Sinking particles in the photic zone: relations with biogeochemical properties in different sectors of the Cananéia-Iguape Estuarine-Lagoon Complex (CIELC)-Brazil

Authors

  • Bruno O. Sutti
  • Vitor G. Chiozzini Chiozzini
  • Carmen G. Castro
  • Elisabete S. Braga

DOI:

https://doi.org/10.1590/

Keywords:

Sinking particles, Subtropical estuary, Trophic status, Photosynthetic pigments, Anthropogenic influence

Abstract

Over the last decades, regional climate changes, erosion, and heightened agricultural runoffs have increased
nutrient and particle input in rivers, unbalancing the biogeochemical cycle of this suspended material along
estuaries. In this context, particle fluxes in the euphotic zone, a very productive layer and important to
maintain the food chain and estuarine preservation, require better understanding. This study aims to evaluate
particle sedimentation fluxes in the photic zone of the Cananéia-Iguape Estuarine-Lagoon Complex (CIELC),
considering sectors under different salinities and trophic statuses. A cylindrical sediment trap was installed at
the base of the photic layer to measure particle fluxes and photopigments. Meanwhile, water samples were
taken to measure temperature, salinity, pH, dissolved oxygen, and nutrients. Valo Grande (a freshwater domain)
showed high nutrient concentrations, in which high fluxes of phaeopigments and chlorophyll-b highlighted the
contribution of vegetable detritus to particle sinking. In the Batatais mangrove creek, the high fluxes of organic
particles (675.32 mg m-2 d-1) and chlorophyll-a (98.40 mg m-2 d-1) evinced a high contribution of microplankton
to carbon sinking. During the winter of 2018, flocculation processes were evinced in the flood tide of the
Cananéia Bay as an important driver of sedimentation rates, with considerable fluxes of inorganic particles
(1161.20 mg m-2 d-1) and chlorophyll-a (83.27 mg m-2 d-1). In the summer of 2019, we observed a lower flux in
total particles (451.24 mg m-2 d-1) in a period of haline stratification. In the Ararapira Channel, the lowest organic
particle fluxes (<100 mg m-2 d-1) were associated with ultra-oligotrophic conditions, indicating a low influence
of microplankton on sinking particles. These findings suggest that freshwater input, tidal variation, and trophic
status are relevant controls of sinking particles in different CIELC sectors. 

References

Alldredge, A. L., Passow, U. & Logan, B. E. 1993.

The abundance and significance of a class of large,

transparent organic particles in the ocean. Deep Sea

Research Part I: Oceanographic Research Papers,

(6), 1131–1140. DOI: https://doi.org/10.1016/0967-

(93)90129-q

Almeida Prado, M. S., Pompeu, M. & Porto, F. D. 1989.

Environmental quality and ecosystem stability.

In: Spanier, Y., Steinberg, S., & Luria, M. (eds.).

Jerusalem: ISEEQS Pub.

Aminot, A. & Chaussepied, M. 1983. Manuel des analyses

chimiques en milieu marin. Paris: Editions Jouve.

Anderson, J. M. 1986. Photoregulation of the Composition,

Function, and Structure of Thylakoid Membranes.

Annual Review of Plant Physiology, 37(1), 93–136. DOI:

https://doi.org/10.1146/annurev.pp.37.060186.000521

Angulo, R. J., Souza, M. C. de, Sielski, L. H., Nogueira, R. A. &

Müller, M. E. J. 2019. Morphology, bedforms andbottom

sediments of Mar do Ararapira, southern Brazil.

Quaternary and Environmental Geoscience, 10(1), 1–9.

Ara, K. 2001a. Daily egg production rate of the planktonic

calanoid copepod Acartia lilljeborgi Giesbrecht in the

Cananéia Lagoon estuarine system, São Paulo, Brazil.

Hydrobiologia, 445(1/3), 205–215. DOI: https://doi.org/

1023/a:1017573917281

Ara, K. 2001b. Temporal variability and production of the

planktoniccopepods in the Cananeia Lagoon estuarine

system,Sao Paulo, Brazil. II. Acartia lilljeborgi. Plankton

Biology & Ecology, 48(1), 35–45.

Arasaki, E. & Alfredini, P. 2009. Obras e gestão de portos

e costas (2nd ed.). São Paulo: Blucher.

Armstrong, F. A. J., Williams, P. M. & Strickland, J. D. H.

Photooxidation of organic matter in seawater by

ultraviolet radiation analytical and application. Nature,

, 463-481

Azevedo, J. de S. & Braga, E. S. 2011. Caracterização

hidroquímica para qualificação ambiental dos estuários

de Santos-São Vicente e Cananéia. Arquivos de

Ciências Do Mar, 44(2), 52–61.

Baker, E. T., Milburn, H. B. & Tennant, D. A. 1988. Field

assessment of sediment trap efficiency under varying

flow conditions. Journal of Marine Research, 46, 573–592.

Bale, A. J. 1998. Sediment trap performance in tidal

waters: comparison of cylindrical and conical collectors.

Continental Shelf Research, 18(11), 1401–1418. DOI:

https://doi.org/10.1016/s0278-4343(98)00050-8

Barlow, R. G., Mantoura, R. F. C., Peinert, R. D.,

Miller, A. E. J. & Fileman, T. W. 1995. Distribution,

sedimentation and fate of pigment biomarkers following

thermal stratification in the western Alboran Sea. Marine

Ecology Progress Series, 125(1/3), 279–291.

Barrera-Alba, J. J., Gianesella, S. M. F., Moser, G. A. O. &

Saldanha-Corrêa, F. M. P. 2008. Bacterial and

phytoplankton dynamics in a sub-tropical estuary.

