Phosphorus spatial distribution and mass balance in the Itaipu lagoon (Rio de Janeiro, Brazil)

Authors

  • Marcelo Lobo
  • Daniel Loureiro
  • Aguinaldo Nepomuceno
  • Leandro Alves
  • Fernando Lamego

DOI:

https://doi.org/10.1590/

Keywords:

Phosphorus loads, Domestic sewage, Eutrophication, Sedimentation, Coastal lagoon

Abstract

The degradation of tropical coastal lagoon systems in urban areas of the least developed countries has been associated with an increase in impermeable areas and poor domestic sewage treatment, increasing land-based runoff of nutrients and suspended solids from catchments. This study aimed to assess the biogeochemical changes caused by human interventions through the analysis of the spatial distribution of sedimentary phosphorus (P) and its mass balance in the Itaipu lagoon, located on the east coast of the state of Rio de Janeiro. Human intervention in the Itaipu lagoon system has caused severe imbalances in biogeochemical cycles over the past decades. Watercourses have been channeled to normalize the hydrological regime and increase hydraulic energy, improving sediment transport capacity. In this context, the increase in runoff from the coastal urban basin into the Itaipu lagoon has buried an increasing amount of phosphorus in the sediment. Recently, a regional increase in storm events caused a series of landslides and floods, which have been reported as possible consequences of global climate change. In recent decades, the synergy between landslides and river channeling has increased TP loads, accelerating phosphorus settling and changing P spatial distribution in surface sediments. This has accelerated siltation of the lagoon with an accumulation of nutrients and organic matter, leading in some cases to sediment anoxia. The lagoon has undergone strong eutrophication, changing its trophic state from meso- to hypertrophic in less than 30 years, even though P loads are not as high as in other coastal lagoons. Our findings confirm that human intervention impacts nutrient loads, which in turn disrupt the balance of biogeochemical cycles, compromising coastal water resources. This leads to the collapse of ecosystem services, another step towards degrading planetary boundaries.

References

ABBOT, M. B. & BASCO, D. R. 1989. Computational fluid dynamics, an introduction for engineers London: Longman Scientific & Technical.

ALVES, L. S., RAMOS V. V. A., LOBO, M. A. S., LAMEGO, F. & NAPOMUCENO, A. 2021. Reconstrução da história do processo da ocupação urbana e da eutrofização em lagoas do leste fluminense por registros sedimentaresitle [online]. In: COSTA, M. R., MONTEIRO-NETO, C., TUBINO, R. A. & ANGELINI, R. (eds.). Pesca e sustentabilidade passado, presente e futuro Rio de Janeiro: AH Edições, pp. 27-40. Available at: https://gbm.uff.br/wp-content/uploads/sites/406/2022/03/Livro_SLLF_Pesca_Sustentabilidade.pdf. [Accessed: 2022 Jun 01].

» https://gbm.uff.br/wp-content/uploads/sites/406/2022/03/Livro_SLLF_Pesca_Sustentabilidade.pdf.

ANDRIEUX-LOYER, F. & AMINOT, A. 2001. Phosphorus forms related to sediment grain size and geochemical characteristics in french coastal areas. Estuarine, Coastal and Shelf Science, 52(5), 617-629, DOI: https://doi.org/10.1006/ecss.2001.0766

» https://doi.org/10.1006/ecss.2001.0766

ANDRIEUX-LOYER, F., PHILIPPON, X., BALLY, G., KÉROUEL, R., YOUENOU, A. & LE GRAND, J. 2008. Phosphorus dynamics and bioavailability in sediments of the Penzé Estuary (NW France): In relation to annual P-fluxes and occurrences of Alexandrium minutum. Biogeochemistry, 88(3), 213-231, DOI: https://doi.org/10.1007/s10533-008-9199-2

