Anthropogenic influence on silicon behavior in an estuary member of the Biosphere Reserve in Southeastern Brazil

Authors

  • Ana Teresa C. C. Bastos
  • Elisabete S. Braga

DOI:

https://doi.org/10.1590/

Keywords:

Silicon Biogeochemistry, Silicate, Lithogenic Silica, Biogeonic Silica, Estuaries, Valo Grande

Abstract

The Cananéia-Iguape estuarine-lagoon complex (CIELC), located in the State of São Paulo, Brazil, is considered
an area of the Biosphere Reserve. However, an artificial channel built in the northern sector of the system
(Iguape) has promoted an unnatural input of fresh water into the system, leading to enhanced drainage of
terrestrial material into the estuary and influencing silicon biogeochemistry within the complex. This study used
the distribution of different fractions of silicon along the system as a proxy for the freshwater input. The samples
were collected during August, 2012 (winter) and February 2013 (summer) and analyzed for dissolved silicate,
biogenic silica, and lithogenic silica. Dissolved silicate reached values above 200 µmol L-1 in the two seasonal
periods, indicating the constant supply of terrestrial material in the northern sector of the system associated with
fresh water. Southward, where the system is more preserved (Cananéia-Ararapira), the concentration decreased
dramatically. Lithogenic silica (LSi) reached extremely high values of ~700 µmol L-1. Biogenic silica (BSi) showed
concentrations up to 120 µmol L-1 with distribution more dependent on assimilation processes and the nature
of the biological communities than on the source of fresh water. The availability of different forms of Si revealed
remineralization, deposition, adsorption, and uptake mechanisms with different dynamics in the northern and
southern sectors of the system, evidencing the environmental impact by the Valo Grande Channel.

References

Aguiar, V. M. de C., Baptista Neto, J. A. & Braga, E. S.

Nutrient dynamics in a pristine subtropical

lagoon - estuarine system. London: Lambert Academic

Publishing.

Aminot, A. & Chaussepied, M. 1983. Manuel des analyses

chimiques en milieu marin. Brest: CNEXO.

Anjum, M. & Nagabovanalli, P. 2021. Assessing production

of phytolith and phytolith occluded carbon in aboveground biomass of intensively cultivated rice ecosystems

in India. Carbon Management, 12(5), 509–519. DOI:

https://doi.org/10.1080/17583004.2021.1978552

Barrera-Alba, J., Gianesella, S., Moser, G. & SaldanhaCorrêa, F. 2008. Bacterial and phytoplankton dynamics in

a sub-tropical estuary. Hydrobiologia, 598(1), 229–246.

DOI: https://doi.org/10.1007/s10750-007-9156-4

Bastos, A. T. C. C. & Braga, E. de S. 2018. Different silicon

forms sinalize an input of urbanized river and indicate

the presence of phytoplankton with silicon structures in

the tropical coastal area of Recife (PE-Brazil). Brazilian

Journal of Oceanography, 66(1), 104–114. DOI: https://

doi.org/10.1590/s1679-87592018149206601

Birrien, J. L., Wafar, M. V. M., Corre, P. L. & Riso, R. 1991.

Nutrients and primary production in a shallow stratified

ecosystem in the Iroise Sea. Journal of Plankton

Research, 13(4), 721–742. DOI: https://doi.org/10.1093/

plankt/13.4.721

Braga, E. S. 1995. Nutrientes dissolvidos e produção

primária do fitoplâncton em dois sistemas costeiros do

Estado de São Paulo (phdthesis). Universidade de São

Paulo, São Paulo.

Braga, E. S., Andrié, C., Bourlès, B., Vangriesheim, A.,

Baurand, F. & Chuchla, R. 2004. Congo River signature

and deep circulation in the eastern Guinea Basin. Deep

Sea Research Part I: Oceanographic Research Papers,

(8), 1057–1073. DOI: https://doi.org/10.1016/j.dsr.

03.005

Braga, E. S., Eschrique, S. A., Bastos, A. T. C. C. & Coelho,

L. H. 2009. Silicato dissolvido e seu papel traçador

de aportes terrestres/sedimentares em sistemas

estuarinos. In: Anais do Congresso Brasileiro de

Geoquímica. Ouro Preto.