Hydrobiologia, 598(1), 229–246. DOI: https://doi.org/

1007/s10750-007-9156-4

Barrera-Alba, J. J., Gianesella, S. M. F., Saldanha-Corrêa,

F. M. P. & Moser, G. A. O. 2007. Influence of an Artificial

Channel in a Well-Preserved Sub-Tropical Estuary.

Journal of Coastal Research, (50), 1137–1141.

Barrera-Alba, J. J. & Moser, G. A. O. 2016. Short-term

response of phytoplankton community to over-enrichment

of nutrients in a well-preserved subtropical estuary.

Brazilian Journal of Oceanography, 64(2), 191-196.

Bartoli, M., Nizzoli, D., Zilius, M., Bresciani, M.,

Pusceddu, A., Bianchelli, S., Sundbäck, K., RazinkovasBaziukas, A. & Viaroli, P. 2021. Denitrification, Nitrogen

Uptake, and Organic Matter Quality Undergo Different

Seasonality in Sandy and Muddy Sediments of a Turbid

Estuary. Frontiers in Microbiology, 11. DOI: https://

doi.org/10.3389/fmicb.2020.612700

Becker, C. C., Weber, L., Suca, J. J., Llopiz, J. K.,

Mooney, T. A. & Apprill, A. 2020. Microbial and nutrient

dynamics in mangrove, reef, and seagrass waters over

tidal and diurnal time scales. Aquatic Microbial Ecology,

, 101–119. DOI: https://doi.org/10.3354/ame01944

Beltran, E. V., Sutti, B. O., Gonçalves, E. L.,

Reis, F. C., Oliveira, W. R. L. de, Schaefer, F.,

Clara, M. M., Giordano, F. & Barrella, W. 2012.

Estimativa do Sequestro de Carbono por Árvores

de Manguezal no RioBoturoca – São Vicente/SP.

UNISANTA BioScience, 1(1), 11–15.

Bertilsson, S., Berglund, O., Karl, D. M. & Chisholm, S. W.

Elemental composition of marine Prochlorococcus

and Synechococcus: Implications for the ecological

stoichiometry of the sea. Limnology and Oceanography,

(5), 1721–1731. DOI: https://doi.org/10.4319/lo.

48.5.1721

Bianchi, T. S. 2006. Biogeochemistry of Estuaries.

Oxford University Press. DOI: https://doi.org/10.1093/

oso/9780195160826.001.0001

Billen, G. & Garnier, J. 2006. River basin nutrient delivery to

the coastal sea: Assessing its potential to sustain new

production of non-siliceous algae. Marine Chemistry,

(1–2), 148–160. DOI: https://doi.org/10.1016/j.

marchem.2006.12.017

Braga, E. de S. 2020. Total Dissolved Nitrogen and

Phosphorus Determination inCoastal South Atlantic

Water Based on UV Oxidation Method. American Journal

of Sciences and Engineering Research, 3(6), 60–66.

Braga, E. de S., Berbel, G. B. B., Chiozzini, V. G. & Andrade,

N. C. G. 2017. Dissolved organic nutrients (C, N, P) in

seawater on the continental shelf in the Southwestern

South Atlantic with emphasis State Marine Park of

Laje de Santos (SMPLS) - São Paulo - Brazil. Brazilian

Journal of Oceanography, 65(4), 614–627. DOI: https://

doi.org/10.1590/s1679-87592017136506504

Braga, E. S. 1995. Distribuição sazonal da ureia na região

de Ubatuba 45° 04´W e 23° 32´S. Boletim Do Instituto

Oceanográfico, 11, 91–98.

Braga, E. S., Bonetti, C. V. D. H., Burone, L. & Filho, J. B.

Eutrophication and Bacterial Pollution Caused by

Sinking particles in CIELC euphotic zone

Ocean and Coastal Research 2023, v71(suppl 1):e23038 31

Sutti et al.

Industrial and Domestic Wastes at the Baixada Santista

Estuarine System – Brazil. Marine Pollution Bulletin,

(2), 165–173. DOI: https://doi.org/10.1016/s0025-

x(99)00199-x

Brandini, N., Rodrigues, A. P. de C., Abreu, I. M., Junior, L.

C. C., Knoppers, B. A. & Machado, W. 2016. Nutrient

behavior in a highly-eutrophicated tropical estuarine

system. Acta Limnologica Brasiliensia, 28(0). DOI:

https://doi.org/10.1590/s2179-975x3416

Breitburg, D. 2002. Effects of hypoxia, and the balance

between hypoxia and enrichment, on coastal fishes

and fisheries. Estuaries, 25(4), 767–781. DOI: https://

doi.org/10.1007/bf02804904

Brewin, R. J. W., Sathyendranath, S., Platt, T., Bouman, H.,

Ciavatta, S., Dall’Olmo, G., Dingle, J., Groom, S., Jönsson, B.,

Kostadinov, T. S., Kulk, G., Laine, M., Martínez-Vicente, V.,

Psarra, S., Raitsos, D. E., Richardson, K., Rio, M.-H.,

Rousseaux, C. S., Salisbury, J., Shutler, J. D. & Walker, P.

Sensing the ocean biological carbon pump from

space: A review of capabilities, concepts, research

gaps and future developments. Earth-Science

Reviews, 217, 103604. DOI: https://doi.org/10.1016/j.

earscirev.2021.103604

Brzezinski, M. A. 1985. The Si:C:N ratio of marine

diatoms: interspecific variability and the effect of

some environmental variables. Journal of Phycology,

(3), 347–357. DOI: https://doi.org/10.1111/j.0022-

1985.00347.x

Buesseler, K. O., Antia, A. N., Chen, M., Fowler, S. W., Gardner,

W. D., Gustafsson, O., Harada, K., Michaels, A. F., Loeff,

M. R. van der, Sarin, M., Steinberg, D. K. & Trull, T.

An assessment of the use of sediment traps for

estimatingupper ocean particle fluxes. Journal of Marine

Research, 65, 345–416.

