Specific alkaline phosphatase activity as an indicator of phosphorus status in the plankton community of a

Authors

  • Enis Hrustić
  • Stijepo Ljubimir
  • Svjetlana Bobanović-Ćolić
  • Ingrid Ivančić

DOI:

https://doi.org/10.1590/

Keywords:

Alkaline phosphatase, Nutrients, Estuaries, Phytoplankton, Adriatic Sea

Abstract

We evaluated the seasonal phosphorus (P) status of the plankton community in the Ombla Estuary (OE) by
using its specific alkaline phosphatase activity (sAPA). Microphytoplankton (MICRO) indicated a substantially
higher P deficiency than nanophytoplankton (NANO) and picoplankton (PICO). We found that the prolonged
increase in the temperature of the surface estuarine water supported a notable growth of the dinoflagellate
Prorocentrum spp. in late spring-early summer (June). In the summer (August), we found the maximum
microphytoplankton sAPA (MICRO sAPA) (307.8  nmol μg C-1 h-1) in the surface water, in which (84%)
dinoflagellates predominated within MICRO with the maximum alkaline phosphatase activity (APA) in all size
fractions, including free enzymes. Persistently low discharge of Ombla during summer-early autumn caused
a transition from phosphorus- to potentially nitrogen-limited MICRO in the surface water in early autumn
(October). Nutrient stress disappeared in winter, in which a significant amount of dissolved orthosilicate,
dissolved inorganic nitrogen (DIN), and soluble reactive phosphorus (SRP) enriched the estuary via maximal
river discharge and inflow of nutrient-rich coastal waters. MICRO (coccolithophorids and diatoms) had very
low APA (surface water) and quantitatively undetectable APA (bottom water) in the nutrient-rich water column
in January. This study shows a more significant impact of nutrient concentrations on MICRO than other size
classes of the plankton community. Because of the similarity in seasonal hydrological features, we assume
that the general pattern of switching from P- to N-limitation of phytoplankton growth also occurs in other highly
stratified estuaries along the coastal karst of the eastern Adriatic Sea during the lowest river discharges and
groundwater activities in summer-early autumn before the rainy season. This study indicates that a common
highly stratified estuary on the eastern Adriatic coast can serve as a natural laboratory to explore connections
between nutrient limitations and phytoplankton successions.

References

Antia, N. J., McAllister, C. D., Parsons, T. R., Stephens, K.

& Strickland, J. D. H. 1963. Further measurements of

primary production using a large-volume plastic sphere.

Limnology and Oceanography, 8(2), 166–183. DOI:

https://doi.org/10.4319/lo.1963.8.2.0166

Batistić, M., Jasprica, N., Carić, M., Čalić, M., Kovačević,

V., Garić, R., Njire, J., Mikuš, J. & Bobanović-Ćolić, S.

Biological evidence of a winter convection event

in the South Adriatic: A phytoplankton maximum in

the aphotic zone. Continental Shelf Research, 44(1),

–71. DOI: https://doi.org/10.1016/j.csr.2011.01.004

Berman, D. W., T., Walline, P. D., Schneller, A., Rothenberg,

J. & Townsend, D. W. 1985. Secchi disk record: A

claim for the eastern Mediterranean. Limnology and

Oceanography, 30(2), 447–448.

Boekel, W. H. M. van & Veldhuis, M. J. W. 1990. Regulation

of alkaline phosphatase synthesis in Phaeocystis sp.

Marine Ecology Progress Series, 61(3), 281–289.

Bogé, G., Jamet, J. L., Richard, S., Jamet, D. & Jean,

N. 2002. Contribution of copepods, cladocerans and

cirripeds to phosphatase activity in mediterranean

zooplankton. Hydrobiologia, 468(1/3), 147–154. DOI:

https://doi.org/10.1023/a:1015266722757

Bonacci, O. 2001. Analysis of the maximum discharge of

karst springs. Hydrogeology Journal, 9(4), 328–338.

DOI: https://doi.org/10.1007/s100400100142

Børsheim, K. Y. & Bratbak, G. 1987. Cell volume to cell

carbon conversion factors for a bacterivorous Monas

sp. enriched from seawater. Marine Ecology Progress

Series, 36(2), 171–175.

Calbet, A., Landry, M. R. & Scheinberg, R. D. 2000.