Braga, R. 1999. Raízes da questão regional no Estado de

São Paulo: considerações 476 sobre o Vale do Ribeira.

Geografia, 24(3), 43–68.

Carbonnel, V., Vanderborght, J.-P., Lionard, M. & Chou, L.

Diatoms, silicic acid and biogenic silica dynamics

along the salinity gradient of the Scheldt estuary

(Belgium/The Netherlands). Biogeochemistry, 113

(1–3), 657–682. DOI: https://doi.org/10.1007/s10533-

-9796-y

Chester, R. 2003. Marine geochemistry (2nd ed.). Hoboken:

Blackwell Publishing.

Chou, L. & Wollast, R. 2006. Estuarine silicon dynamics. In:

Ittekkot, V., Unger, D., Humborg, C. & Tac An, N. (ed.)

The Silicon Cycle: Human Perturbations and Impacts on

Aquatic Systems (pp. 93–120). Washington, DC: Island

Press. (SCOPE report series).

Cornaggia, F., Jovane, L., Alessandretti, L., Ferreira, P. A.

de L., Figueira, R. C. L., Rodelli, D., Berbel, G. B. B.

& Braga, E. S. 2018. Diversions of the Ribeira River

Flow and Their Influence on Sediment Supply in the

Cananeia-Iguape Estuarine-Lagoonal System (SE

Brazil). Frontiers in Earth Science, 6. DOI: https://doi.

org/10.3389/feart.2018.00025

DAEE. 1989. Controle de erosão: bases conceituais e

técnicas; diretrizes para o planejamento urbano e

regional; orientações para o controle de voçorocas

urbanas. São Paulo: DAEE/IPT.

Anthropogenic influence on silicon biogeochemistry

Ocean and Coastal Research 2023, v71(Suppl1):e23035 16

Bastos and Braga

DeMaster, D. J. 1981. The supply and accumulation

of silica in the marine environment. Geochimica et

Cosmochimica Acta, 45(10), 1715–1732. DOI: https://

doi.org/10.1016/0016-7037(81)90006-5

Eschrique, S. A., Marins, R. V., Chiozzini, V. G. & Braga, E. S.

Alteration of dissolved nitrogen forms in Brazilian

estuaries and its relation to the anthropogenic influence.

In: Gallardo Lancho, J. F. (ed.) Procesos geoquímicos

superficiales en Iberoamérica. (pp. 165–178). Brussels:

SiFyQa.

Filho, J. B. & Miranda, L. B. de. 1997. Estimativa da

descarga de água doce no sistema estuarino-lagunar de

Cananéia-Iguape. Revista Brasileira de Oceanografia,

(1–2), 89–94. DOI: https://doi.org/10.1590/s1413-

Flynn, M. N. & Matta, M. E. M. D. 2015. Estrutura da

comunidade fitoplanctônica no gradiente de salinidade

do estuário de Cananéia – SP. Revista Intertox de

Toxicologia, Risco Ambiental e Sociedade, 1(1), 59–69.

DOI: https://doi.org/10.22280/revintervol1ed1.6

Grasshoff, K., Kremling, K. & Ehrhardt, M. (eds.). 1983.

Methods of Seawater Analysis. Hoboken: Wiley. DOI:

https://doi.org/10.1002/9783527613984

Holanda, S. B. 1947. O arroz em São Paulo, na era colonial.

Digesto Econômico, 3(31), 56–58.

Hughes, H. J., Bouillon, S., Rousseau, V., André, L. &

Cardinal, D. 2010. A first look at silicon isotopes in two

contrasting estuaries. Geophysical Research Abstracts.

Ittekkot, V., Unger, D., Humborg, C. & Tac An, N. 2006.

The silicon cycle: human perturbations and impacts on

aquatic systems. Washington, D. C.: Island Press.

Kutner, M. B. B. 1972. Variação estacional e distribuição do

fitoplâncton na região de Cananéia (phdthesis). Instituto

Oceanográfico, Universidade de São Paulo, São Paulo.

Lauerwald, R., Hartmann, J., Moosdorf, N., Dürr, H.

H. & Kempe, S. 2013. Retention of dissolved silica

within the fluvial system of the conterminous USA.