» https://doi.org/10.1007/s10533-008-9199-2

ANGELINI, R., NEPOMUCENO, A., COSTA, M. R., MONTEIRO-NETO, C., MORETTI, T., MONTEIRO, L. F. A., BE-LLO, M., SILVA, P. H. A., LEMA, M. C., ERBAS, T., ALVES, L., LAMEGO, F., ABRIL, G. & TUBINO, R. A. 2021. Integrando informações e dados em modelos ecológicos: buscando a padronização e o entendimento sistêmico [online]. In: COSTA, M. R., MONTEIRO-NETO, C., TUBINO, R. A. & ANGELINI, R. (eds.). Pesca e sustentabilidade passado, presente e futuro Rio de Janeiro: AH Edições, pp. 131-146. Available at: https://gbm.uff.br/wp-content/uploads/sites/406/2022/03/Livro_SLLF_Pesca_Sustentabilidade.pdf. [Accessed: 2022 Jul 08].

» https://gbm.uff.br/wp-content/uploads/sites/406/2022/03/Livro_SLLF_Pesca_Sustentabilidade.pdf.

ASPILA, K. I., AGEMIAN, H. & CHAU, A. S. Y. 1976. A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst, 101(1200), 187-197.

AZEVEDO, M. N. S. 1987. L’impact des politiques urbaines sur le développement de Niterói: 1960-1980 MSc. Val de Marneu: Université Paris.

BARBIÉRE, E. B. 1981. O factor climatico nos sistemas territoriais de recreaçao.(Le facteur climatique et les bases régionales du tourisme). Revista Brasileira de Geografia Rio de Janeiro, 43(2), 145-265.

BORGES, A. V. 2005. Do we have enough pieces of the jigsaw to integrate CO2 fluxes in the coastal ocean ? Estuaries, 28(1), 3-27.

BORGES, A. V. & ABRIL, G. 2012. Carbon dioxide and methane dynamics in estuaries. Treatise on Estuarine and Coastal Science, 5, 119-161, DOI: https://doi.org/10.1016/B978-0-12-374711-2.00504-0

» https://doi.org/10.1016/B978-0-12-374711-2.00504-0

BRAGA, F. F. 2003. Diagnóstico das alterações na bacia do Rio João Mendes, Niterói, RJ: gerados pelo crescimento urbano desordenado [online]. In: X Simpósio Brasileiro de Geografia Física Aplicada São Gonçalo: UERJ-FFP. Available at: http://www.cibergeo.org/XSBGFA/eixo3/3.3/156/156.htm. [Accessed: YEAR Mo Day].

» http://www.cibergeo.org/XSBGFA/eixo3/3.3/156/156.htm.

CASTELAO, R. M., CAMPOS, E. J. D. & MILLER, J. L. 2004. A modelling study of coastal upwelling driven by wind and meanders of the Brazil Current. Journal of Coastal Research, 20(3), 662-671, DOI: https://doi.org/10.2112/1551-5036(2004)20[662:amsocu]2.0.co;2

» https://doi.org/10.2112/1551-5036(2004)20[662:amsocu]2.0.co;2

CERDA, M., NUNES-BARBOZA, C. D., SCALI-CARVALHO, C. N., ANDRADE-JANDRE, K. & MARQUES, A. N. 2013. Balance de nutrientes del sistema lagunar piratininga-itaipu (sudeste de Brasil): efectos del manejo del sistema através del intercambio con el agua de mar. Latin American Journal of Aquatic Research, 41(2), 226-238, DOI: https://doi.org/10.3856/vol41-issue2-fulltext-3

» https://doi.org/10.3856/vol41-issue2-fulltext-3

CERDA, M., SCALI, C., VALDÉS, J., MACARIO, K. D., ANJOS, R. M., VOGEL, V., LAMEGO, F. & NEPOMUCENO, A. 2016. Coupling fallout 210Pb and stables isotopes (δ13C, δ15N) for catchment urbanization reconstruction in southeastern coastal zone of Brazil. Journal of Radioanalytical and Nuclear Chemistry, 310(3), 1021-1032, DOI: https://doi.org/10.1007/s10967-016-4876-4