Copepod grazing in a subtropical bay: species-specific

responses to a midsummerincrease in nanoplankton

standing stock. Marine Ecology Progress Series, 193,

–84.

Carić, M., Jasprica, N., Kršinić, F., Vilibić, I. & Batistić, M.

Hydrography, nutrients, and plankton along the

longitudinal section of the Ombla Estuary (south-eastern

Adriatic). Journal of the Marine Biological Association of

the United Kingdom, 92(6), 1227–1242. DOI: https://doi.

org/10.1017/s002531541100213x

Civitarese, G., Gačić, M., Lipizer, M. & Eusebi Borzelli,

G. 2010. On the impact of the Bimodal Oscillating

System (BiOS) on the biogeochemistry and biology of

the Adriatic and Ionian Seas (Eastern Mediterranean).

Biogeosciences, 7(12), 3987–3997. DOI: https://doi.

org/10.5194/bg-7-3987-2010

Domingues, R. B., Barbosa, A. B., Sommer, U. & Galvão,

H. M. 2011. Ammonium, nitrate and phytoplankton

interactions in a freshwater tidal estuarine zone:

potential effects of cultural eutrophication. Aquatic

Sciences, 73(3), 331–343. DOI: https://doi.org/10.1007/

s00027-011-0180-0

Duhamel, S., Björkman, K. M., Wambeke, F. V., Moutin, T. &

Karl, D. M. 2011. Characterization of alkaline

phosphatase activity in the North and South Pacific

Alkaline phosphatase activity in Ombla Estuary

Ocean and Coastal Research 2023, v71:e23044 16

Hrustić et al

Subtropical Gyres: Implications for phosphorus cycling.

Limnology and Oceanography, 56(4), 1244–1254. DOI:

https://doi.org/10.4319/lo.2011.56.4.1244

Duhamel, S., Dyhrman, S. T. & Karl, D. M. 2010. Alkaline

phosphatase activity and regulation in the North Pacific

Subtropical Gyre. Limnology and Oceanography,

(3), 1414–1425. DOI: https://doi.org/10.4319/

lo.2010.55.3.1414

Dyhrman, S. T. & Palenik, B. 1999. Phosphate stress in

cultures and field populations of the dinoflagellate

Prorocentrum minimum detected by a single-cell

alkaline phosphatase assay. Applied and Environmental

Microbiology, 65(7), 3205–3212. DOI: https://doi.

org/10.1128/aem.65.7.3205-3212.1999

Eppley, R. W. & Thomas, W. H. 1969. Comparsion of halfsaturation constants for growth and nitrate uptake of

marine phytoplankton. Journal of Phycology, 5(4),

–379. DOI: https://doi.org/10.1111/j.1529-8817.1969.

tb02628.x

Froelich, P. N. 1988. Kinetic control of dissolved phosphate

in natural rivers and estuaries: A primer on the phosphate

buffer mechanism. Limnology and Oceanography,

(4 part. 2), 649–668. DOI: https://doi.org/10.4319/

lo.1988.33.4part2.0649

Garde, K. & Gustavson, K. 1999. The impact of UV-B

radiation on alkaline phosphatase activity in phosphorusdepleted marine ecosystems. Journal of Experimental

Marine Biology and Ecology, 238(1), 93–105. DOI:

https://doi.org/10.1016/s0022-0981(99)00005-2

Geider, R. J., Macintyre, H. L. & Kana, T. M. 1997. Dynamic

model of phytoplankton growth and aclimation:

responses of the balanced growth rate and the

chlorophyll a: carbon ratio to light, nutrient-limitation

and temperature. Marine Ecology Progress Series,

(1–3), 187–200.

Goldman, J. C., Caron, D. A. & Dennett, M. R. 1987.

Regulation of gross growth efficiency and ammonium

regeneration in bacteria by substrate C: N ratio1.

Limnology and Oceanography, 32(6), 1239–1252. DOI:

https://doi.org/10.4319/lo.1987.32.6.1239

Grasshoff, K., Kremling, K. & Ehrhardt, M. (eds.). 1983.

Methods of Seawater Analysis (2nd ed.). Berlim: Wiley.

DOI: https://doi.org/10.1002/9783527613984

Haas, L. W. 1982. Improved epifluorescence microscopy

for observing planktonic micro-organisms. Annales de

l’Institute Océanographique, 58(Supl S), 261–266.