Biogeochemistry, 112(1–3), 637–659. DOI: https://doi.

org/10.1007/s10533-012-9754-8

Lerat, Y., Lasserre, P. & Corre, P. le. 1990. Seasonal

changes in pore water concentrations of nutrients and

their diffusive fluxes at the sediment-water interface.

Journal of Experimental Marine Biology and Ecology,

(2), 135–160. DOI: https://doi.org/10.1016/0022-

(90)90012-2

Liss, P. S. 1976. Conservative and non-conservative

behaviour of dissolved constituents during estuarine

mixing. In: BURTON, J. D.; LISS, P. S. (ed.). Estuarine

chemistry (pp. 93-130). London: Academic Press.

Loucaide, S., Cappelle, P. V. & Behrends, T. 2008. Dissolution

of biogenic silica from land to ocean: Role of salinity and

pH. Limnology and Oceanography, 53(4), 1614–1621.

DOI: https://doi.org/10.4319/lo.2008.53.4.1614

Maldonado, M., Lopez-Acosta, M., Sitjà, C., Garcia-Puig,

M., Galobart, C., Ercilla, G. & Leynaert. A. 2019.

Sponge skeleton as na importante sink of silicon in the

global oceans. Nature Geosciences, 12, 15-822. https://

doi.org/10.1038/s41561-019-0430-7

Maldonado, M., Ribes, M. & Duyl, F. C. van. 2012. Nutrient

Fluxes Through Sponges. In: Advances in Marine

Biology (pp. 113–182). Elsevier. DOI: https://doi.

org/10.1016/b978-0-12-394283-8.00003-5

Marques, M. N., Cotrim, M. B., Pires, M. A. F. & Beltrame

Filho, O. 2007. Avaliação do impacto da agricultura

em áreas de proteção ambiental, pertencentes à bacia

hidrográfica do rio ribeira de iguape, São Paulo. Química

Nova, 30(5), 1171–1178. DOI: https://doi.org/10.1590/

S0100-40422007000500023

Miyao, S. Y., Nishihara, L. & Sarti, C. C. 1986.

Características físicas e químicas do sistema estuarinolagunar de Cananéia-Iguape. Boletim Do Instituto

Oceanográfico, 34, 23–26. DOI: https://doi.org/10.1590/

s0373-55241986000100003

Monferrer, N. L., Boltovskoy, D., Tréguer, P., Sandin, M.

M., Not, F. & Leynaert, A. 2020. Estimating Biogenic

Silica Production of Rhizaria in the Global Ocean.

Global Biogeochemical Cycles, 34(3). DOI: https://doi.

org/10.1029/2019gb006286

Moriceau, B., Gehlen, M., Tréguer, P., Baines, S., Livage,

J. & André, L. 2019. Editorial: Biogeochemistry and

Genomics of Silicification and Silicifiers. Frontiers

in Marine Science, 6. DOI: https://doi.org/10.3389/

fmars.2019.00057

Ragueneau, O., Lancelot, C., Egora, V., Vervlimmeren,

J., Cociasu, A., Déliat, G., Krastev, A., Daoud, N.,

Rousseau, V., Popovitchev, V., Brion, N., Popa, L. &

Cauwet, G. 2002. Biogeochemical transformations

of inorganic nutrients in the mixing zone between

the Danube River and the north-western Black Sea.

Estuarine, Coastal and Shelf Science, 54, 321–336.

DOI: https://doi.org/10.1006/ecss.2000.0650

Ragueneau, O., Savoye, N., Del Amo, Y., Cotten, J.,

Tardiveau, B. & Leynaert, A. 2005. A new method for

the measurement of biogenic silica in suspended matter

of coastal waters: using Si:Al ratios to correct for the

mineral interference. Continental Shelf Research,

(5–6), 697–710. DOI: https://doi.org/10.1016/j.

csr.2004.09.017

Ragueneau, O. & Tréguer, P. 1994. Determination of

biogenic silica in coastal waters: applicability and limits

of the alkaline digestion method. Marine Chemistry,

(1–2), 43–51. DOI: https://doi.org/10.1016/0304-

(94)90090-6

Ran, X., Liu, J., Liu, S., Zang, J., Wang, B. & Zhao, J. 2018.

