Influence of Tokar Gap wind jet on latent heat flux of Central Red Sea: empirical orthogonal function approach

Authors

  • Jamaan A. Turki
  • Abdullah M. Al-Subh
  • Fawaz Madah

DOI:

https://doi.org/10.1590/

Keywords:

ERA5 validation, EOF principal components, Partial correlation, Correlation coefficient, Determination coefficient

Abstract

The aim of this study was to investigate the main factors that influence the latent heat fluxes (LHF) in the
Tokar Gap in the central part of the Red Sea. From 2000 to 2020, ERA5 reanalysis data on summer months of
the Central Red Sea were used to match the time when the Tokar Wind Jet appeared. The diurnal variability
of the Tokar Gap peaks in the early morning. The time series data of the wind speed showed that the Tokar
Wind Jet appeared from July to August. The empirical orthogonal functions (EOF) analysis method was used
to determine the modes of LHF variabilities. The sum of the first two modes of variability explained ~ 90.8% of
the total variance. The first mode explained 80.8%, whereas the second mode represented approximately 9.9%.
To examine the contribution of sea surface temperature (SST) and wind speed to the first two EOF principal
components, the correlation coefficient and determination coefficient were applied. The results showed that SST
had a CC of 0.90 and a DC of 81.99%, whereas wind speed showed a CC of 0.35 and a DC of 12.80%. These
results may be explained by the strong link between SST and the specific humidity differences of saturation and
actual vapor pressure. Partial correlation results indicate that there is an indirect relation between wind and LHF.
In this study SST was the dominant factor, influencing LHF variability in the study area.

References

Abdulla, C. & Al-Subhi, A. 2020. Sea Level Variability in

the Red Sea: A Persistent East–West Pattern. Remote

Sensing, 12(13), 2090. DOI: https://doi.org/10.3390/

rs12132090

Aboobacker, V. M., Shanas, P. R., Al-Ansari, E. M. A.

S., Kumar, V. S. & Vethamony, P. 2020. The maxima

in northerly wind speeds and wave heights over the

Arabian Sea, the Arabian/Persian Gulf and the Red Sea

derived from 40 years of ERA5 data. Climate Dynamics,

(3–4), 1037–1052. DOI: https://doi.org/10.1007/

s00382-020-05518-6

Acker, J., Leptoukh, G., Shen, S., Zhu, T. & Kempler, S.

Remotely-sensed chlorophyll a observations of

the northern Red Sea indicate seasonal variability and

influence of coastal reefs. Journal of Marine Systems,

(3–4), 191–204. DOI: https://doi.org/10.1016/j.

jmarsys.2005.12.006

Alawad, K. A., Al-Subhi, A. M., Alsaafani, M. A. & Alraddadi,

T. M. 2020. Decadal variability and recent summer

warming amplification of the sea surface temperature

in the Red Sea. PLOS ONE, 15(9), e0237436. DOI:

https://doi.org/10.1371/journal.pone.0237436

Alawad, K. A., Al-Subhi, A. M., Alsaafani, M. A., Alraddadi, T.

M., Ionita, M. & Lohmann, G. 2019. Large-Scale Mode

Impacts on the Sea Level over the Red Sea and Gulf of

Aden. Remote Sensing, 11(19), 2224. DOI: https://doi.org/

3390/rs11192224

Al-Subhi, A. & Al-Aqsum, M. M. 2008. Temporal and

Spatial Variations of Remotely Sensed Sea Surface

Temperature in the Northern Red Sea. Journal of King

Abdulaziz University, Marine Science, 19, 61–74.

Al-Subhi, A. M. & Abdulla, C. P. 2021. Sea-Level Variability

in the Arabian Gulf in Comparison with Global Oceans.

Remote Sensing, 13(22), 4524. DOI: https://doi.org/

3390/rs13224524

Bawadekji, A., Tonbol, K., Ghazouani, N., Becheikh, N. &

Shaltout, M. 2022. Recent atmospheric changes and

future projections along the Saudi Arabian Red Sea

Coast. Scientific Reports, 12(1). DOI: https://doi.org/

1038/s41598-021-04200-z

Berman, T., Paldor, N. & Brenner, S. 2003. Annual SST

cycle in the Eastern Mediterranean, Red Sea and Gulf

of Elat. Geophysical Research Letters, 30(5), n/a-n/a.

DOI: https://doi.org/10.1029/2002gl015860

Björnsson, H., & Venegas, S. A. (1997). A manual for EOF

and SVD analyses of climatic data. CCGCR Report,

(1), 112-134.