Hobbie, J. E., Daley, R. J. & Jasper, S. 1977. Use of

nuclepore filters for counting bacteria by fluorescence

microscopy. Applied and Environmental Microbiology,

(5), 1225–1228. DOI: https://doi.org/10.1128/

aem.33.5.1225-1228.1977

Holm-Hansen, O., Lorenzen, C. J., Holmes, R. W. &

Strickland, J. D. H. 1965. Fluorometric Determination

of Chlorophyll. ICES Journal of Marine Science, 30(1),

–15. DOI: https://doi.org/10.1093/icesjms/30.1.3

Hoppe, H.-G. 2003. Phosphatase activity in the sea.

Hydrobiologia, 493, 187–200.

Hrustić, E., Carić, M., Čalić, M. & Bobanović-Ćolić, S. 2013.

Alkaline phosphatase activity and relative importance

of picophytoplankton in autumn and early spring (Mljet

lakes, eastern Adriatic Sea). Fresenius Environmental

Bulletin, 22(3), 636–648.

Hrustić, E., Carić, M. & Garić, R. 2011. Alkaline Phosphatase

Activity in the NE Adriatic. In: Özhan, E. (ed.),

Proceedings of the tenth international conference on

the mediterranean coastal environment (pp. 521–532).

Dalyan: MEDCOAST.

Hrustić, E., Lignell, R., Riebesell, U. & Thingstad, T. F.

Exploring the distance between nitrogen and

phosphorus limitation in mesotrophic surface waters

using a sensitive bioassay. Biogeosciences, 14(2),

–387. DOI: https://doi.org/10.5194/bg-14-379-2017

Ivančić, I. & Degobbis, D. 1984. An optimal manual procedure

for ammonia analysis in natural waters by the indophenol

blue method. Water Research, 18(9), 1143–1147. DOI:

https://doi.org/10.1016/0043-1354(84)90230-6

Jean, N., Bogé, G., Jamet, J.-L., Richard, S. & Jamet, D.

Seasonal changes in zooplanktonic alkaline

phosphatase activity in Toulon Bay (France): the role of

Cypris larvae. Marine Pollution Bulletin, 46(3), 346–352.

DOI: https://doi.org/10.1016/s0025-326x(02)00450-2

Jonge, V. & Villerius, L. 1989. Possible role of carbonate

dissolution in estuarine phosphate dynamics. Limnology

and Oceanography, 34(2), 332–340. DOI: https://doi.

org/10.4319/lo.1989.34.2.0332

Kana, T. M. & Glibert, P. M. 1987. Effect of irradiances up to

μE m-2 s-1 on marine Synechococcus WH7803—I.

Growth, pigmentation, and cell composition. Deep Sea

Research Part A. Oceanographic Research Papers,

(4), 479–495. DOI: https://doi.org/10.1016/0198-

(87)90001-x

Koroleff, F. 1983. Determination of phosphorus. In: Grashoff,

K., Ehrhardt, M., & Kremling, K. (eds.), Methods of

seawater analysis (pp. 117–138). Weinheim: VerlagChimie.

Krom, M., Kress, N., Brenner, S. & Gordon, L. 1991.

Phosphorus limitation of primary productivity in

the eastern Mediterranean Sea. Limnology and

Oceanography, 36(3), 424–432. DOI: https://doi.

org/10.4319/lo.1991.36.3.0424

Krom, M. D., Woodward, E. M. S., Herut, B., Kress, N.,

Carbo, P., Mantoura, R. F. C., Spyres, G., Thingstad, T.

F., Wassmann, P., Wexels-Riser, C., Kitidis, V., Law, C.

S. & Zodiatis, G. 2005. Nutrient cycling in the south east

Levantine basin of the eastern Mediterranean: Results

from a phosphorus starved system. Deep-Sea Research

II, 52, 2879-2896. doi:10.1016/j.dsr2.2005.08.009

Lee, S. & Fuhrman, J. A. 1987. Relationships between

Biovolume and Biomass of Naturally Derived Marine

Bacterioplankton. Applied and Environmental

Microbiology, 53(6), 1298–1303. DOI: https://doi.

org/10.1128/aem.53.6.1298-1303.1987

Li, H., Veldhuis, M. J. W. & Post, A. 1998. Alkaline

phosphatase activities among planktonic communities

in the northern Red Sea. Marine Ecology Progress

Series, 173, 107–115. DOI: https://doi.org/10.3354/

meps173107

Li, J. & Dittrich, M. 2019. Dynamic polyphosphate

metabolism in cyanobacteria responding to phosphorus

availability. Environmental Microbiology, 21(2), 572–583.