The biogenic silica composition, behavior and budget

in the Changjiang Estuary. Acta Oceanologica Sinica,

(1), 60–72. DOI: https://doi.org/10.1007/s13131-018-

-7

Roubeix, V., Becquevort, S. & Lancelot, C. 2008. Influence

of bacteria and salinity on diatom biogenic silica

dissolution in estuarine systems. Biogeochemistry,

(1), 47–62. DOI: https://doi.org/10.1007/s10533-008-

-8

Shen, Z., Zhou, S. & Pei, S. 2008. Transfer and transport

of phosphorus and silica in the turbidity maximum zone

of the Changjiang estuary. Estuarine, Coastal and Shelf

Science, 78(3), 481–492. DOI: https://doi.org/10.1016/j.

ecss.2008.01.010

Souza, A. P. R. de, Braga, E. S. & Bertotti, M. 2012. On

site stripping voltammetric determination of Zn(II),

Cd(II) and Pb(II) in water samples of the CananéiaIguape Estuarine-Lagoon complex in São Paulo state,

Anthropogenic influence on silicon biogeochemistry

Ocean and Coastal Research 2023, v71(Suppl1):e23035 17

Bastos and Braga

Brazil. Journal of the Brazilian Chemical Society,

(7), 1320–1326. DOI: https://doi.org/10.1590/s0103-

Sutti, B. O., Chiozzini, V. G., Castro, C. G. & Braga, E.

S. 2023. Sinking particles in the euphotic zone: Their

properties and relationship with nutrients in different

sectors of Cananéia-Iguape Estuarine-Lagoon Complex

(CIELC)-Brazil. Ocean and Coastal Research.

Teixeira, C. 1969. Estudo sobre algumas características do

fitoplâncton da região de Cananéia e o seu potencial

fotossintético. (phdthesis). Universidade de São Paulo,

São Paulo.

Tessler, M. G. & Furtado, V. V. 1983. Dinâmica de

sedimentação das feições de assoreamento da região

lagunar Cananéia-Iguape, Estado de São Paulo. Boletim

Do Instituto Oceanográfico, 32(2), 117–124. DOI:

https://doi.org/10.1590/s0373-55241983000200002

Tréguer, P., Padovan, P., 2000. Global change in sílica

controlo f carbono dioxide. Nature, 406 (6794), 358-

dx.doi.org/10.1038/35019236

Tréguer, P. J., Sutton, J. N., Brzezinski, M., Charette, M. A.,

Devries, T., Dutkiewicz, S., Ehlert, C., Hawkings, J.,

Leynaert, A., Liu, S. M., Monferrer, N. L., López-Acosta,

M., Maldonado, M., Rahman, S., Ran, L. & Rouxel, O.

Reviews and syntheses: The biogeochemical cycle

of silicon in the modern ocean. Biogeosciences, 18(4),

–1289. DOI: https://doi.org/10.5194/bg-18-1269-2021

Tréguer, P., Nelson, D. M., Bennekom, A. J. V., DeMaster,

D. J., Leynaert, A. & Quéguiner, B. 1995. The Silica

Balance in the World Ocean: A Reestimate. Science,

(5209), 375–379. DOI: https://doi.org/10.1126/

science.268.5209.375

UNESCO. 2005. World Network of Biosphere Reserves.

Paris: UNESCO.

Vieillard, A., Fulweiler, R., Hughes, Z. & Carey, J. 2011.

The ebb and flood of Silica: Quantifying dissolved and

biogenic silica fluxes from a temperate salt marsh.

Estuarine, Coastal and Shelf Science, 95(4), 415–423.

DOI: https://doi.org/10.1016/j.ecss.2011.10.012

Zhang, P., Xu, J.-L., Zhang, J.-B., Li, J.-X., Zhang, Y.-C., Li,

Y. & Luo, X.-Q. 2020. Spatiotemporal Dissolved Silicate

Variation, Sources, and Behavior in the Eutrophic

Zhanjiang Bay, China. Water, 12(12), 3586. DOI: https://

doi.org/10.3390/w12123586

Downloads

Published

2024-04-10

How to Cite

Anthropogenic influence on silicon behavior in an estuary member of the Biosphere Reserve in Southeastern Brazil. (2024). Ocean and Coastal Research, 71(Suppl. 1). https://doi.org/10.1590/