Chai, C., Jiang, T., Cen, J., Ge, W. & Lu, S. 2016.

Phytoplankton pigments and functional community

structure in relation to environmental factors in the

Pearl River Estuary. Oceanologia, 58(3), 201–211. DOI:

https://doi.org/10.1016/j.oceano.2016.03.001

Chislock, M. F., Doster, E., Zitomer, R. A. & Wilson, A. E. 2013.

Eutrophication: Causes, Consequences, and Controls

in Aquatic Ecosystems. Nature Education Knowledge,

(4), 10.

Choudhury, A. K. & Bhadury, P. 2015. Relationship

between N : P : Si ratio and phytoplankton community

composition in a tropical estuarine mangrove ecosystem.

Biogeosciences Discussions, 12, 2307–2355. DOI:

https://doi.org/10.5194/bgd-12-2307-2015

Cole, J. J., Prairie, Y. T., Caraco, N. F., McDowell, W. H.,

Tranvik, L. J., Striegl, R. G., Duarte, C. M., Kortelainen, P.,

Downing, J. A., Middelburg, J. J. & Melack, J. 2007.

Plumbing the Global Carbon Cycle: Integrating Inland

Waters into the Terrestrial Carbon Budget. Ecosystems,

(1), 172–185. DOI: https://doi.org/10.1007/s10021-

-9013-8

Conley, D. J., Kilham, S. S. & Theriot, E. 1989. Differences in

silica content between marine and freshwater diatoms.

Limnology and Oceanography, 34(1), 205–212. DOI:

https://doi.org/10.4319/lo.1989.34.1.0205

Conley, D. J. & Malone, T. C. 1992. Annual Cycle of

Dissolved Silicate in Chesapeake Bay: Implications for

the Production and Fate of Phytoplankton Biomass.

Marine Ecology Progress Series, 81, 121–128.

Conley, D. J., Schelske, C. L. & Stoermer, E. F. 1993.

Modification of the biogeochemical cycle of silica with

eutrophication. Marine Ecologogy Progress Series, 101,

–192.

Cordeiro, P. F., Goulart, F. F., Macedo, D. R., Campos,

M. D. C. S. & Castro, S. R. 2020. Modeling of the

potential distribution of Eichhornia crassipes on a global

scale: risks and threats to water ecosystems. Ambiente

e Agua - An Interdisciplinary Journal of Applied Science,

(2), 1. DOI: https://doi.org/10.4136/ambi-agua.2421

Cotovicz Junior, L. C., Brandini, N., Knoppers, B. A.,

Mizerkowski, B. D., Sterza, J. M., Ovalle, A. R. C. &

Medeiros, P. R. P. 2012. Assessment of the trophic

status of four coastal lagoons and one estuarine

delta, eastern Brazil. Environmental Monitoring

and Assessment, 185(4), 3297–3311. DOI: https://

doi.org/10.1007/s10661-012-2791-x

Cugier, P., Billen, G., Guillaud, J. F., Garnier, J. &

Ménesguen, A. 2005. Modelling the eutrophication of

the Seine Bight (France) under historical, present and

future riverine nutrient loading. Journal of Hydrology,

(1–4), 381–396. DOI: https://doi.org/10.1016/j.

jhydrol.2004.07.049

Damar, A., Colijn, F., Hesse, K.-J. & Kurniawan, F. 2020.

Coastal Phytoplankton Pigments Composition in Three

Tropical Estuaries of Indonesia. Journal of Marine

Science and Engineering, 8(5), 311. DOI: https://

doi.org/10.3390/jmse8050311

Dell’Anno, A., Fabiano, M., Bompadre, S., Armeni, M.,

Leone, L. & Danovaro, R. 1999. Phytopigment and DNA

determinations in long-time formalin-preserved trap

samples. Marine Ecology Progress Series, 191, 71–77.

Dittmar, T. & Lara, R. J. 2001. Driving Forces Behind

Nutrient and Organic Matter Dynamics in a Mangrove

Tidal Creek in North Brazil. Estuarine, Coastal and Shelf

Science, 52(2), 249–259. DOI: https://doi.org/10.1006/

ecss.2000.0743

D’Souza, A. M. & Gauns, M. U. 2018. Temporal variability

in copepod gut pigments over the central western

continental shelf of India. Journal of the Marine Biological

Association of the United Kingdom, 98(1), 149–159.

DOI: https://doi.org/10.1017/s0025315416001144

Emerson, S. & Hedges, J. 2008. Life processes in the

ocean. In: Emerson, S. & Hedges, J. (eds.), Chemical

Oceanography and the Marine Carbon Cycle

(pp. 173–218). Cambridge University Press. DOI:

https://doi.org/10.1017/cbo9780511793202.007

Farhadian, O. & Pouladi, M. 2014. Seasonal changes in the

abundance and biomass of zooplankton from shallow

mudflat river-estuarine system in Persian Gulf. Brazilian

Journal of Aquatic Science and Technology, 18(2),

–29. DOI: https://doi.org/10.14210/bjast.v18n2.p19-29

Fernandes, S. O., Michotey, V. D., Guasco, S., Bonin,

P. C. & Bharathi, P. A. L. 2012. Denitrification prevails

over anammox in tropical mangrove sediments (Goa,

India). Marine Environmental Research, 74, 9–19. DOI:

https://doi.org/10.1016/j.marenvres.2011.11.008

Fortune, J., Kaestli, M., Butler, E. C. V. & Gibb, K. 2022.

Denitrification in intertidal sediments of a tropical

estuary subject to increasing development pressures.

