaviour of the crab Ucides cordatus (Ucididae) in a high intertidal mangrove forest in North Brazil. Journal of Experimental Marine Biology and Ecology, 374(2), 104-112, DOI: https://doi.org/10.1016/j.jembe.2009.04.002

» https://doi.org/10.1016/j.jembe.2009.04.002

NORDHAUS, I. & WOLFF, M. 2007. Feeding ecology of the mangrove crab Ucides cordatus (Ocypodidae): food choice, food quality and assimilation efficiency. Marine Biology, 151, 1665-1681, DOI: https://doi.org/10.1007/s00227-006-0597-5

» https://doi.org/10.1007/s00227-006-0597-5

NORDHAUS, I., WOLFF, M. & DIELE, K. 2006. Litter processing and population food intake of the mangrove crab Ucides cordatus in a high intertidal forest in northern Brazil. Estuarine, Coastal and Shelf Science, 67(1-2), 239-250, DOI: https://doi.org/10.1016/j.ecss.2005.11.022

» https://doi.org/10.1016/j.ecss.2005.11.022

NUMBERE, A. O. & CAMILO, G. R. 2017. Mangrove leaf litter decomposition under mangrove forest stands with different levels of pollution in the Niger River Delta, Nigeria. African Journal of Ecology, 55(2), 162-167, DOI: https://doi.org/10.1111/aje.12335

» https://doi.org/10.1111/aje.12335

OBIS (Ocean Biogeographic Information System). 2020. Ucides cordatus (Linnaeus, 1763) [online]. Sub-Saharan African: OBIS. Available at: https://obis.org/taxon/422170 [Accessed: 31 Mar 2020].

» https://obis.org/taxon/422170

OTERO, X. L., ARAÚJO JUNIOR, J. M. C., BARCELLOS, D., QUEIROZ, H. M., ROMERO, D. J., NÓBREGA, G. N., SIQUEIRA NETO, M. & FERREIRA, T. O. 2020. Crab bioturbation and seasonality control nitrous oxide emissions in semiarid mangrove forests (Ceará, Brazil). Applied Sciences, 10(7), 2215, DOI: https://doi.org/10.3390/app10072215

» https://doi.org/10.3390/app10072215

PEREIRA, A. A., VAN HATTUM, B., BOER, J., VAN BODEGOM, P. M., REZENDE, C. E. & SALOMONS, W. 2010. Trace elements and carbon and nitrogen stable isotopes in organisms from a tropical coastal lagoon. Archives of Environmental Contamination and Toxicology, 59, 464-477, DOI: https://doi.org/10.1007/s00244-010-9489-2

» https://doi.org/10.1007/s00244-010-9489-2

PEREIRA, T. M., NÓBREGA, G. N., FERREIRA, T. O., OGAWA, C. Y., CAMARGO, P. B., SILVA, J. R. F. & REZENDE, C. F. 2019. Does food partitioning vary in leaf-eating crabs in response to source quality? Marine Environmental Research, 144, 72-83, DOI: https://doi.org/10.1016/j.marenvres.2018.12.005

» https://doi.org/10.1016/j.marenvres.2018.12.005

PINHEIRO, M. A. A., FISCARELLI, A. G. & HATTORI, G. Y. 2005. Growth of the mangrove crab Ucides cordatus (Brachyura, Ocypodidae). Journal of Crustacan Biology, 25(2), 293-301, DOI: https://doi.org/10.1651/C-2438

» https://doi.org/10.1651/C-2438

PINHEIRO, M., BAVELONI, M. D. & TERCEIRO, O. S. L. 2003. Fecundity of the mangrove crab Ucides cordatus (Linnaeus, 1763) (Brachyura, Ocypodidae). Invertebrate Reproduction & Development, 43(1), 19-26, DOI: https://doi.org/10.1080/07924259.2003.9652517

» https://doi.org/10.1080/07924259.2003.9652517

SCHORIES, D., BERGAN, A. B., BARLETTA, M., KRUMME, U., MEHLIG, U. & RADEMAKER, V. 2003. The keystone role of leaf-removing crabs in mangrove forests of North Brazil. Wetlands Ecology and Management, 11, 243-255, DOI: https://doi.org/10.1023/A:1025011431984

» https://doi.org/10.1023/A:1025011431984

SHILLA, D. & ROUTH, J. 2017. Using biochemical and isotopic tracers to characterise organic matter sources and their incorporation into estuarine food webs (Rufiji delta, Tanzania). Chemistry and Ecology, 33(10), 893-917, DOI: https://doi.org/10.1080/02757540.2017.1391796

» https://doi.org/10.1080/02757540.2017.1391796

SOARES-GOMES, A., GAMA, B. A. P., BAPTISTA NETO, J. A., FREIRE, D. G.,MACHADO, W., BERNARDES, M. C., COUTINHO, R., THOMPSON, F. L. & PEREIRA, R. C. 2016. An environmental overview of Guanabara Bay, Rio de Janeiro. Regional Studies in Marine Science, 8(2), 319-330, DOI: https://doi.org/10.1016/j.rsma.2016.01.009

» https://doi.org/10.1016/j.rsma.2016.01.009

SOUZA, I. C., ARRIVABENE, H. P., CRAIG, C. A., MIDWOOD, A. J., THORNTON, B. MATSUMOTO, S. T., ELLIOTT, M., WUNDERLIN, D. A., MONFERRÁN, M. V. & FERNANDES, M. N. 2018. Interrogating pollution sources in a mangrove food web using multiple stable isotopes, Science of The Total Environment, 640-641, 501-511, DOI: https://doi.org/10.1016/j.scitotenv.2018.05.302

» https://doi.org/10.1016/j.scitotenv.2018.05.302

WASSERMAN, J. C., BOTELHO, A. L. M., CRAPEZ, M. A. C., BISPO, M. G. S., SILVA, F. S. & FILGUEIRAS, C. M. 2006. Hydrocarbons and bacterial activity in mangrove sediments from Guanabara Bay, Brazil. Geochimica Brasiliensis, 20(1), 30-41.

WOOLLER, M., SMALLWOOD, B., JACOBSON, M. & FOGEL, M. 2004. Carbon and nitrogen stable isotopic variation in Laguncularia racemosa (L.) (white mangrove) from Florida and Belize: implications for trophic level studies. Hydrobiologia, 499(1), 13-23.

Downloads

Published

2022-06-29

How to Cite

Trophic analysis of female mangrove crabs at two sites from Southeastern Brazil (Rio de Janeiro). (2022). Ocean and Coastal Research, 70. https://doi.org/10.1590/2675-2824070.21032evda