DOI: https://doi.org/10.1111/1462-2920.14488

Alkaline phosphatase activity in Ombla Estuary

Ocean and Coastal Research 2023, v71:e23044 17

Hrustić et al

Ljubimir, S., Jasprica, N., Čalić, M., Hrustić, E., Dupčić

Radić, I., Car, A. & Batistić, M. 2017. Interannual (2009–

variability of winter-spring phytoplankton in the

open South Adriatic Sea: Effects of deep convection

and lateral advection. Continental Shelf Research, 143,

–321. DOI: https://doi.org/10.1016/j.csr.2017.05.007

MacIsaac, J. J. & Dugdale, R. C. 1969. The kinetics of

nitrate and ammonia uptake by natural populations

of marine phytoplankton. Deep Sea Research and

Oceanographic Abstracts, 16(1), 45–57. DOI: https://

doi.org/10.1016/0011-7471(69)90049-7

Moutin, T., Thingstad, T. F., Wambeke, F. V., Marie, D.,

Slawyk, G., Raimbault, P. & Claustre, H. 2002. Does

competition for nanomolar phosphate supply explain the

predominance of the cyanobacterium Synechococcus ?

Limnology and Oceanography, 47(5), 1562–1567. DOI:

https://doi.org/10.4319/lo.2002.47.5.1562

Murphy, J. & Riley, J. P. 1962. A modified single solution

method for the determination of phosphate in natural

waters. Analytica Chimica Acta, 27, 31–36. DOI: https://

doi.org/10.1016/s0003-2670(00)88444-5

Najdek, M., Paliaga, P., Šilović, T., Batistić, M., Garić, R.,

Supić, N., Ivančić, I., Ljubimir, S., Korlević, M., Jasprica, N.,

Hrustić, E., Dupčić-Radić, I., Blažina, M. & Orlić, S. 2014.

Picoplankton community structure before, during and after

convection event in the offshore waters of the Southern

Adriatic Sea. Biogeosciences, 11(10), 2645–2659. DOI:

https://doi.org/10.5194/bg-11-2645-2014

Nausch, M. 1998. Alkaline phosphatase activities and the

relationship to inorganic phosphate in the Pomeranian

Bight (southern Baltic Sea). Aquatic Microbial Ecology,

(1), 87–94. DOI: https://doi.org/10.3354/ame016087

Nedoma, J., Garcia, J. C., Comerma, M., Simek, K. &

Armengol, J. 2006. Extracellular phosphatases in a

Mediterranean reservoir: seasonal, spatial and kinetic

heterogeneity. Freshwater Biology, 51(7), 1264–1276.

DOI: https://doi.org/10.1111/j.1365-2427.2006.01566.x

Oh, S. J., Kwon, H. K., Noh, I. H. & Yang, H.-S. 2010.

Dissolved organic phosphorus utilization and alkaline

phosphatase activity of the dinoflagellate Gymnodinium

impudicum isolated from the South Sea of Korea.

Ocean Science Journal, 45(3), 171–178. DOI: https://

doi.org/10.1007/s12601-010-0015-2

Orhanović, S. & Vrančić, M. P. 2000. Alkaline Phosphatase

activity in Seawater: Influence of reaction conditions on

the kinetic parameters of ALP. Croatica Chemica Acta,

(3), 819–930.

Orret, K. & Karl, D. M. 1987. Dissolved organic phosphorus

production in surface seawaters. Limnology and

Oceanography, 32(2), 383–395.

Rengefors, K., Ruttenberg, K. C., Haupert, C. L., Taylor, C.,

Howes, B. L. & Anderson, D. M. 2003. Experimental

investigation of taxon-specific response of alkaline

phosphatase activity in natural freshwater phytoplankton.

Limnology and Oceanography, 48(3), 1167–1175. DOI:

https://doi.org/10.4319/lo.2003.48.3.1167

Sieburth, J. M., Smetacek, V. & Lenz, J. 1978. Pelagic

ecosystem structure: Heterotrophic compartments of the

plankton and their relationship to plankton size fractions

Limnology and Oceanography, 23(6), 1256–1263.