» https://doi.org/10.1007/s10967-016-4876-4

CHAPRA, S. C. & DOLAN, D. M. 2012. Great Lakes total phosphorus revisited: 2. Mass balance modeling. Journal of Great Lakes Research, 38(4), 741-754, DOI: https://doi.org/10.1016/j.jglr.2012.10.002

» https://doi.org/10.1016/j.jglr.2012.10.002

CONLEY, D. J., PAERL, H. W., HOWARTH, R. W., BOESCH, D. F., SEITZINGER, S. P. , HAVENS, K. E., LANCELOT, C. & LIKENS, G. E. 2009. Controlling eutrophication: phosphorus and nitrogen. Science, 323, 1014-1015.

COTOVICZ JUNIOR, L. C., BRANDINI, N., KNOPPERS, B. A., MIZERKOWSKI, B. D., STERZA, J. M., OVALLE, A. R. C. & MEDEIROS, P. R. P. 2013. Assessment of the trophic status of four coastal lagoons and one estuarine delta, eastern Brazil. Environmental Monitoring and Assessment, 185(4), 3297-3311, DOI: https://doi.org/10.1007/s10661-012-2791-x

» https://doi.org/10.1007/s10661-012-2791-x

COTOVICZ JUNIOR, L. C., MACHADO, E. D. C., BRANDINI, N., ZEM, R. C. & KNOPPERS, B. A. 2014. Distributions of total, inorganic and organic phosphorus in surface and recent sediments of the sub-tropical and semi-pristine Guaratuba Bay estuary, SE Brazil. Environmental Earth Sciences, 72(2), 373-386, DOI: https://doi.org/10.1007/s12665-013-2958-y

» https://doi.org/10.1007/s12665-013-2958-y

COTOVICZ, L. C., KNOPPERS, B. A., BRANDINI, N., SANTOS, S. J. C. & ABRIL, G. 2015. A strong CO2 sink enhanced by eutrophication in a tropical coastal embayment (Guanabara Bay, Rio de Janeiro, Brazil). Biogeosciences, 12(20), 6125-6146, DOI: https://doi.org/10.5194/bg-12-6125-2015

» https://doi.org/10.5194/bg-12-6125-2015

COTOVICZ, L. C., VIDAL, L. O., REZENDE, C. E., BERNARDES, M. C., KNOPPERS, B. A., SOBRINHO, R. L., CARDOSO, R. P., MUNIZ, M., ANJOS, R. M., BIEHLER, A. & ABRIL, G. 2020. Carbon dioxide sources and sinks in the delta of the Paraíba do Sul River (Southeastern Brazil) modulated by carbonate thermodynamics, gas exchange and ecosystem metabolism during estuarine mixin. Marine Chemistry, 226, 103869, DOI: https://doi.org/10.1016/j.marchem.2020.103869

» https://doi.org/10.1016/j.marchem.2020.103869

DHN (Departamento de Hidrografia e Navegação). 1987. Cartas FB-1511-002/87 e FB-1511-003/87, Escala 1:10.000 Rio de Janeiro: DHN.

DIAS, P. P. B. B., MARTINS, M. V. A., CLEMENTE, I. M. M. M., CARELLI, T. G., SILVA, F. S., FONTANA, L. F., LORIN, M. L., PANIGAI, G., PINHEIRO, R. H., MENDONÇA-FILHO, J. G. & LAUT, L. L. M. 2017. Assessment of the Trophic State of Saquarema Lagoonal System, Rio De Janeiro (Brazil). Journal of Sedimentary Environments, 2(1), 49-64, DOI: https://doi.org/10.12957/jse.2017.28194

» https://doi.org/10.12957/jse.2017.28194

DIAZ, R. J. & ROSENBERG, R. 2008. Spreading dead zones and consequences for marine ecosystems. Science, 321(5891), 926-929, DOI: https://doi.org/10.1126/science.1156401