Bower, A. S. & Farrar, J. T. 2015. Air–Sea Interaction and

Horizontal Circulation in the Red Sea. In: The Red

Sea (pp. 329–342). Springer Berlin Heidelberg. DOI:

https://doi.org/10.1007/978-3-662-45201-1_19

Davis, S. R., Pratt, L. J. & Jiang, H. 2015. The Tokar Gap Jet:

Regional Circulation, Diurnal Variability, and Moisture

Transport Based on Numerical Simulations. Journal

of Climate, 28(15), 5885–5907. DOI: https://doi.org/

1175/jcli-d-14-00635.1

Eshel, G. & Naik, N. H. 1997. Climatological Coastal Jet Collision,

Intermediate Water Formation, and the General Circulation

of the Red Sea. Journal of Physical Oceanography,

(7), 1233–1257. DOI: https://doi.org/10.1175/1520-

(1997)027<1233:CCJCIW>2.0.CO;2

Eshghi, N., Barzandeh, A., Hosseinibalam, F. & Hassanzadeh,

S. 2020. Investigating dynamic and static aspects of

regional sea level changes in the north-western Indian

Ocean. Bulletin of Geophysics and Oceanography,

(2), 249–270.

Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A.

A. & Edson, J. B. 2003. Bulk Parameterization of

Influence of Tokar jets on LHF

Ocean and Coastal Research 2023, v71:e23029 14

Turki et al.

Air–Sea Fluxes: Updates and Verification for the COARE

Algorithm. Journal of Climate, 16(4), 571–591. DOI:

https://doi.org/10.1175/1520-0442(2003)016<0571:BP

OASF>2.0.CO;2

Feng, X., Sun, J., Yang, D., Yin, B., Gao, G. & Wan, W. 2021.

Effect of Drag Coefficient Parameterizations on Air–Sea

Coupled Simulations: A Case Study for Typhoons Haima

and Nida in 2016. Journal of Atmospheric and Oceanic

Technology, 38(5), 977–993. DOI: https://doi.org/

1175/jtech-d-20-0133.1

Gochis, D. J., Brito-Castillo, L. & Shuttleworth, W. J. 2006.

Hydroclimatology of the North American Monsoon region

in northwest Mexico. Journal of Hydrology, 316(1–4),

–70. DOI: https://doi.org/10.1016/j.jhydrol.2005.04.021

Hartmann, D. L. 2016. The Energy Balance of the Surface. In:

Global Physical Climatology (pp. 95–130). Elsevier. DOI:

https://doi.org/10.1016/b978-0-12-328531-7.00004-9

Hersbach, H. 2016. The ERA5 Atmospheric Reanalysis

(pp. NG33D-01). Presented at the AGU fall meeting,

New Orleans: AGU.

Hickey, B. & Goudie, A. S. 2007. The use of TOMS and

MODIS to identify dust storm sourceareas : the Tokar

Delta (Sudan) and the Seistan Basin (south west Asia).

Geomorphological Variations, 37–57.

Jiang, H., Farrar, J. T., Beardsley, R. C., Chen, R. &

Chen, C. 2009. Zonal surface wind jets across the Red

Sea due to mountain gap forcing along both sides of the

Red Sea. Geophysical Research Letters, 36(19). DOI:

https://doi.org/10.1029/2009gl040008

Jin, X. & Weller, R. A. 2008. Multidecade global flux

datasets from the objectively analyzed air-sea

fluxes(oaflux) project: Latent and sensible heat fluxes,

ocean evaporation, and related surfacemeteorological

variables lisan yu. OAFlux. Barnstable Town: Woods

Hole Oceanographic Institution.

Kim, G. & Barros, A. P. 2002. Space–time characterization

of soil moisture from passive microwave remotely

sensed imagery and ancillary data. Remote Sensing

of Environment, 81(2–3), 393–403. DOI: https://doi.org/

1016/s0034-4257(02)00014-7

Kumar, B. P., Cronin, M. F., Joseph, S., Ravichandran, M. &

Sureshkumar, N. 2017. Latent Heat Flux Sensitivity

to Sea Surface Temperature: Regional Perspectives.

Journal of Climate, 30(1), 129–143. DOI: https://doi.org/

1175/jcli-d-16-0285.1

Langodan, S., Cavaleri, L., Vishwanadhapalli, Y., Pomaro, A.,

Bertotti, L. & Hoteit, I. 2017. The climatology of the Red

Sea - part 1: the wind. International Journal of Climatology,

(13), 4509–4517. DOI: https://doi.org/10.1002/joc.5103

Langodan, S., Cavaleri, L., Viswanadhapalli, Y. & Hoteit, I.