Aquatic Sciences, 84(4). DOI: https://doi.org/10.1007/

s00027-022-00885-0

Sinking particles in CIELC euphotic zone

Ocean and Coastal Research 2023, v71(suppl 1):e23038 32

Sutti et al.

Frigstad, H., Andersen, T., Hessen, D. O., Naustvoll, L.-J.,

Johnsen, T. M. & Bellerby, R. G. J. 2011. Seasonal

variation in marine C:N:P stoichiometry: can the

composition of seston explain stable Redfield ratios?

Biogeosciences, 8(10), 2917–2933. DOI: https://

doi.org/10.5194/bg-8-2917-2011

Froján, M., Figueiras, F. G., Zúñiga, D., Alonso-Pérez, F.,

Arbones, B. & Castro, C. G. 2016. Influence of Mussel

Culture on the Vertical Export of Phytoplankton Carbon

in a Coastal Upwelling Embayment (Ría de Vigo, NW

Iberia). Estuaries and Coasts, 39(5), 1449–1462. DOI:

https://doi.org/10.1007/s12237-016-0093-1

Furlong, E. T. & Carpenter, R. 1988. Pigment preservation

and remineralization in oxic coastal marine sediments.

Geochimica et Cosmochimica Acta, 52(1), 87–99. DOI:

https://doi.org/10.1016/0016-7037(88)90058-0

Gardner, W. D., Biscaye, P. E. & Richardson, J. M. 1997.

A sediment trap experiment in the Vema Channel

to evaluate the effect of horizontal particle fluxes on

measured vertical fluxes. Journal of Marine Research,

, 995–1028.

Garnier, J., Beusen, A., Thieu, V., Billen, G. &

Bouwman, L. 2010. N:P:Si nutrient export ratios and

ecological consequences in coastal seas evaluated

by the ICEP approach. Global Biogeochemical Cycles,

(4). DOI: https://doi.org/10.1029/2009gb003583

Giannini, P. C. F., Guedes, C. C. F., Nascimento Jr, D. R. do,

Tanaka, A. P. B., Angulo, R. J., Souza, M. C. de & Assine,

M. L. 2009. Sedimentology and Morphological Evolution

of the Ilha Comprida Barrier System, Southern São

Paulo Coast. In: Dillenburg, S. R. & Hesp, P. A. (eds.),

Geology and Geomorphology of Holocene Coastal

Barriers of Brazil (pp. 177–224). Berlin: Springer.

Giovanardi, F. & Vollenweider, R. A. 2004. Trophic conditions

of marine coastal waters: experience in applying the

Trophic Index TRIX to two areas of the Adriatic and

Tyrrhenian seas. Journal of Limnology, 63(2), 199–218.

DOI: https://doi.org/10.4081/jlimnol.2004.199

Grashoff, K.; Kremling. K. & Ehrhardt. M. 1983. Methods of

seawater analysis. 2ed. Florida: Verlagie Chemie. 419p.

Groß, E., Pane, J. D., Boersma, M. & Meunier, C. L. 2022.

River discharge-related nutrient effects on North Sea

coastal and offshore phytoplankton communities.

Journal of Plankton Research, 44(6), 947–960. DOI:

https://doi.org/10.1093/plankt/fbac049

Hamilton, S. K., Sippel, S. J. & Bunn, S. E. 2005. Separation

of algae from detritus for stable isotope or ecological

stoichiometry studies using density fractionation in colloidal

silica. Limnology and Oceanography: Methods, 3(3),

–157. DOI: https://doi.org/10.4319/lom.2005.3.149

Hao, Y.-Y., Zhu, Z.-Y., Fang, F.-T., Novak, T.,

Čanković, M., Hrustić, E., Ljubešić, Z., Li, M., Du, J.-Z.,

Zhang, R.-F. & Gašparović, B. 2021. Tracing Nutrients

and Organic Matter Changes in Eutrophic Wenchang

(China) and Oligotrophic Krka (Croatia) Estuaries:

A Comparative Study. Frontiers in Marine Science, 8.

DOI: https://doi.org/10.3389/fmars.2021.663601

Harari, J., França, C. A. S. & Camargo, R. 2008.

Perspectives on Integrated Coastal Zone Management

in South America. In: Neves, R., Baretta, J., Mateus, M.

(ed.) Climatology and hydrography of Santos Estuary

(pp. 147–160). Lisboa: IST Press.

Head, E. J. H. & Harris, L. R. 1996. Chlorophyll destruction

by Calanus spp. grazing onphytoplankton: kinetics,

effects of ingestion rate andfeeding history, and a

mechanistic interpretation. Marine Ecology Progress

Series, 135, 223–235.

Ho, T.-Y., Quigg, A., Finkel, Z. V., Milligan, A. J., Wyman, K.,

Falkowski, P. G. & Morel, F. M. M. 2003. The elemental

composition od some marine phytoplankton. Journal

of Phycology, 39(6), 1145–1159. DOI: https://doi.org/

1111/j.0022-3646.2003.03-090.x

Honjo, S., Manganini, S. J., Krishfield, R. A. & Francois, R.

Particulate organic carbon fluxes to the ocean

interior and factors controlling the biological pump:

A synthesis of global sediment trap programs since

Progress in Oceanography, 76(3), 217–285. DOI:

https://doi.org/10.1016/j.pocean.2007.11.003

Hopkins, J., Henson, S. A., Poulton, A. J. & Balch,

W. M. 2019. Regional Characteristics of the Temporal

Variability in the Global Particulate Inorganic Carbon

Inventory. Global Biogeochemical Cycles, 33(11),

–1338. DOI: https://doi.org/10.1029/2019gb006300

Huang, J., Wang, S., Li, X., Xie, R., Sun, J., Shi, B., Liu, F.,

Cai, H., Yang, Q. & Zheng, Z. 2022. Effects of Shear

Stress and Salinity Stratification on Floc Size Distribution

During the Dry Season in the Modaomen Estuary

of the Pearl River. Frontiers in Marine Science, 9.