» https://doi.org/10.1126/science.1156401

DUPRA, V., SMITH, S. V., CROSSLAND, J. I. M. & CROSSLAND, J. C. 2000. Land-ocean interactions in the coastal zone (LOICZ). Loicz Reports & Stuidies, 15, 93, DOI: https://doi.org/10.13140/RG.2.1.2349.2322

» https://doi.org/10.13140/RG.2.1.2349.2322

ERBAS, T., MARQUES, A. & ABRIL, G. 2021. A CO2 sink in a tropical coastal lagoon impacted by cultural eutrophication and upwelling. Estuarine, Coastal and Shelf Science, 263, 107633, DOI: https://doi.org/10.1016/j.ecss.2021.107633

» https://doi.org/10.1016/j.ecss.2021.107633

FRANKIGNOULLE, M., ABRIL, G., BORGES, A., BOURGE, I., CANON, C., DELILLE, B., LIBERT, E. & THÉATE, J. M. 1998. Carbon dioxide emission from European estuaries. Science, 282(5388), 434-436, DOI: https://doi.org/10.1126/science.282.5388.434

» https://doi.org/10.1126/science.282.5388.434

GALLISSAIRES, J. M., ABUSSAMRA, E., TINOCO, T. & COE, R. 1990. Variações sazonais de perfis de Praia - Praias de Piratininga e Camboinhas (Niterói-RJ). In: Anais do II Simpósio de Ecossistemas Da Costa Sul e Sudeste Brasileira: Estrutura, Função e Manejo, Águas de Lindóia, São Paulo, 6-11 Apr 1990. Águas de Lindóia: ACIESP, pp. 352-356.

GALVÃO, R. S. 2008. Drenagem urbana e planejamento ambiental: vale do rio João Mendes (Niterói/RJ) [online]. MSc. Niterói: UFF-PPG (Universidade Federal Fluminense). Available at: https://app.uff.br/riuff/bitstream/handle/1/17277/Renata%20dos%20Santos-Dissert.pdf?sequence=1&isAllowed=y. [Accessed: 2022 Mar 27].

» https://app.uff.br/riuff/bitstream/handle/1/17277/Renata%20dos%20Santos-Dissert.pdf?sequence=1&isAllowed=y.

GAO, Y., CORNWELL, J. C., STOECKER, D. K. & OWENS, M. S. 2012. Effects of cyanobacterial-driven pH increases on sediment nutrient fluxes and coupled nitri-fication-denitrification in a shallow fresh water estuary. Biogeosciences, 9(7), 2697-2710, DOI: https://doi.org/10.5194/bg-9-2697-2012

» https://doi.org/10.5194/bg-9-2697-2012

HARRIS, G. P. 2001. Biogeochemistry of nitrogen and phosphorus in Australian catchments, rivers and estuaries. Marine and Freshwater Research, 52(1), 139-149.

HEINRICH, L., ROTHE, M., BRAUN, B. & HUPFER, M. 2021. Transformation of redox-sensitive to redox-stable iron-bound phosphorus in anoxic lake sediments under laboratory conditions. Water Research, 189, 116609, DOI: https://doi.org/10.1016/j.watres.2020.116609

» https://doi.org/10.1016/j.watres.2020.116609

JIAN, L., JUNYI, Y., JINGCHUN, L., CHONGLING, Y., HAOLIANG, L. & SPENCER, K. L. 2017. The effects of sulfur amendments on the geochemistry of sulfur, phosphorus and iron in the mangrove plant (Kandelia obovata (S. L.)) rhizosphere. Marine Pollution Bulletin, 114(2), 733-741, DOI: https://doi.org/10.1016/j.marpolbul.2016.10.070