DOI: https://doi.org/10.4319/lo.1978.23.6.1256

Šilović, T., Mihanović, H., Batistić, M., Dupčić Radić, I.,

Hrustić, E. & Najdek, M. 2018. Picoplankton distribution

influenced by thermohaline circulation in the southern

Adriatic. Continental Shelf Research, 155, 21–33. DOI:

https://doi.org/10.1016/j.csr.2018.01.007

Spiteri, C., Cappellen, P. V. & Regnier, P. 2008. Surface

complexation effects on phosphate adsorption to ferric

iron oxyhydroxides along pH and salinity gradients

in estuaries and coastal aquifers. Geochimica et

Cosmochimica Acta, 72(14), 3431–3445. DOI: https://

doi.org/10.1016/j.gca.2008.05.003

Su, B., Song, X., Duhamel, S., Mahaffey, C., Davis, C.,

Ivančić, I. & Liu, J. 2023. A dataset of global ocean alkaline

phosphatase activity. Scientific Data. Scientific Data,

(205). DOI: https://doi.org/10.1038/s41597-023-02081-7

Suzumura, M. 2008. Persulfate chemical wet oxidation

method for the determination of particulate phosphorus

in comparison with a high-temperature dry combustion

method. Limnology and Oceanography: Methods, 6(11),

–629. DOI: https://doi.org/10.4319/lom.2008.6.619

Tanaka, T., Henriksen, P., Lignell, R., Olli, K., Seppälä, J.,

Tamminen, T. & Thingstad, T. F. 2006. Specific affinity

for phosphate uptake and specific alkaline phosphatase

activity as diagnostic tools for detecting phosphorus-limited

phytoplankton and bacteria. Estuaries and Coasts, 29(6),

–1241. DOI: https://doi.org/10.1007/bf02781823

Torriani-Gorini, A. 1994. The Pho regulon of Escherichia coli.

Iin. In: Torriani-Gorini, A., Yagil, E., & Silver, S. (eds.),

Phosphate in Microorganisms: Cellular and Molecular

Biology (pp. 1–4). Washington, DC: ASM Press.

Utermöhl, H. 1958. Zur Vervollkommnung der quantitativen

Phytoplankton-Methodik. SIL Communications, 1953-

, 9(1), 1–38. DOI: https://doi.org/10.1080/053846

1958.11904091

Verity, P. G., Robertson, C. Y., Tronzo, C. R., Andrews, M.

G., Nelson, J. R. & Sieracki, M. E. 1992. Relationships

between cell volume and the carbon and nitrogen

content of marine photosynthetic nanoplankton.

Limnology and Oceanography, 37(7), 1434–1446.

Viličić, D., Kršinić, F., Carić, M., Jasprica, N., BobanovićĆolić, S. & Mikuš, J. 1995. Plankton and hydrography

in a moderately eastern Adratic bay (Gruž Bay).

Hydrobiologia, 304(1), 9–22. DOI: https://doi.

org/10.1007/bf02530699

Vollenweider, R. A., Giovanardi, F., Montanari, G. & Rinaldi, A.

Characterization of the trophic conditions of marine

coastal waters with special reference to the NW Adriatic

Sea: proposal for a trophic scale, turbidity and generalized

water quality index. Environmetrics, 9(3), 329–357.

Weiss, R. F. 1970. The solubility of nitrogen, oxygen and

argon in water and seawater. Deep Sea Research and

Oceanographic Abstracts, 17(4), 721–735. DOI: https://

doi.org/10.1016/0011-7471(70)90037-9

Zavatarelli, M., Raicich, F., Bregant, D., Russo, A. &

Artegiani, A. 1998. Climatological biogeochemical

characteristics of the Adriatic Sea. Journal of

Marine Systems, 18(1–3), 227–263. DOI: https://doi.

org/10.1016/s0924-7963(98)00014-1

Zohary, T. & Robarts, R. D. 1998. Experimental study of

microbial P limitation in the eastern Mediterranean.

Limnology and Oceanography, 43(3), 387–395. DOI:

https://doi.org/10.4319/lo.1998.43.3.0387

Downloads

Published

2024-04-10

How to Cite

Specific alkaline phosphatase activity as an indicator of phosphorus status in the plankton community of a. (2024). Ocean and Coastal Research, 71. https://doi.org/10.1590/