The January 15th, 2022 Hunga Tonga-Hunga Ha’apai eruption recorded in Brazil

Authors

  • Francisco Dourado
  • Alessandro Filippo
  • Rogério Candella
  • Lúcio Silva de Souza
  • Domingos Urbano
  • Heitor Evangelista
  • Pedro Costa

DOI:

https://doi.org/10.1590/

Keywords:

Tsunami, Shock wave, TTT, Tide gauge, Barometer

Abstract

Extreme events affect societies all around the world. A recent example is the submarine volcano Hunga Tonga-Hunga Ha'apai in the South Pacific Ocean, which erupted on January 15, 2022 at approximately 0415 UTC, expelling ash up to 39 kilometers high. Instruments around the world recorded both the initial atmospheric shock wave and the subsequent tsunami signal. The aim of this work is to report the record from tide gauges and barometers of this event along the Brazilian coast. For this, the tsunami travel time to Brazil was calculated, and spikes in atmospheric pressure data and noise in the tide gauge records were identified. The arrival of the tsunami waves was clearly observed in tidal records from three stations located in Imbituba, Arraial do Cabo, and Salvador. In addition, in Belém and Santana, the signal-to-noise ratio was too low or there was no signal at all. Surprisingly, the atmospheric signal was less observable. The shock wave signature was evident in the Fortaleza atmospheric pressure data, while at the Imbituba and Belém stations the signal only appeared after filtering the data by calculating the highest and lowest pressure difference within the hour. The weaker, or absence of, barometric signal is likely associated with the supposed attenuation, or blocking, of the signal by the Andes Mountains.

References

AMORES, A., MONSERRAT, S., MARCOS, M., ARGÜESO, D., VILLALONGA, J., JORDÀ, G. & GOMIS, D. 2022. Numerical simulation of atmospheric lamb waves generated by the 2022 hunga-tonga volcanic eruption. Geophysical Research Letters, 49(6), e2022GL098240, DOI: https://doi.org/10.1029/2022GL098240

» https://doi.org/10.1029/2022GL098240

AN, C. & LIU, P. L. F. 2016. Analytical solutions for estimating tsunami propagation speeds. Coastal Engineering, 117, 44-56, DOI: https://doi.org/10.1016/j.coastaleng.2016.07.006

» https://doi.org/10.1016/j.coastaleng.2016.07.006

BASTOS, T. X., PACHECO, N. A., NECHET, D. & SÁ, T. D. A. 2002. Aspectos climáticos de Belém nos últimos cem anos Belém, PA: Embrapa Amazônia Oriental.

BRYAN, W. B., STICE, G. D. & EWART, A. 1972. Geology, petrography, and geochemistry of the volcanic islands of Tonga. Journal of Geophysical Research, 77(8), 1566-1585, DOI: https://doi.org/10.1029/JB077i008p01566

» https://doi.org/10.1029/JB077i008p01566

CANDELLA, R. N. N. 2014. Statistical and spectral characteristics of the 2011 East Japan tsunami signal in Arraial do Cabo, RJ, Brazil. Revista Brasileira de Geofísica, 32(2), 235, DOI: https://doi.org/10.22564/rbgf.v32i2.480

» https://doi.org/10.22564/rbgf.v32i2.480

Candella, R. N., RABINOVICH, A. B. & THOMSON, R. E. 2008. The 2004 Sumatra tsunami as recorded on the Atlantic coast of South America. Advances in Geosciences, 14, 117-128, DOI: https://doi.org/10.5194/adgeo-14-117-2008

» https://doi.org/10.5194/adgeo-14-117-2008

FRANÇA, C. A. S. & MESQUITA, A. R. 2007. The December 26th 2004 tsunami recorded along the Southeastern Coast of Brazil. Natural Hazards, 40(1), 209-222, DOI: https://doi.org/10.1007/s11069-006-0010-1

» https://doi.org/10.1007/s11069-006-0010-1

GERMANO, M. F., VITORINO, M. I., COHEN, J. C. P., COSTA, G. B., SOUTO, J. I. O., REBELO, M. T. C. & SOUSA, A. M. L. 2017. Analysis of the breeze circulations in Eastern Amazon: an observational study. Atmospheric Science Letters, 18(2), 67-75, DOI: https://doi.org/10.1002/asl.726

» https://doi.org/10.1002/asl.726

GROSSMANN, A. & MORLET, J. 1984. Decomposition of hardy functions into square integrable wavelets of constant shape. SIAM Journal on Mathematical Analysis, 15(4), 723-736, DOI: https://doi.org/10.1137/0515056

» https://doi.org/10.1137/0515056

ITIC (INTERNATIONAL TSUNAMI INFORMATION CENTER). 2022. 15 January 2022, Hunga-Tonga-Hunga-Ha’apai Volcanic Eruption [online]. Honolulu: ITIC. Available at: http://itic.ioc-unesco.org/index.php?option=com_content&view=article&id=2186&Itemid=3265 Accessed: 2020 May 01.