DOI: https://doi.org/10.3389/fmars.2022.836927

Humborg, C., Smedberg, E., Medina, M. R. & Mörth, C.-M.

Changes in dissolved silicate loads to the Baltic

Sea — The effects of lakes and reservoirs. Journal

of Marine Systems, 73(3–4), 223–235. DOI: https://

doi.org/10.1016/j.jmarsys.2007.10.014

INMET. 2020. Portal INMET. Accessed: http://www.inmet.

gov.br/portal

IO-USP. 2006. MAPTOLAB. Accessed: http://www.mares.

io.usp.br/

Italiani, D., Siegle, E. & Noernberg, M. A. 2020. Tidal inlet

migration and formation: the case of the Ararapira inlet -

Brazil. Ocean and Coastal Research, 68. DOI: https://

doi.org/10.1590/s2675-28242020068314

Jeffrey, S. W. & Humphrey, G. F. 1975. New

spectrophotometric equations for determining

chlorophylls a, b, c1 and c2 in higher plants,

algae and natural phytoplankton. Biochemie

Und Physiologie Der Pflanzen, 167(2), 191–194.

DOI: https://doi.org/10.1016/s0015-3796(17)30778-3

Joesoef, A., Huang, W.-J., Gao, Y. & Cai, W.-J. 2015.

Air–water fluxes and sources of carbon dioxide in the

Delaware Estuary: spatial and seasonal variability.

Biogeosciences, 12(20), 6085–6101. DOI: https://

doi.org/10.5194/bg-12-6085-2015

Johannessen, S. C., O’Brien, M. C., Denman, K. L. &

Macdonald, R. W. 2005. Seasonal and spatial variations

in the source and transport of sinking particles in

the Strait of Georgia, British Columbia, Canada.

Marine Geology, 216(1–2), 59–77. DOI: https://

doi.org/10.1016/j.margeo.2005.01.004

John, D. M. 2003. Filamentous and Plantlike Green Algae.

In: Wehr, J. D., Sheath, R. G., & Kociolek, J. P. (eds.),

Aquatic Ecology, Freshwater Algae of North America

(pp. 375–427). Elsevier. DOI: https://doi.org/10.1016/

b978-0-12-385876-4.00008-6

Sinking particles in CIELC euphotic zone

Ocean and Coastal Research 2023, v71(suppl 1):e23038 33

Sutti et al.

Kähler, P. & Bauerfeind, E. 2001. Organic particles in a

shallow sediment trap: Substantial loss to the dissolved

phase. Limnology and Oceanography, 46(3), 719–723.

DOI: https://doi.org/10.4319/lo.2001.46.3.0719

Karlusich, J. J. P., Ibarbalz, F. M. & Bowler, C. 2020.

Phytoplankton in the Tara Ocean. Annual Review

of Marine Science, 12(1), 233–265. DOI: https://

doi.org/10.1146/annurev-marine-010419-010706

Kathiresan, K. 2003. How do mangrove forests induce

sedimentation? Revista de Biología Tropical, 51(2),

–359.

Kostadinov, T. S., Siegel, D. A., Maritorena, S. &

Guillocheau, N. 2012. Optical assessment of particle

size and composition in the Santa Barbara Channel,

California. Applied Optics, 51(16), 3171–3189. DOI:

https://doi.org/10.1364/ao.51.003171

Kutner, M. B. B. 1972. Variação estacional e distribuição

do fitoplâncton na região de Cananéia (phdthesis).

Universidade de São Paulo, Instituto Oceanográfico,

São Paulo.

Lopes, R. M., Vale, R. do & Brandini, F. P. 1998.

Composição, abundância e distribuição espacial do

zooplâncton no complexo estuarino de Paranaguá

durante o inverno de 1993 e o verão de 1994. Revista

Brasileira de Oceanografia, 46(2), 195–211. DOI:

https://doi.org/10.1590/s1413-77391998000200008

Louda, J. W., Liu, L. & Baker, E. W. 2002. Senescence- and

death-related alteration of chlorophylls and carotenoids

in marine phytoplankton. Organic Geochemistry,

(12), 1635–1653. DOI: https://doi.org/10.1016/s0146-

(02)00106-7

Lorenzen, C. J. 1965. A note on the chlorophyll and

phaeophytin content of the chlorophyll maximum.

Limnology and Oceanography, 10, 482-483.

Mari, X., Torréton, J.-P., Trinh, C. B.-T., Bouvier, T., Thuoc,

C. V., Lefebvre, J.-P. & Ouillon, S. 2012. Aggregation

dynamics along a salinity gradient in the Bach Dang

estuary, North Vietnam. Estuarine, Coastal and Shelf

Science, 96, 151–158. DOI: https://doi.org/10.1016/j.

ecss.2011.10.028

Martiny, A. C., Pham, C. T. A., Primeau, F. W., Vrugt, J. A.,

Moore, J. K., Levin, S. A. & Lomas, M. W. 2013. Strong

latitudinal patterns in the elemental ratios of marine

plankton and organic matter. Nature Geoscience, 6(4),

–283. DOI: https://doi.org/10.1038/ngeo1757

Mesquita, H. de S. L. & Peres, C. de A. 1985. Numerical

contribution of phytoplanktonic cells, heterotrophic

particles and bacteria to size fractionated POC in the

Cananéia estuary (25o

S 48o

W), Brazil. Boletim Do

Instituto Oceanográfico, 33(1), 69–78.