The Red Sea: A Natural Laboratory for Wind and

Wave Modeling. Journal of Physical Oceanography, 44(12),

–3159. DOI: https://doi.org/10.1175/jpo-d-13-0242.1

Li, G., Ren, B., Yang, C. & Zheng, J. 2011. Revisiting

the trend of the tropical and subtropical Pacific

surface latent heat flux during 1977–2006. Journal of

Geophysical Research, 116(D10). DOI: https://doi.

org/10.1029/2010jd015444

Lorenz, E. N. 1956. Empirical orthogonal functions and

statistical weather prediction (Vol. 1). Cambridge:

Massachusetts Institute of Technology.

Menezes, V. V., Farrar, J. T. & Bower, A. S. 2018. Westward

mountain-gap wind jets of the northern Red Sea as seen

by QuikSCAT. Remote Sensing of Environment, 209,

–699. DOI: https://doi.org/10.1016/j.rse.2018.02.075

Mohamed, B., Nagy, H. & Ibrahim, O. 2021a. Spatiotemporal

Variability and Trends of Marine Heat Waves in the Red

Sea over 38 Years. Journal of Marine Science and

Engineering, 9(8), 842. DOI: https://doi.org/10.3390/

jmse9080842

Morcos, S. A. 1970. Physical and chemical oceanography

of the Red Sea. In: Oceanography and Marine Biology,

Annual Review (Vol. 8, pp. 73–202).

Nagy, H., Mohamed, B., & Ibrahim, O. 2021. Variability of

Heat and Water Fluxes in the Red Sea Using ERA5 Data

(1981–2020). Journal of Marine Science and Engineering,

(11), 1276. DOI: https://doi.org/10.3390/jmse9111276.

Nicholls, J. F., Toumi, R. & Stenchikov, G. 2015. Effects

of unsteady mountain-gap winds on eddies in the Red

Sea. Atmospheric Science Letters, 16(3), 279–284 DOI:

https://doi.org/10.1002/asl2.554

Papadopoulos, V. P., Abualnaja, Y., Josey, S. A., Bower,

A., Raitsos, D. E., Kontoyiannis, H. & Hoteit, I. 2013.

Atmospheric Forcing of the Winter Air–Sea Heat Fluxes

over the Northern Red Sea. Journal of Climate, 26(5),

–1701. DOI: https://doi.org/10.1175/jcli-d-12-00267.1

Patzert, W. C. 1974. Wind-induced reversal in Red Sea

circulation. Deep Sea Research and Oceanographic

Abstracts, 21(2), 109–121. DOI: https://doi.org/10.1016/

-7471(74)90068-0

Pratt, L. J., Albright, E. J., Rypina, I. & Jiang, H. 2020. Eulerian

and Lagrangian Comparison of Wind Jets in the Tokar Gap

Region. Fluids, 5(4), 193. DOI: https://doi.org/10.3390/

fluids5040193

Ralston, D. K., Jiang, H. & Farrar, J. T. 2013. Waves in the

Red Sea: Response to monsoonal and mountain gap

winds. Continental Shelf Research, 65, 1–13. DOI:

https://doi.org/10.1016/j.csr.2013.05.017

Reed, T. R. 1931. Gap winds of the strait of Juan de Fuca.

Monthly Weather Review, 59(10), 373–376.

Rypina, I. I., Pratt, L. J., Pullen, J., Levin, J. & Gordon, A. L.

Chaotic Advection in an Archipelagoast. Journal

of Physical Oceanography, 40(9), 1988–2006. DOI:

https://doi.org/10.1175/2010jpo4336.1

Senafi, F. A., Anis, A. & Menezes, V. 2019. Surface Heat

Fluxes over the Northern Arabian Gulf and the Northern

Red Sea: Evaluation of ECMWF-ERA5 and NASAMERRA2 Reanalyses. Atmosphere, 10(9), 504. DOI:

https://doi.org/10.3390/atmos10090504

Shanas, P. R., Aboobacker, V. M., Albarakati, A. 167emM

A. & Zubier, K. 167emM. 2017. Climate driven

variability of wind-waves in the Red Sea. Ocean

Modelling, 119, 105–117. DOI: https://doi.org/10.1016/j.

ocemod.2017.10.001

Sharp, J. & Mass, C. F. 2004. Columbia Gorge Gap Winds:

Their Climatological Influence and Synoptic Evolution.