» https://doi.org/10.1016/j.marpolbul.2016.10.070

KENNEY, W. F., WHITMORE, T. J., BUCK, D. G., BRENNER, M., CURTIS, J. H., DI, J. J., KENNEY, P. L. & SCHELSKE, C. L. 2014. Whole-basin, mass-balance approach for identifying critical phosphorus-loading thresholds in shallow lakes. Journal of Paleolimnology, 51(4), 515-528, DOI: https://doi.org/10.1007/s10933-014-9771-9

» https://doi.org/10.1007/s10933-014-9771-9

KIM, D. K., ZHANG, W., RAO, Y. R., WATSON, S., MUGALINGAM, S., LABENCKI, T., DITTRICH, M., MORLEY, A. & ARHONDITSIS, G. B. 2013. Improving the representation of internal nutrient recycling with phosphorus mass balance models: a case study in the Bay of Quinte, Ontario, Canada. Ecological Modelling, 256, 53-68, DOI: https://doi.org/10.1016/j.ecolmodel.2013.02.017

» https://doi.org/10.1016/j.ecolmodel.2013.02.017

KJERFVE, B. & CESAR, A. R. 1997. Introduction. Continetal Shelf Research, 17(13), 1609-1643.

KNOPPERS, B., KJERFVE, B. & CARMOUZE, J. P. 1991. Trophic state and water turn-over time in six choked coastal lagoons in Brazil. Biogeochemistry, 14(2), 149-166, DOI: https://doi.org/10.1007/BF00002903

» https://doi.org/10.1007/BF00002903

KROON, F. J., KUHNERT, P. M., HENDERSON, B. L., WILKINSON, S. N., KINSEY-HENDERSON, A., ABBOTT, B., BRODIE, J. E. & TURNER, R. D. R. 2012. River loads of suspended solids, nitrogen, phosphorus and herbicides delivered to the Great Barrier Reef lagoon. Marine Pollution Bulletin, 65(4-9), 167-181, DOI: https://doi.org/10.1016/j.marpolbul.2011.10.018

» https://doi.org/10.1016/j.marpolbul.2011.10.018

KUCHLER, P., FERREIRA, A. P. S., SILVA, J. A. & SILVA, A. T. 2005. A análise da diminuição do espelho d’água das Lagoas de Itaipu e Piratininga com o subsídio do Sensoriamento Remoto. In: Anais do 12th Simpósio Brasileiro de Sensoriamento Remoto (SBSR). Goiânia, Goiás, 16-21 Apr 2005. Goiás: INPE/UERJ-FFP, pp. 3651-3653.

MARKOVIC, S., LIANG, A., WATSON, S. B., GUO, J., MUGALINGAM, S., ARHONDITSIS, G., MORLEY, A. & DITTRICH, M. 2019. Biogeochemical mechanisms controlling phosphorus diagenesis and internal loading in a remediated hard water eutrophic embay-ment. Chemical Geology, 514, 122-137, DOI: https://doi.org/10.1016/j.chemgeo.2019.03.031

» https://doi.org/10.1016/j.chemgeo.2019.03.031

MARQUES JUNIOR, A., CRAPEZ, M. A. C., NUNES, C. D. & BARBOZA, A. 2006. Impact of the Icaraí Sewage Outfall in Guanabara Bay, Brazil. Brazilian Archives of Biology and Technology, 49(4), 643-650.

MEALS, D. W., CASSELL, E. A., HUGHELL, D., WOOD, L., JOKELA, W. E. & PARSONS, R. 2008. Dynamic spatially explicit mass-balance modeling for targeted watershed phosphorus management. II. Model application. Agriculture, Ecosystems and Environment, 127(3-4), 223-233, DOI: https://doi.org/10.1016/j.agee.2008.04.005

» https://doi.org/10.1016/j.agee.2008.04.005

NITERÓI. 2019. Relatórios de hidrologia: caracterização das vazões e dos aportes de cargas contribuintes ao sistema perilagunar piratininga-Itaipú/Niterói (Vols. 1–4) [online]. Porto Alegre: Prefeitura de Niterói/HydroScience. Available at: http://www.prosustentavel.niteroi.rj.gov.br/pdf/RE_P2_HIDROLOGIA_1oSEM_V02.pdf. [Accessed: 2022 Feb 14].