Millo, C., Bravo, C., Covelli, S., Pavoni, E., Petranich, E.,

Contin, M., Nobili, M. D., Crosera, M., Sutti, B. O.,

Silva, C. das M. & Braga, E. de S. 2021. Metal Binding

and Sources of Humic Substances in Recent Sediments

from the Cananéia-Iguape Estuarine-Lagoon Complex

(South-Eastern Brazil). Applied Sciences, 11(18), 8466.

DOI: https://doi.org/10.3390/app11188466

Miranda, L. B. de & Castro Filho, B. M. de. 1996. On the

salt transport in the Cananéia sea during a spring tide

experiment. Revista Brasileira de Oceanografia, 44(2),

–133.

Miyao, S. Y. & Harari, J. 1989. Estudo preliminar da maré e

das correntes de maré da região estuarina de Cananéia

(25o

S-48o

W). Boletim Do Instituto Oceanográfico, 37(2),

–123.

Miyao, S. Y., Nishihara, L. & Sarti, C. C. 1986. Características

físicas e químicas do Sistema Estuarino-Lagunar de

Cananéia-Iguape. Boletim Do Instituto Oceanográfico,

, 23–36.

Moraes, P. C., Zilius, M., Benelli, S. & Bartoli, M. 2018.

Nitrification and denitrification in estuarine sediments

with tube-dwelling benthic animals. Hydrobiologia,

(1), 217–230. DOI: https://doi.org/10.1007/s10750-

-3639-3

Moser, G. A. O., Gianesella, S. M. F., Alba, J. J. B.,

Bérgamo, A. L., Saldanha-Corrêa, F. M. P., Miranda,

L. B. de & Harari, J. 2005. Instantaneous transport of

salt, nutrients, suspended matter and chlorophyll-a

in the tropical estuarine system of Santos. Brazilian

Journal of Oceanography, 53(3/4), 115–127.

Mostofa, K. M. G., Liu, C., Pan, X., Vione, D., Hayakawa, K.,

Yoshioka, T. & Komissarov, G. G. 2013. Chlorophylls

and their Degradation in Nature. In: Mostofa, K. M.

G., Yoshioka, T., Mottaleb, A., & Vione, D. (eds.),

Photobiogeochemistry of Organic Matter (pp. 687–768).

Berlin: Springer Berlin Heidelberg. DOI: https://doi.

org/10.1007/978-3-642-32223-5_8

Nunes, L. H. 1990. Impacto pluvial na serra do paranapiacaba

e baixada santista (phdthesis). Universidade de São

Paulo, São Paulo.

Odebrecht, C., Villac, M. C., Abreu, P. C., Haraguchi, L.,

Gomes, P. D. F. & Tenenbaum, D. R. 2018. Flagellates

Versus Diatoms: Phytoplankton Trends in Tropical

and Subtropical Estuarine-Coastal Ecosystems. In:

Hoffmeyer, M., Sabatini, M., Brandini, F., Calliari, D. &

Santinelli, N. (eds.), Plankton Ecology of the Southwestern

Atlantic (pp. 249–267). Springer International Publishing.

DOI: https://doi.org/10.1007/978-3-319-77869-3_12

Pandolfini, E. 2000. Grazing experiments with two freshwater

zooplankters: fate of chlorophyll and carotenoid

pigments. Journal of Plankton Research, 22(2), 305–

DOI: https://doi.org/10.1093/plankt/22.2.305

Passow, U., Shipe, R. F., Murray, A., Pak, D. K., Brzezinski,

M. A. & Alldredge, A. L. 2001. The origin of transparent

exopolymer particles (TEP) and their role in the

sedimentation of particulate matter. Continental Shelf

Research, 21(4), 327–346. DOI: https://doi.org/10.1016/

s0278-4343(00)00101-1

Paula Filho, F. J., Marins, R. V., Chicharo, L., Souza, R. B.,

Santos, G. V. & Braz, E. M. A. 2020. Evaluation of

water quality and trophic state in the Parnaíba River

Delta, northeast Brazil. Regional Studies in Marine

Science, 34, 101025. DOI: https://doi.org/10.1016/j.

rsma.2019.101025

Pilskaln, C. H., Padua, J. B., Chavez, F. P., Anderson, R. Y. &

Berelson, W. M. 1996. Carbon export and regeneration

in the coastal upwellingsystem of Monterey Bay, central

California. Journal of Marine Research, 54, 1149–1178.

Prado, H. M., Schlindwein, M. N., Murrieta, R. S. S.,

Júnior, D. R. do N., Souza, E. P. de, Cunha-Lignon, M.,

Mahiques, M. M. de, Giannini, P. C. F. & Contente, R. F.

The Valo Grande Channel in theCananéia-Iguape

Estuary-Lagoon Complex (SP, Brazil): Environmental

Sinking particles in CIELC euphotic zone

Ocean and Coastal Research 2023, v71(suppl 1):e23038 34

Sutti et al.

History, Ecology, and Future Perspectives. Ambiente &

Sociedade, 22. DOI: https://doi.org/10.1590/1809-

asoc0182r2vu19l4td

Primpas, I. & Karydis, M. 2010. Scaling the trophic

index (TRIX) in oligotrophic marine environments.

Environmental Monitoring and Assessment, 178(1–4),

–269. DOI: https://doi.org/10.1007/s10661-010-1687-x

Raimonet, M., Thieu, V., Silvestre, M., Oudin, L.,

Rabouille, C., Vautard, R. & Garnier, J. 2018. Landward

Perspective of Coastal Eutrophication Potential

Under Future Climate Change: The Seine River Case

(France). Frontiers in Marine Science, 5. DOI: https://

doi.org/10.3389/fmars.2018.00136

RAMSAR. 2017. Ramsar Sites Information Service.

Accessed: https://rsis.ramsar.org/ris/2310

Rassmann, J., Lansard, B., Pozzato, L. & Rabouille, C.