Weather and Forecasting, 19(6), 970–992. DOI: https://

doi.org/10.1175/826.1

Siddig, N. A., Al-Subhi, A. M., Alsaafani, M. A. & Alraddadi,

T. M. 2021. Applying Empirical Orthogonal Function

and Determination Coefficient Methods for Determining

Major Contributing Factors of Satellite Sea Level

Influence of Tokar jets on LHF

Ocean and Coastal Research 2023, v71:e23029 15

Turki et al.

Anomalies Variability in the Arabian Gulf. Arabian

Journal for Science and Engineering, 47(1), 619–628.

DOI: https://doi.org/10.1007/s13369-021-05612-9

Smith, D. K., Li, X., Keiser, K. & Flynn, S. 2014. Regional

Air-Sea interactions (RASI) climatology for central

america coastal gap wind and upwelling events. In: 2014

Oceans - St. John’s. IEEE. DOI: https://doi.org/10.1109/

oceans.2014.7003127

Sofianos, S. S. 2003. An Oceanic General Circulation Model

(OGCM) investigation of the Red Sea circulation: 2.

Three-dimensional circulation in the Red Sea. Journal

of Geophysical Research, 108(C3). DOI: https://doi.org/

1029/2001jc001185

Taqi, A., & Al-Subhi, A. M. 2012. Temporal and

Spatial Patterns of Remotely Sensed Sea Surface

Temperature in The Southern Red Sea. DOI: https://

doi.org/10.13140/RG.2.2.28487.80801

Tetzner, D., Thomas, E. & Allen, C. 2019. A Validation

of ERA5 Reanalysis Data in the Southern Antarctic

Peninsula—Ellsworth Land Region, and Its Implications

for Ice Core Studies. Geosciences, 9(7), 289. DOI:

https://doi.org/10.3390/geosciences9070289

Villar, J. C. E., Ronchail, J., Guyot, J. L., Cochonneau, G.,

Naziano, F., Lavado, W., Oliveira, E. D., Pombosa, R. &

Vauchel, P. 2009. Spatio-temporal rainfall variability in the

Amazon basin countries (Brazil, Peru, Bolivia, Colombia,

and Ecuador). International Journal of Climatology,

(11), 1574–1594. DOI: https://doi.org/10.1002/joc.1791

Wang, D., Zeng, L., Xixi Li & Shi, P. 2013. Validation

of Satellite-Derived Daily Latent Heat Flux over the

South China Sea, Compared with Observations and

Five Products. Journal of Atmospheric and Oceanic

Technology, 30(8), 1820–1832. DOI: https://doi.org/

1175/JTECH-D-12-00153.1

Xiang-Hui, F. & Fei, Z. 2014. Effect of Decadal Changes

in Air-Sea Interaction on the Climate Mean State over

the Tropical Pacific. Atmospheric and Oceanic Science

Letters, 7(5), 400–405. DOI: https://doi.org/10.1080/167

2014.11447197

Xiao, F., Wang, D., Zeng, L., Liu, Q.-Y. & Zhou, W. 2019.

Contrasting changes in the sea surface temperature and

upper ocean heat content in the South China Sea during

recent decades. Climate Dynamics, 53(3–4), 1597–1612.

DOI: https://doi.org/10.1007/s00382-019-04697-1

Zhai, P. & Bower, A. 2013. The response of the Red Sea to

a strong wind jet near the Tokar Gap in summer. Journal

of Geophysical Research: Oceans, 118(1), 421–434.

DOI: https://doi.org/10.1029/2012jc008444

Zhai, P., Pratt, L. J. & Bower, A. 2015. On the Crossover of

Boundary Currents in an Idealized Model of the Red Sea.

Journal of Physical Oceanography, 45(5), 1410–1425.

DOI: https://doi.org/10.1175/jpo-d-14-0192.1

Zhou, F., Zhang, R., Shi, R., Chen, J., He, Y., Wang, D. & Xie, Q.

Evaluation of OAFlux datasets based on in situ air–

sea flux tower observations over Yongxing Island in 2016.

Atmospheric Measurement Techniques, 11(11), 6091–

DOI: https://doi.org/10.5194/amt-11-6091-2018.

Downloads

Published

2024-04-10

How to Cite

Influence of Tokar Gap wind jet on latent heat flux of Central Red Sea: empirical orthogonal function approach. (2024). Ocean and Coastal Research, 71. https://doi.org/10.1590/