» http://itic.ioc-unesco.org/index.php?option=com_content&view=article&id=2186&Itemid=3265

LIMA, E. F., SOMMER, C. A., SILVA, I. M. C., NETTO, A. P., LINDENBERG, M. & ALVES, R. C. M. 2012. Morfologia e química de cinzas do vulcão Puyehue depositadas na região metropolitana de Porto Alegre em junho de 2011. Revista Brasileira de Geociências, 42(2), 265-280, DOI: https://doi.org/10.5327/Z0375-75362012000200004

» https://doi.org/10.5327/Z0375-75362012000200004

LOPES, F., SILVA, J., MARRERO, J., TAHA, G. & LANDULFO, E. 2019. Synergetic aerosol layer observation after the 2015 calbuco volcanic eruption event. Remote Sensing, 11(2), 195, DOI: https://doi.org/10.3390/rs11020195

» https://doi.org/10.3390/rs11020195

LUIS, J. F. 2007. Mirone: a multi-purpose tool for exploring grid data. Computers & Geosciences, 33(1), 31-41, DOI: https://doi.org/10.1016/j.cageo.2006.05.005

» https://doi.org/10.1016/j.cageo.2006.05.005

RABINOVICH, A. B., WOODWORTH, P. L. & TITOV, V. V. 2011. Deep-sea observations and modeling of the 2004 Sumatra tsunami in Drake Passage. Geophysical Research Letters, 38(16), DOI: https://doi.org/10.1029/2011GL048305

» https://doi.org/10.1029/2011GL048305

SANTOS, C., FREIRE, P. & TORRENCE, C. 2013. A transformada wavelet e sua aplicação na análise de séries hidrológicas. RBRH, 18(3), 271-280, DOI: https://doi.org/10.21168/rbrh.v18n3.p271-280

» https://doi.org/10.21168/rbrh.v18n3.p271-280

SMITH, I. E. M. & PRICE, R. C. 2006. The Tonga-Kermadec arc and Havre-Lau back-arc system: Their role in the development of tectonic and magmatic models for the western Pacific. Journal of Volcanology and Geothermal Research, 156(3-4), 315-331, DOI: https://doi.org/10.1016/j.jvolgeores.2006.03.006

» https://doi.org/10.1016/j.jvolgeores.2006.03.006

SOUZA, D. C. & OYAMA, M. D. 2017. Breeze potential along the brazilian northern and northeastern coast. Journal of Aerospace Technology and Management, 9(3), 368-378, DOI: https://doi.org/10.5028/jatm.v9i3.787

» https://doi.org/10.5028/jatm.v9i3.787

TRUCCOLO, E. C., SCHETTINI, C. A. F. & ALMEIDA, D. 2012. The 2004 Sumatra tsunami effect on the Itajaí-Açu estuary water level, Santa Catarina, Brazil. Brazilian Journal of Oceanography, 60(3), 461-466, DOI: https://doi.org/10.1590/S1679-87592012000300017

» https://doi.org/10.1590/S1679-87592012000300017

WATADA, S., KUSUMOTO, S. & SATAKE, K. 2014. Traveltime delay and initial phase reversal of distant tsunamis coupled with the self-gravitating elastic Earth. Journal of Geophysical Research: Solid Earth, 119(5), 4287-4310, DOI: https://doi.org/10.1002/2013JB010841

» https://doi.org/10.1002/2013JB010841

WITZE, A. 2022. Why the Tongan eruption will go down in the history of volcanology. Nature, 602(7897), 376-378, DOI: https://doi.org/10.1038/d41586-022-00394-y

» https://doi.org/10.1038/d41586-022-00394-y

Downloads

Published

2022-11-22

How to Cite

The January 15th, 2022 Hunga Tonga-Hunga Ha’apai eruption recorded in Brazil. (2022). Ocean and Coastal Research, 70. https://doi.org/10.1590/