Carbonate chemistry in sediment porewaters

of the Rhône River delta driven by early diagenesis

(northwestern Mediterranean). Biogeosciences, 13(18),

–5394. DOI: https://doi.org/10.5194/bg-13-5379-2016

Redfield, A. C. 1958. The biological control of chemical

factors in the environment. American Scientist, 46(3),

–221.

Redfield, A. C., Ketchum, B. H. & Richards, F. A. 1963.

The sea: ideas and observations on progress in the

study of the seas. In: Hill, M. N. (ed.) The Sea. (2nd ed.,

pp. 26–77). New York: Wiley.

Regnier, P., Friedlingstein, P., Ciais, P., Mackenzie,

F. T., Gruber, N., Janssens, I. A., Laruelle, G. G.,

Lauerwald, R., Luyssaert, S., Andersson, A. J., Arndt, S.,

Arnosti, C., Borges, A. V., Dale, A. W., Gallego-Sala, A.,

Goddéris, Y., Goossens, N., Hartmann, J., Heinze, C.,

Ilyina, T., Joos, F., LaRowe, D. E., Leifeld, J., Meysman,

F. J. R., Munhoven, G., Raymond, P. A., Spahni, R.,

Suntharalingam, P. & Thullner, M. 2013. Anthropogenic

perturbation of the carbon fluxes from land to ocean.

Nature Geoscience, 6(8), 597–607. DOI: https://

doi.org/10.1038/ngeo1830

Saavedra-Hortua, D. A., Friess, D. A., Zimmer, M. &

Gillis, L. G. 2020. Sources of Particulate Organic Matter

across Mangrove Forests and Adjacent Ecosystems in

Different Geomorphic Settings. Wetlands, 40(5), 1047–

DOI: https://doi.org/10.1007/s13157-019-01261-9

Saderne, V., Geraldi, N. R., Macreadie, P. I., Maher, D. T.,

Middelburg, J. J., Serrano, O., Almahasheer, H., AriasOrtiz, A., Cusack, M., Eyre, B. D., Fourqurean, J. W.,

Kennedy, H., Krause-Jensen, D., Kuwae, T., Lavery,

P. S., Lovelock, C. E., Marba, N., Masqué, P., Mateo,

M. A., Mazarrasa, I., McGlathery, K. J., Oreska, M. P. J.,

Sanders, C. J., Santos, I. R., Smoak, J. M., Tanaya, T.,

Watanabe, K. & Duarte, C. M. 2019. Role of carbonate

burial in Blue Carbon budgets. Nature Communications,

(1), 1106. DOI: https://doi.org/10.1038/s41467-019-

-6

Sanders, T. & Laanbroek, H. J. 2018. The distribution of

sediment and water column nitrification potential in the

hyper-turbid Ems estuary. Aquatic Sciences, 80(4).

DOI: https://doi.org/10.1007/s00027-018-0584-1

Santos, A. K. D. dos S., Cutrim, M. V. J., Costa, D. S.,

Cavalcanti, L. F., Ferreira, F. S., Oliveira, A. L. L. &

Serejo, J. H. F. 2021. Algal blooms and trophic state in a

tropical estuary blocked by a dam (northeastern Brazil).

Ocean and Coastal Research, 69, 21009. DOI: https://

doi.org/10.1590/2675-2824069.20-006akddss

Santos, A. L. dos, Gourvil, P., Tragin, M., Noël, M.-H.,

Decelle, J., Romac, S. & Vaulot, D. 2016. Diversity

and oceanic distribution of prasinophytes clade VII,

the dominant group of green algae in oceanic waters.

The ISME Journal, 11(2), 512–528. DOI: https://

doi.org/10.1038/ismej.2016.120

Sarma, V. V. S. S., Arya, J., Subbaiah, C. V., Naidu, S. A.,

Gawade, L., Kumar, P. P. & Reddy, N. P. C. 2012. Stable

isotopes of carbon and nitrogen in suspended matter

and sediments from the Godavari estuary. Journal of

Oceanography, 68(2), 307–319. DOI: https://doi.org/

1007/s10872-012-0100-5

Schagerl, M., Pichler, C. & Donabaum, K. 2003. Patterns

of major photosynthetic pigments in freshwater

algae. 2. Dinophyta, Euglenophyta, Chlorophyceae

and Charales. Annales de Limnologie - International

Journal of Limnology, 39(1), 49–62. DOI: https://

doi.org/10.1051/limn/2003005

Schulz, G., Sanders, T., Beusekom, J. E. E. van, Voynova,

Y. G., Schöl, A. & Dähnke, K. 2022. Suspended

particulate matter drives the spatial segregation of

nitrogen turnover along the hyper-turbid Ems estuary.

Biogeosciences, 19(7), 2007–2024. DOI: https://

doi.org/10.5194/bg-19-2007-2022

Sharoni, S. & Halevy, I. 2020. Nutrient ratios in marine

particulate organic matter are predicted by the

population structure of well-adapted phytoplankton.

Science Advances, 6(29). DOI: https://doi.org/10.1126/

sciadv.aaw9371

Silva, I. F. 1989. Dados climatológicos de Cananéia e

Ubatuba (Estado de São Paulo). Série de 1956-1985.

Boletim Climatológicodo Instituto Oceanográfico, 6, 1–21.

Sutti, B. O., Guimarães, L. L. & Borges, E. S. 2022. River Flows

Influence on Nutrients (Si, N and P) and Fecal Coliforms

(E. coli) in Two Tributaries of the Estuarine Channel of

Bertioga (Santos Estuary, São Paulo, Brazil). Journal of

Geoscience and Environment Protection, 10, 26-46.