» http://www.prosustentavel.niteroi.rj.gov.br/pdf/RE_P2_HIDROLOGIA_1oSEM_V02.pdf.

NITERÓI. 2002. Plano urbanístico da região oceânica [online]. Rio de Janeiro: Prefeitura de Niterói. Available at: http://pgm.niteroi.rj.gov.br/legislacao_pmn/2002/LEIS/1968_Pur_da_Regiao_Oceanica.pdf. [Accessed: 2022 Mar 27].

» http://pgm.niteroi.rj.gov.br/legislacao_pmn/2002/LEIS/1968_Pur_da_Regiao_Oceanica.pdf.

NIXON, S. W. 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41(1), 199-219, DOI: https://doi.org/10.1080/00785236.1995.10422044

» https://doi.org/10.1080/00785236.1995.10422044

OXMANN, J. F. & SCHWENDENMANN, L. 2015. Authigenic apatite and octacalcium phosphate formation due to adsorption-precipitation switching across estuarine salinity gradients. Biogeosciences, 12(3), 723-738, DOI: https://doi.org/10.5194/bg-12-723-2015

» https://doi.org/10.5194/bg-12-723-2015

PAERL, H. W., HALL, N. S., PEIERLS, B. L. & ROSSIGNOL, K. L. 2014. Evolving paradigms and challenges in estuarine and coastal eutrophication dynamics in a culturally and climatically stressed world. Estuaries and Coasts, 37(2), 243-258, DOI: https://doi.org/10.1007/s12237-014-9773-x

» https://doi.org/10.1007/s12237-014-9773-x

PÁEZ-OSUNA, F., PIÑÓN-GIMATE, A., OCHOA-IZAGUIRRE, M. J., RUIZ-FERNÁNDEZ, A. C., RAMÍREZ-RESÉNDIZ, G. & ALONSO-RODRÍGUEZ, R. 2013. Dominance patterns in macroalgal and phytoplankton biomass under different nutrient loads in subtropical coastal lagoons of the SE Gulf of California. Marine Pollution Bulletin, 77(1-2), 274-281, DOI: https://doi.org/10.1016/j.marpolbul.2013.09.048

» https://doi.org/10.1016/j.marpolbul.2013.09.048

PAGLIOSA, P., FONSECA, A., BARBOSA, F. & BRAGA, E. 2006. Urbanization impact on subtropical estuaries: a comparative study of water properties in urban areas and in protected areas. Journal of Coastal Research, 2004(39), 731-735.

PANOSSO, R. 2001. The role of extracellular phosphatases in aquatic environments. Oecologia Australis, 9(1), 33-56.

PERES-NETO, P. R., JACKSON, D. A. & SOMERS, K. M. 2003. Giving meaningful interpretation to ordination axes: assessing loading significance in principal component analysis. Ecology, 84(9), 2347-2363, DOI: https://doi.org/10.1890/00-0634

» https://doi.org/10.1890/00-0634

PRATT, C., SHILTON, A., PRATT, S., HAVERKAMP, R. G. & ELMETRI, I. 2007. Effects of redox potential and pH changes on phosphorus retention by melter slag filters treating wastewater. Environmental Science and Technology, 41(18), 6585-6590, DOI: https://doi.org/10.1021/es070914m

» https://doi.org/10.1021/es070914m

RODRÍGUEZ-GALLEGO, L., ACHKAR, M., DEFEO, O., VIDAL, L., MEERHOFF, E. & CONDE, D. 2017. Effects of land use changes on eutrophication indicators in five coastal lagoons of the Southwestern Atlantic Ocean. Estuarine, Coastal and Shelf Science, 188, 116-126, DOI: https://doi.org/10.1016/j.ecss.2017.02.010

» https://doi.org/10.1016/j.ecss.2017.02.010

RSTUDIO TEAM. 2020. RStudio: integrated development for R. Boston: RStudio.