Sutti, B. O., Guimarães, L. L., Borges, R. P. & Schmiegelow,

J. M. M. 2015. Avaliação do silicato dissolvido como

sinalizador de processos erosivos nabacia de drenagem

de sistemas estuarinos. UNISANTA BioScience, 4(2),

–110.

Thill, A., Moustier, S., Garnier, J.-M., Estournel, C., Naudin,

J.-J. & Bottero, J.-Y. 2001. Evolution of particle size and

concentration in the Rhône river mixing zone: influence of salt

flocculation. Continental Shelf Research, 21 (18–19), 2127–

DOI: https://doi.org/10.1016/s0278-4343(01)00047-4

Tréguer, P. & Le Corre, P. 1975. Manuel d’analyse des

sels nutritifs dans l’eau de mer (2nd ed.). Brest:

Université de Bretage Occidentale.

Tundisi, J. G. & Matsumura-Tundisi, T. 2001. Coastal

Marine Ecosystems of Latin America. In: Seeliger, U. &

Kjerfve, B. (eds.), Ecological Studies (pp. 119–130).

Berlin: Springer Berlin Heidelberg. DOI: https://doi.org/

1007/978-3-662-04482-7_10

Turner, J. T. 2015. Zooplankton fecal pellets, marine snow,

phytodetritus and the ocean’s biological pump.

Progress in Oceanography, 130, 205–248. DOI: https://

doi.org/10.1016/j.pocean.2014.08.005

Sinking particles in CIELC euphotic zone

Ocean and Coastal Research 2023, v71(suppl 1):e23038 35

Sutti et al.

Turner, R. E., Qureshi, N., Rabalais, N. N., Dortch, Q.,

Justic, D., Shaw, R. F. & Cope, J. 1998. Fluctuating

silicate:nitrate ratios and coastal plankton food webs.

Proceedings of the National Academy of Sciences,

(22), 13048–13051. DOI: https://doi.org/10.1073/

pnas.95.22.13048

UNESCO. 1999. Decision of the world heritage committee

(resreport No. 23 Session of the World Heritage).

Geneva: UNESCO.

Verney, R., Lafite, R. & Brun-Cottan, J.-C. 2009. Flocculation

Potential of Estuarine Particles: The Importance

of Environmental Factors and of the Spatial and

Seasonal Variability of Suspended Particulate Matter.

Estuaries and Coasts, 32(4), 678–693. DOI: https://

doi.org/10.1007/s12237-009-9160-1

Wang, A., Liu, J. T., Ye, X., Zheng, B., Li, Y. & Chen, J.

Settling fluxes of cohesive sediments measured

by sediment traps in a semi-enclosed embayment

with strong tidal environments. Continental Shelf

Research, 106, 17–26. DOI: https://doi.org/10.1016/j.

csr.2015.04.026

Yacobi, Y. Z. & Ostrovsky, I. 2008. Downward flux

of organic matter and pigments in Lake Kinneret

(Israel): relationships between phytoplankton and

the material collected in sediment traps. Journal of

Plankton Research, 30(10), 1189–1202. DOI: https://

doi.org/10.1093/plankt/fbn070

Yadav, A. & Pandey, J. 2018. The pattern of N/P/Si

stoichiometry and ecological nutrient limitation in Ganga

River: up- and downstream urban influences. Applied

Water Science, 8(3), 94. DOI: https://doi.org/10.1007/

s13201-018-0734-6

Yao, Y., Liu, H., Han, R., Li, D. & Zhang, L. 2021. Identifying

the Mechanisms behind the Positive Feedback Loop

between Nitrogen Cycling and Algal Blooms in a

Shallow Eutrophic Lake. Water, 13(4), 524. DOI: https://

doi.org/10.3390/w13040524

Zajączkowski, M. 2002. On the use of sediment traps in

sedimentationmeasurements in glaciated fjords. Polish

Polar Research, 23(2), 161–174.

Zhang, P., Peng, C.-H., Zhang, J.-B., Zou, Z.-B., Shi,

Y.-Z., Zhao, L.-R. & Zhao, H. 2020. Spatiotemporal

Urea Distribution, Sources, and Indication of DON

Bioavailability in Zhanjiang Bay, China. Water, 12(3),

DOI: https://doi.org/10.3390/w12030633

Zhang, X., Stavn, R. H., Falster, A. U., Gray, D. &

Gould, R. W. 2014. New insight into particulate

mineral and organic matter in coastal ocean waters

through optical inversion. Estuarine, Coastal and Shelf

Science, 149, 1–12. DOI: https://doi.org/10.1016/j.

ecss.2014.06.003

Zhu, W., Wang, C., Hill, J., He, Y., Tao, B., Mao, Z. &

Wu, W. 2018. A missing link in the estuarine nitrogen

cycle?: Coupled nitrification-denitrification mediated by

suspended particulate matter. Scientific Reports, 8(1),

DOI: https://doi.org/10.1038/s41598-018-20688-4

Zilli, M. T., Carvalho, L. M. V., Liebmann, B. & Dias,

M. A. S. 2016. A comprehensive analysis of trends in

extreme precipitation over southeastern coast of Brazil.

International Journal of Climatology, 37(5), 2269–2279.

DOI: https://doi.org/10.1002/joc.4840

Zúñiga, D., Villacieros-Robineau, N., Salgueiro, E., AlonsoPérez, F., Rosón, G., Abrantes, F. & Castro, C. G. 2016.

Particle fluxes in the NW Iberian coastal upwelling

system: Hydrodynamical and biological control.

Continental Shelf Research, 123, 89-98.

Downloads

Published

2024-04-10

How to Cite

Sinking particles in the photic zone: relations with biogeochemical properties in different sectors of the Cananéia-Iguape Estuarine-Lagoon Complex (CIELC)-Brazil. (2024). Ocean and Coastal Research, 71(Suppl. 1). https://doi.org/10.1590/