RUTTENBERG, K. C. 2003. The global phosphorus cycle. Treatise on Geochemistry, 8, 682.

SALVADOR, M. V. S. & SILVA, M. A. M. 2002. Morphology and sedimentology of the Itaipú embayment - Niterói/RJ. Anais da Academia Brasileira de Ciencias, 74(1), 127-134, DOI: https://doi.org/10.1590/S0001-37652002000100009

» https://doi.org/10.1590/S0001-37652002000100009

SAWYER, C. N., MCCARTY, P. L. & PARKIN, G. F. 2003. Chemistry for environmental engineering and science 5th ed. London: McGraw-Hill Science/Engineering/Mat.

SOETAERT, K., HOFMANN, A. F., MIDDELBURG, J. J., MEYSMAN, F. J. R. & GREENWOOD, J. 2007. Reprint of “The effect of biogeochemical processes on pH”. Marine Chemistry, 106(1-2spe), 380-401, DOI: https://doi.org/10.1016/j.marchem.2007.06.008

» https://doi.org/10.1016/j.marchem.2007.06.008

SOROKIN, Y. I. & SOROKIN, P. Y. 2010. Plankton of the central Great Barrier Reef: abundance, production and trophodynamic roles. Journal of the Marine Biological Association of the United Kingdom, 90(6), 1173-1187, DOI: https://doi.org/10.1017/S0025315410000597

» https://doi.org/10.1017/S0025315410000597

SOUZA, M. F. L., KJERFVE, B., KNOPPERS, B., SOUZA, W. F. L. & DAMASCENO, R. N. 2003. Nutrient budgets and trophic state in a hypersaline coastal lagoon: Lagoa de Araruama, Brazil. Estuarine, Coastal and Shelf Science, 57(5-6), 843-858, DOI: https://doi.org/10.1016/S0272-7714(02)00415-8

» https://doi.org/10.1016/S0272-7714(02)00415-8

STATHAM, P. J. 2012. Nutrients in estuaries - an overview and the potential impacts of climate change. Science of the Total Environment, 434, 213-227, DOI: https://doi.org/10.1016/j.scitotenv.2011.09.088

» https://doi.org/10.1016/j.scitotenv.2011.09.088

TIESSEN, H. 2008. Phosphorus in the global environment. In: WHITE, P. J. & HAMMOND, J. P. (eds.). The eco-physiology of plant-phosphorus interactions New York: Springer, pp. 1-7.

UNEP/EARTH PRINT. 2009. Millennium ecosystem assessment. In: An assessment of assessments: findings of the group of experts pursuant to UNGA Resolution 60/30 (Vol. 1). Nairóbi: UNEP/Earthprint.

YANG, S. & GRUBER, N. 2016. The anthropogenic perturbation of the marine nitrogen cycle by atmospheric deposition: nitrogen cycle feedbacks and the 15N Haber-Bosch effect. Global Biogeochemical Cycles, 30(10), 1418-1440, DOI: https://doi.org/10.1002/2016GB005421

» https://doi.org/10.1002/2016GB005421

ZHANG, W., KIM, D. K., RAO, Y. R., WATSON, S., MUGALINGAM, S., LABENCKI, T., DITTRICH, M., MORLEY, A. & ARHONDITSIS, G. B. 2013. Can simple phosphorus mass balance models guide management decisions? A case study in the Bay of Quinte, Ontario, Canada. Ecological Modelling, 257, 66-79, DOI: https://doi.org/10.1016/j.ecolmodel.2013.02.023

» https://doi.org/10.1016/j.ecolmodel.2013.02.023

Downloads

Published

2023-03-29

How to Cite

Phosphorus spatial distribution and mass balance in the Itaipu lagoon (Rio de Janeiro, Brazil). (2023). Ocean and Coastal Research, 71. https://doi.org/10.1590/